Sportverletz Sportschaden
DOI: 10.1055/a-2575-0705
Übersicht

Stellenwert der funktionellen Diagnostik in Prävention und Rehabilitation

Biomechanical Assessment in Orthopaedic Patients: Opportunities and Challenges
Christian Raeder
1   Klinik für Arthroskopische Chirurgie, Sporttraumatologie und Sportmedizin, Athletikum Rhein Ruhr, BG Klinikum Duisburg, Duisburg, GERMANY (Ringgold ID: RIN39748)
,
Christoph Centner
2   Albert-Ludwigs-Universität Freiburg: Albert-Ludwigs-Universitat Freiburg, Freiburg im Breisgau, GERMANY (Ringgold ID: RIN9174)
3   Rennbahnklinik, Muttenz, SWITZERLAND (Ringgold ID: RIN2028670)
,
Hauke Dewitz
4   Orto Sports Lab, Pulheim, GERMANY
,
Sabrina Erdrich
5   Sports Neuromechanics Lab Heidelberg, Heidelberg, GERMANY
,
Wolf Petersen
6   Martin Luther Krankenhaus Berlin, Berlin, GERMANY
,
Thore Zantop
7   Sporthopaedicum Straubing, Straubing, GERMANY
,
Jochen Paul
3   Rennbahnklinik, Muttenz, SWITZERLAND (Ringgold ID: RIN2028670)
› Author Affiliations

Zusammenfassung

Funktionelle Diagnostik (FD) beschreibt die Analyse menschlicher Bewegungshandlungen unter Berücksichtigung von sportlicher Leistungsfähigkeit, Technik und neuromuskulärer Funktion. Bezüglich der Begrifflichkeiten der Messverfahren in der FD herrscht aktuell große Heterogenität. Ärzte, Sportwissenschaftler, Physiotherapeuten und Bewegungswissenschaftler arbeiten auf diesem Gebiet eng zusammen und ergänzen ihre Kompetenzen. Allerdings sind durch die interdisziplinäre Zusammenarbeit auch verschiedene Begriffe und Definitionen im Umlauf und in der praktischen Anwendung geläufig. Dieser Artikel des Komitees für „Funktionelle Diagnostik“ der Gesellschaft für Orthopädisch-Traumatologische Sportmedizin (GOTS) stellt eine systematische Übersicht der Begrifflichkeiten dar und strukturiert die Mess- und Testverfahren. Apparative hochstandardisierte Kraftmessverfahren (z.B. Isokinetik, Isometrik) sowie einfache dynamische Maximalkrafttests werden in diesem Artikel erläutert und in Zusammenhang mit der Anwendung gebracht. Ebenso wird eine Übersicht der aktuellen Evidenz im Themengebiet der FD gegeben. Hieraus können relevante Rückschlüsse für die praktische Anwendung gezogen werden. Praxisorientierte Beispiele von Muskel- und Sehnenverletzungen sowie chronischen Laufverletzungen zeigen die Anwendung der FD in den einzelnen Themengebieten detailliert auf.

Abstract

Functional diagnostics, such as biomechanical testing in orthopaedic patients, is an important and frequently discussed topic in both the literature and clinical practice. It represents a multidisciplinary approach involving medical doctors, physiotherapists, sports scientists, and other disciplines. There is controversy regarding terminology and applications in clinical settings. This article provides an overview of the most common terms and methods. Functional diagnostics are used in the diagnosis of disorders related to human locomotion and functional deficits. The primary focus is on developing and evaluating the effectiveness of prevention or rehabilitation programs. Functional diagnostics are also used to evaluate patients before and after surgeries, such as ACL repair, to assess improvement and outcomes. The Functional Diagnostics Committee of the German Society of Orthopaedic and Traumatological Sports Medicine (Gesellschaft für Orthopädisch-Traumatologische Sportmedizin, “GOTS”) has summarized the recent literature in this field and developed a practically based approach for the implementation of functional testing in orthopaedics.



Publication History

Received: 13 October 2024

Accepted after revision: 09 February 2025

Article published online:
24 June 2025

© 2025. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Mittlmeier T, Müller-Gerbl M. Ganganalyse und funktionelle Anatomie. OP-Journal 2001; 17: 4-13
  • 2 Hewett TE, Myer GD, Ford KR. et al. Mechanisms, prediction, and prevention of ACL injuries: Cut risk with three sharpened and validated tools: ACL INJURY PREVENTION. J Orthop Res 2016; 34: 1843-1855
  • 3 Marques JB, Paul DJ, Graham-Smith P. et al. Change of Direction Assessment Following Anterior Cruciate Ligament Reconstruction: A Review of Current Practice and Considerations to Enhance Practical Application. Sports Med 2020; 50: 55-72
  • 4 Gokeler A, Neuhaus D, Benjaminse A. et al. Principles of Motor Learning to Support Neuroplasticity After ACL Injury: Implications for Optimizing Performance and Reducing Risk of Second ACL Injury. Sports Med 2019; 49: 853-865
  • 5 Buckthorpe M, Della Villa F. Optimising the “Mid-Stage” Training and Testing Process After ACL Reconstruction. Sports Medicine 2019;
  • 6 Buckthorpe M. Optimising the Late-Stage Rehabilitation and Return-to-Sport Training and Testing Process After ACL Reconstruction. Sports Medicine 2019; 49: 1043-1058
  • 7 van Melick N, van Cingel REH, Brooijmans F. et al. Evidence-based clinical practice update: practice guidelines for anterior cruciate ligament rehabilitation based on a systematic review and multidisciplinary consensus. Br J Sports Med 2016; 50: 1506-1515
  • 8 Davies WT, Myer GD, Read PJ. Is It Time We Better Understood the Tests We are Using for Return to Sport Decision Making Following ACL Reconstruction? A Critical Review of the Hop Tests. Sports Med 2020; 50: 485-495
  • 9 Dingenen B, Gokeler A. Optimization of the Return-to-Sport Paradigm After Anterior Cruciate Ligament Reconstruction: A Critical Step Back to Move Forward. Sports Med 2017; 47: 1487-1500
  • 10 Bloch H, Klein C, Luig P. et al. Return-to-Competition: Sicher zurück in den Sport. Trauma Berufskrankh 2017; 19: 26-34
  • 11 Thomas AC, Wojtys EM, Brandon C. et al. Muscle atrophy contributes to quadriceps weakness after anterior cruciate ligament reconstruction. Journal of Science and Medicine in Sport 2016; 19: 7-11
  • 12 Palmieri-Smith RM, Lepley LK. Quadriceps Strength Asymmetry After Anterior Cruciate Ligament Reconstruction Alters Knee Joint Biomechanics and Functional Performance at Time of Return to Activity. Am J Sports Med 2015; 43: 1662-1669
  • 13 Schmitt LC, Paterno MV, Hewett TE. The Impact of Quadriceps Femoris Strength Asymmetry on Functional Performance at Return to Sport Following Anterior Cruciate Ligament Reconstruction. J Orthop Sports Phys Ther 2012; 42: 750-759
  • 14 Paterno MV, Ford KR, Myer GD. et al. Limb Asymmetries in Landing and Jumping 2 Years Following Anterior Cruciate Ligament Reconstruction. Clinical Journal of Sport Medicine 2007; 17: 258-262
  • 15 Waldén M, Hägglund M, Werner J. et al. The epidemiology of anterior cruciate ligament injury in football (soccer): a review of the literature from a gender-related perspective. Knee Surg Sports Traumatol Arthrosc 2011; 19: 3-10
  • 16 Ramachandran AK, Pedley JS, Moeskops S. et al. Changes in Lower Limb Biomechanics Across Various Stages of Maturation and Implications for ACL Injury Risk in Female Athletes: a Systematic Review. Sports Med 2024; 54: 1851-1876
  • 17 Fort-Vanmeerhaeghe A, Bishop C, Buscà B. et al. Inter-limb asymmetries are associated with decrements in physical performance in youth elite team sports athletes. PLoS ONE 2020; 15: e0229440
  • 18 Stearns KM, Pollard CD. Abnormal Frontal Plane Knee Mechanics During Sidestep Cutting in Female Soccer Athletes After Anterior Cruciate Ligament Reconstruction and Return to Sport. Am J Sports Med 2013; 41: 918-923
  • 19 Kotsifaki A, Whiteley R, Van Rossom S. et al. Single leg hop for distance symmetry masks lower limb biomechanics: time to discuss hop distance as decision criterion for return to sport after ACL reconstruction?. British Journal of Sports Medicine 2022; 56: 249-256
  • 20 Kotsifaki A, Van Rossom S, Whiteley R. et al. Single leg vertical jump performance identifies knee function deficits at return to sport after ACL reconstruction in male athletes. British Journal of Sports Medicine 2022; 56: 490-498
  • 21 King E, Richter C, Franklyn-Miller A. et al. Biomechanical but not timed performance asymmetries persist between limbs 9 months after ACL reconstruction during planned and unplanned change of direction. Journal of Biomechanics 2018; 81: 93-103
  • 22 Hughes G. A Review of Recent Perspectives on Biomechanical Risk Factors Associated with Anterior Cruciate Ligament Injury. Research in Sports Medicine 2014; 22: 193-212
  • 23 Hewett TE, Myer GD, Ford KR. et al. Biomechanical Measures of Neuromuscular Control and Valgus Loading of the Knee Predict Anterior Cruciate Ligament Injury Risk in Female Athletes: A Prospective Study. Am J Sports Med 2005; 33: 492-501
  • 24 Brown SR, Brughelli M, Hume PA. Knee Mechanics During Planned and Unplanned Sidestepping: A Systematic Review and Meta-Analysis. Sports Med 2014; 44: 1573-1588
  • 25 Dos’Santos T, McBurnie A, Comfort P. et al. The Effects of Six-Weeks Change of Direction Speed and Technique Modification Training on Cutting Performance and Movement Quality in Male Youth Soccer Players. Sports 2019; 7: 205
  • 26 Dempsey AR, Lloyd DG, Elliott BC. et al. Changing Sidestep Cutting Technique Reduces Knee Valgus Loading. Am J Sports Med 2009; 37: 2194-2200
  • 27 Buckthorpe M, Frizziero A, Roi GS. Update on functional recovery process for the injured athlete: return to sport continuum redefined. Br J Sports Med 2019; 53: 265-267
  • 28 Adams D, Logerstedt D, Hunter-Giordano A. et al. Current Concepts for Anterior Cruciate Ligament Reconstruction: A Criterion-Based Rehabilitation Progression. J Orthop Sports Phys Ther 2012; 42: 601-614
  • 29 Davies GJ, McCarty E, Provencher M. et al. ACL Return to Sport Guidelines and Criteria. Curr Rev Musculoskelet Med 2017; 10: 307-314
  • 30 Gokeler A, Dingenen B, Hewett TE. Rehabilitation and Return to Sport Testing After Anterior Cruciate Ligament Reconstruction: Where Are We in 2022?. Arthroscopy, Sports Medicine, and Rehabilitation 2022; 4: e77-e82
  • 31 Manal TJ, Snyder-Mackler L. Practice Guidelines for Anterior Cruciate Ligament Rehabilitation: A Criterion-Based Rehabilitation Progression. Operative Techniques in Orthopaedics 1996; 6: 190-196
  • 32 Rambaud AJM, Ardern CL, Thoreux P. et al. Criteria for return to running after anterior cruciate ligament reconstruction: a scoping review. British Journal of Sports Medicine 2018; 52: 1437-1444
  • 33 Webster KE, Feller JA. Who Passes Return-to-Sport Tests, and Which Tests Are Most Strongly Associated With Return to Play After Anterior Cruciate Ligament Reconstruction?. Orthopaedic Journal of Sports Medicine 2020; 8: 232596712096942
  • 34 Doege J, Ayres JM, Mackay MJ. et al. Defining Return to Sport: A Systematic Review. Orthopaedic Journal of Sports Medicine 2021; 9: 232596712110095
  • 35 Brinlee AW, Dickenson SB, Hunter-Giordano A. et al. ACL Reconstruction Rehabilitation: Clinical Data, Biologic Healing, and Criterion-Based Milestones to Inform a Return-to-Sport Guideline. Sports Health 2022; 14: 770-779
  • 36 Hewett TE, Di Stasi SL, Myer GD. Current Concepts for Injury Prevention in Athletes After Anterior Cruciate Ligament Reconstruction. Am J Sports Med 2013; 41: 216-224
  • 37 Grindem H, Snyder-Mackler L, Moksnes H. et al. Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. Br J Sports Med 2016; 50: 804-808
  • 38 Kyritsis P, Bahr R, Landreau P. et al. Likelihood of ACL graft rupture: not meeting six clinical discharge criteria before return to sport is associated with a four times greater risk of rupture. Br J Sports Med 2016; 50: 946-951
  • 39 Webster KE, Hewett TE. What is the Evidence for and Validity of Return-to-Sport Testing after Anterior Cruciate Ligament Reconstruction Surgery? A Systematic Review and Meta-Analysis. Sports Med 2019; 49: 917-929
  • 40 Capin JJ, Snyder-Mackler L, Risberg MA. et al. Keep calm and carry on testing: a substantive reanalysis and critique of ‘what is the evidence for and validity of return-to-sport testing after anterior cruciate ligament reconstruction surgery? A systematic review and meta-analysis’. Br J Sports Med 2019; 53: 1444-1446
  • 41 Ashigbi EYK, Banzer W, Niederer D. Return to Sport Tests’ Prognostic Value for Reinjury Risk after Anterior Cruciate Ligament Reconstruction: A Systematic Review. Medicine and science in sports and exercise 2020; 52: 1263-1271
  • 42 McBurnie AJ, Dos’Santos T. Multidirectional Speed in Youth Soccer Players: Theoretical Underpinnings. Strength & Conditioning Journal 2021;
  • 43 Dos’Santos T, Thomas C, McBurnie A. et al. Biomechanical Determinants of Performance and Injury Risk During Cutting: A Performance-Injury Conflict?. Sports Med 2021; 51: 1983-1998
  • 44 Schreurs MJ, Benjaminse A, Lemmink KAPM. Sharper angle, higher risk? The effect of cutting angle on knee mechanics in invasion sport athletes. Journal of Biomechanics 2017; 63: 144-150
  • 45 Kadlec D, Gröger D. Effektives Richtungswechseltraining. Sportphysio 2020; 08: 37-43
  • 46 Lee MJC, Lloyd DG, Lay BS. et al. Effects of Different Visual Stimuli on Postures and Knee Moments during Sidestepping. Medicine & Science in Sports & Exercise 2013; 45: 1740-1748
  • 47 Bloomfield J, Polman R, O’Donoghue P. Physical Demands of Different Positions in FA Premier League Soccer. J Sports Sci Med 2007; 6: 63-70
  • 48 Donelon TA, Dos’Santos T, Pitchers G. et al. Biomechanical Determinants of Knee Joint Loads Associated with Increased Anterior Cruciate Ligament Loading During Cutting: A Systematic Review and Technical Framework. Sports Med – Open 2020; 6: 53
  • 49 Della Villa F, Di Paolo S, Santagati D. et al. A 2D video-analysis scoring system of 90° change of direction technique identifies football players with high knee abduction moment. Knee Surg Sports Traumatol Arthrosc 2021;
  • 50 King E, Richter C, Daniels KAJ. et al. Biomechanical but Not Strength or Performance Measures Differentiate Male Athletes Who Experience ACL Reinjury on Return to Level 1 Sports. Am J Sports Med 2021; 49: 918-927
  • 51 Zebis MK, Aagaard P, Andersen LL. et al. First-time anterior cruciate ligament injury in adolescent female elite athletes: a prospective cohort study to identify modifiable risk factors. Knee Surg Sports Traumatol Arthrosc 2022; 30: 1341-1351
  • 52 Campanini I, Disselhorst-Klug C, Rymer WZ. et al. Surface EMG in Clinical Assessment and Neurorehabilitation: Barriers Limiting Its Use. Front Neurol 2020; 11: 934
  • 53 Wilk KE, Arrigo CA, Davies GJ. Isokinetic Testing: Why it is More Important Today than Ever. International Journal of Sports Physical Therapy 2024; 19
  • 54 Lopes AD, Hespanhol LC, Yeung SS. et al. What are the Main Running-Related Musculoskeletal Injuries?: A Systematic Review. Sports Med 2012; 42: 891-905
  • 55 Ceyssens L, Vanelderen R, Barton C. et al. Biomechanical Risk Factors Associated with Running-Related Injuries: A Systematic Review. Sports Med 2019; 49: 1095-1115
  • 56 Anderson LM, Bonanno DR, Hart HF. et al. What are the Benefits and Risks Associated with Changing Foot Strike Pattern During Running? A Systematic Review and Meta-analysis of Injury, Running Economy, and Biomechanics. Sports Med 2020; 50: 885-917
  • 57 Rahlf AL, Hoenig T, Stürznickel J. et al. A machine learning approach to identify risk factors for running-related injuries: study protocol for a prospective longitudinal cohort trial. BMC Sports Sci Med Rehabil 2022; 14: 75
  • 58 Willwacher S, Kurz M, Robbin J. et al. Running-Related Biomechanical Risk Factors for Overuse Injuries in Distance Runners: A Systematic Review Considering Injury Specificity and the Potentials for Future Research. Sports Med 2022; 52: 1863-1877
  • 59 Wunsch T, Schwameder H. Lauftechniken sportbiomechanisch analysieren. Sportphysio 2015; 03: 112-117
  • 60 Onal S, Leefers M, Smith B. et al. Predicting running injury using kinematic and kinetic parameters generated by an optical motion capture system. SN Appl Sci 2019; 1: 675
  • 61 Hamill J, Gruber AH, Derrick TR. Lower extremity joint stiffness characteristics during running with different footfall patterns. European Journal of Sport Science 2014; 14: 130-136
  • 62 Knorz S, Kluge F, Gelse K. et al. Three-Dimensional Biomechanical Analysis of Rearfoot and Forefoot Running. Orthopaedic Journal of Sports Medicine 2017; 5: 232596711771906
  • 63 Boyer ER, Derrick TR. Lower extremity joint loads in habitual rearfoot and mid/forefoot strike runners with normal and shortened stride lengths. Journal of Sports Sciences 2018; 36: 499-505