Subscribe to RSS
DOI: 10.1055/s-0039-1690189
Synthesis of Tetrahydropyrazolo[4',3':5,6]pyrano[3,4-c]quinolones by Domino Knoevenagel/Hetero Diels–Alder Reactions
Publication History
Received: 25 June 2019
Accepted after revision: 06 August 2019
Publication Date:
14 August 2019 (online)
Abstract
An efficient Lewis acid mediated domino Knoevenagel/hetero Diels–Alder (DKHDA) reaction of pyrazolone derivatives with N-acrylated anthranilic aldehydes was developed, which afforded functionalized tetracyclic tetrahydropyrazolo[4',3':5,6]pyrano[3,4-c]quinolones. The products were formed in good yields and with excellent regio- and stereoselectivity in favor of the cis-configured isomer.
#
Key words
domino reaction - regioselectivity - cyclizations - heterocycles - Diels–Alder reaction - Knoevenagel reactionDomino reactions represent an important tool in organic chemistry.[1a] In this context, domino Knoevenagel/hetero Diels–Alder (DKHDA) reactions are of special interest as they proceed by formation of two or more rings in only one synthetic step.[1] Tetra- and pentacyclic heterocycles, containing a pyran or chroman moiety, have been synthesized through DKHDA reactions of internal O-allylated- and O-propargylated salicylic aldehydes with 1,3-dicarbonyl compounds.[2] There have also been reported DKHDA reactions of 2-formylphenyl-N-alkyl-2-phenylethenesulfonamides and 2-formylphenyl-2-phenylethenesulfonates for the synthesis of annelated benzosultams or benzosultones, respectively.[3] Furthermore, DKHDA reactions of O-acrylated salicylic aldehydes and 1,3-dicarbonyl or thiocarbonyl compounds allow the synthesis of polycyclic dihydrocoumarines.[4] We have recently reported the DKHDA reaction of N-acrylated anthranilic aldehydes and indolin-2-thiones, which provides a convenient access to pentacyclic 3,4-dihydroquinolones.[5]


The pyrazole moiety represents an important heterocyclic core structure because of its presence in many biologically active compounds,[6] pharmaceuticals,[7] agrochemicals,[8] and natural products.[9] Among pyrazole derivatives, Viagra®,[10] Celebrex®,[11] Acomplia®,[12] and Fipronil® [13] are commercial drugs. Pyrazoles display antimicrobial,[14] antitubercular,[15] antitumor,[16] anticancer,[17] and antihyperglycemic activities, and also inhibit IL-1 synthesis and HIV-1 reverse transcriptase.[18] Likewise, tetrahydropyranopyrazoles represent an important core structure because of their presence in various biologically active compounds (Figure [1], top).[19] On the other hand, functionalized 3,4-dihydroquinolone structures are privileged scaffolds that can be found in many synthetic and natural products (Figure [1], bottom).[20] They show cardiovascular effects and also exhibit phosphodiesterase inhibitory and anti-inflammatory activities.[21] 3,4-Dihydroquinolones have been prepared by Skraup–Doebner–von Miller reactions,[22] Friedlander–Friedel–Crafts cyclizations,[23] radical-mediated reactions,[24] oxidative cyclizations,[25] photochemical reactions,[26] transition-metal-catalyzed reactions,[27] and asymmetric synthetic approaches.[28]
An important concept in medicinal chemistry relies on the synthesis of hybrid molecules containing a combination of known pharmacophores.[29] Tetrahydropyrazolo[4',3':5,6]-pyrano[3,4-c]quinolones combine the structural units of pyrazoles, tetrahydropyranopyrazoles, and 3,4-dihydroquinolones as pharmacophoric core structures. This type of molecule has, to the best of our knowledge, not been reported in the literature so far. Following our general interest in the development of new synthetic methods and their application in heterocyclic chemistry,[30] we herein wish to report a new and convenient synthesis of tetrahydropyrazolo[4',3':5,6]pyrano[3,4-c]quinolones 3 by DKHDA reaction of pyrazolones 2 with N-acrylated anthranilic aldehydes 1 (Scheme [1]).


N-Acrylated anthranilic aldehydes 1a–d were synthesized in three steps as shown in Scheme [2]. The alkylation of quinoline with alkyl iodides (1,4-dioxane, reflux) afforded the N-alkylquinolinium salts 5a,b. Oxidation of the latter with H2O2 gave N-alkylanthranilic aldehydes 6a,b.[31] Finally, products 1a–d were obtained by reaction of 6a,b with acryloyl chloride (7a) or (E)-crotonyl chloride (7b) according to a known methodology.[5]


a Reagents and conditions: 1a (0.5 mmol, 1.0 equiv), 2a (0.5 mmol, 1.0 equiv), and solvent (5.0 mL).
b Yields of isolated products.
c Reaction time: 15 h.
d Reaction time: 5 h.


The synthesis of the desired target molecules was next studied. To optimize the conditions of the DKHDA reaction, the synthesis of product 3a by reaction of N-acrylanthranilic aldehyde 1a with N-phenylpyrazolone 2a was investigated (Table [1]). Initially, the effect of the solvent, such as water, acetonitrile, methanol, ethanol, acetic acid, and toluene, was studied. The reactions were carried out under reflux and catalyst-free conditions at a reaction time of 15 hours (entries 1–6, Table [1]). The best yields were obtained in ethanol (32% yield, entry 4). Subsequently, the effect of the Lewis acid, such as ZnO, ZnCl2, and ZnBr2, was studied. In the presence of Lewis acid, the yields were improved to 48, 67, and 85%, respectively, and the reaction time could be reduced to five hours (entries 7-9). In fact, employment of ZnBr2 in ethanol heated to reflux gave the best yields (85%, entry 9). The use of other catalysts, such as the acid l-proline or the base NEt3, was not successful (entries 10 and 11). Likewise, the use of ZnBr2 in water heated to reflux was not successful (entry 12). Reduction of the amount of ZnBr2 to 50 mol% gave equally good yields (85%), but further reduction of the amount of ZnBr2 (40 mol%) gave lower yields (entries 13 and 14). Hence, the optimized reaction conditions involved ethanol at reflux with 50 mol% of ZnBr2 and a reaction time of five hours (entry 13).[32] In all cases, analysis of the 1H NMR spectrum of 3a revealed that the product was selectively obtained as the cis-configured isomer.
By using the optimized conditions, the substrate scope was studied. The cyclization of pyrazolones 2a,b with anthranilic aldehydes 1a–d afforded products 3a–h in 80–90% yield and with very good regio- and diastereoselectivity (Scheme [3]).


The structure of the products was confirmed by spectroscopic methods. The coupling constants of the adjacent H atoms clearly indicate the cis configuration of the products (comparison with 1H NMR data of related molecules reported in the literature).[1] [2] [3] [4] [5] For example, in the 1H NMR spectrum of compound 3d, a one-proton double doublet with coupling constants of 7.3 Hz and 5.2 Hz is observed for proton Hb at 2.84 ppm, a three-proton multiplet for the N-CH2 and Ha protons at 3.88–4.03 ppm, and a one-proton doublet with a coupling constant of 5.1 Hz for proton Hc at 4.25 ppm. These data indicate that Ha and Hb are in a trans relationship and Hb and Hc are in a cis relationship (for assignment of the protons, see Scheme [3]). In all compounds, similar coupling constants were observed. In the 1H NMR spectrum of compound 3d, there are also a three-proton triplet, doublet, and a singlet at 1.24, 1.49, and 2.27 ppm, respectively, which can be assigned to the three CH3 groups.
A possible mechanism of the formation of products 3a–h is illustrated in Scheme [4]. The ZnBr2-mediated Knoevenagel condensation of N-acrylanthranilic aldehyde 1 with pyrazolone 2 leads to the formation of an intermediate which can exist in an exo or endo orientation. The stereochemistry of the products depends on the stereochemical orientation of the dienophile in the transition state of the subsequent intramolecular hetero Diels–Alder reaction. The reaction seems to proceed selectively via the endo transition state, as exclusively the formation of the cis-configured isomers was observed. This might be explained by electronic reasons.
In conclusion, we have synthesized what are, to the best of our knowledge, the first tetrahydropyrazolo[4',3':5,6]pyrano[3,4-c]quinolones through DKHDA reaction of pyrazolones with N-acrylated anthranilic aldehydes. The reaction proceeds with excellent regio- and stereoselectivity and in high yields. The reaction was carried out in ethanol heated to reflux as a green and environmentally friendly solvent. The Lewis acid used, ZnBr2, is inexpensive and commercially available.
#
Acknowledgement
Financial support by the State of Mecklenburg-Vorpommern, by the State of Iran, and by the DAAD is gratefully acknowledged.
Supporting Information
- Supporting information for this article is available online at https://doi-org.accesdistant.sorbonne-universite.fr/10.1055/s-0039-1690189.
- Supporting Information
-
References and Notes
- 1a Tietze LF, Brasche G, Gericke KM. Domino Reactions in Organic Synthesis . Wiley-VCH; Weinheim: 2006
- 1b Tietze LF, Hippe T, Steinmetz A. Synlett 1996; 1043
- 1c Tietze LF, Modi A. Med. Res. Rev. 2000; 20: 304
- 1d Reddy BV. S, Divya B, Swain M, Rao TP, Yadav JS, Vardhan MV. P. S. V. Bioorg. Med. Chem. Lett. 2012; 22: 1995
- 1e Manian RD. R. S, Jayashankaran J, Raghunathan R. Synlett 2007; 874
- 1f Wu M, Yang J, Luo F, Cheng C, Zhu G. Org. Biomol. Chem. 2019; 17: 5684
- 2a Khoshkholgh MJ, Balalaie S, Bijanzadeh HR, Gross JH. Synlett 2009; 55
- 2b Kiamehr M, Moghaddam FM. Tetrahedron Lett. 2009; 50: 6723
- 2c Parmar NJ, Parmar BD, Sutariya TR, Kant R, Gupta VK. Tetrahedron Lett. 2014; 55: 6060
- 2d Bakthadoss M, Kannan D. RSC Adv. 2014; 4: 11723
- 2e Khoshkholgh MJ, Balalaie S, Gleiter R, Rominger F. Tetrahedron 2008; 64: 10924
- 2f Parmar BD, Sutariya TR, Brahmbhatt GC, Parmar NJ, Kant R, Gupta VK. J. Org. Chem. 2016; 81: 4955
- 2g Sutariya TR, Labana BM, Parmar BD, Parmar NJ, Kant R, Gupta VK. RSC Adv. 2015; 5: 23519
- 2h Martín-Acosta P, Feresin G, Tapia A, Estévez-Braun A. J. Org. Chem. 2016; 81: 9738
- 2i Majumdar KC, Taher A, Ponra S. Synthesis 2010; 4043
- 3a Ghandi M, Mohammadimehr E, Sadeghzadeh M, Bozcheloei AH. Tetrahedron 2011; 67: 8484
- 3b Moghaddam FM, Khodabakhshi MR, Kiamehr M, Ghahremannejad Z. Tetrahedron Lett. 2013; 54: 2685
- 3c Ghandi M, Nazeria MT, Kubicki M. Tetrahedron 2013; 69: 4979
- 3d Ghandi M, Sheibani S, Sadeghzadeh M, Daha FJ, Kubicki M. J. Iran. Chem. Soc. 2013; 10: 1057
- 4a Bakthadoss M, Kannan D, Sivakumar N, Malathi P, Manikandan V. Org. Biomol. Chem. 2015; 13: 5597
- 4b Moghaddam FM, Kiamehr M, Khodabakhshi MR, Mirjafary Z, Fathi S, Saeidian H. Tetrahedron 2010; 66: 8615
- 4c Moghaddam FM, Kiamehr M, Taheri S, Mirjafary Z. Helv. Chim. Acta 2010; 93: 964
- 5 Kiamehr M, Alipour B, Mohammadkhani L, Jafari B, Langer P. Tetrahedron 2017; 73: 3040
- 6 Wu CH, Hung MS, Song JS, Yeh TK, Chou MC, Chu CM, Jan JJ, Hsieh MT, Tseng SL, Chang CP, Hsieh WP, Lin YC, Yeh YN, Chung WL, Kuo CW, Lin CY, Shy HS, Chao YS, Shia KS. J. Med. Chem. 2009; 52: 4496
- 7 Dadiboyena S, Nefzi A. Eur. J. Med. Chem. 2011; 46: 5258
- 8 Lahm GP, Cordova D, Barry JD. Bioorg. Med. Chem. 2009; 17: 4127
- 9a Elguero J. In Comprehensive Heterocyclic Chemistry II, Vol. 3. Shinkai I. Pergamon Press; Oxford: 1996: 1
- 9b Eicher T, Hauptmann S. The Chemistry of Heterocycles, 2nd ed. Wiley-VCH; Weinheim: 2003: 179
- 9c Liu JJ, Zhao M.-y, Zhang X, Zhao X, Zhu HL. Mini-Rev. Med. Chem. 2013; 13: 1957
- 10 Terrett NK, Bell AS, Brown D, Ellis P. Bioorg. Med. Chem. Lett. 1996; 6: 1819
- 11a Hwang SH, Wagner KM, Morisseau C, Liu JY, Dong H, Wecksler AT, Hammock BD. J. Med. Chem. 2011; 54: 3037
- 11b Dai HX, Stepan AF, Plummer MS, Zhang YH, Yu JQ. J. Am. Chem. Soc. 2011; 133: 7222
- 12 Donohue SR, Halldin C, Pike VW. Bioorg. Med. Chem. 2006; 14: 3712
- 13 Terçariol PR. G, Godinho AF. Pestic. Biochem. Physiol. 2011; 99: 221
- 14 Gouda MA, Berghot MA, Shoeib AI, Khalil AM. Eur. J. Med. Chem. 2010; 45: 1843
- 15 Chovatia PT, Akabari JD, Kachhadia PK, Zalawadia PD, Joshi HS. J. Serb. Chem. Soc. 2007; 71: 713
- 16 Abadi AH, Eissa AA. H, Hassan GS. Chem. Pharm. Bull. 2003; 51: 838
- 17a Abdel-Aziz HA, El-Zahabi HS. A, Dawood KM. Eur. J. Med. Chem. 2010; 45: 2427
- 17b Vujasinovic I, Paravic-Radicevic A, Mlinaric-Majerski K, Brajsa K, Bertosa B. Bioorg. Med. Chem. 2012; 20: 2101
- 18 Kees KL, Fitzgerald JJ. Jr, Steiner KE, Mattes JF, Mihan B, Tosi T, Mondoro D, McCaleb ML. J. Med. Chem. 1996; 39: 3920
- 19a Brogden RN. Drugs 1986; 32: 60
- 19b Yang C, Li J, Zhou R, Chen X, Gao Y, He Z. Org. Biomol. Chem. 2015; 13: 4869
- 20a Zhou W, Zhang L, Jiao N. Tetrahedron 2009; 65: 1982
- 20b Ito C, Itoigawa M, Otsuka T, Tokuda H, Nishino H, Furukawa H. J. Nat. Prod. 2000; 63: 1344
- 20c Seitz W, Geneste H, Backfisch G, Delzer J, Graef C, Hornberger W, Kling A, Subkowskic T, Norbert Z. Bioorg. Med. Chem. 2008; 18: 527
- 20d Guthrie DB, Geib SJ, Curran DP. J. Am. Chem. Soc. 2009; 131: 15492
- 20e Wang H, Sun B, Yang J, Wang J, Mao P, Yang L, Mai W. J. Chem. Res. 2014; 38: 542
- 21a Joseph B, Darro F, Behard A, Lesur B, Collignon F, Decaestecker C, Frydman A, Guillaumet G, Kiss R. J. Med. Chem. 2002; 45: 2543
- 21b Huang L, Hsieh M, Teng C, Lee K, Kuo S. Bioorg. Med. Chem. 1998; 6: 1657
- 21c Suzuki M, Ohuchi Y, Asanuma KT, Yokomori S, Ito C, Isobe Y, Muramatsu M. Chem. Pharm. Bull. 2000; 48: 2003
- 22 Denmark SE, Venkataraman S. J. Org. Chem. 2006; 71: 1668
- 23a Jones G. In Comprehensive Heterocyclic Chemistry, Vol. 2. Boulton AJ, McKillop A. Pergamon; Oxford: 1984. Chap. 8
- 23b Li K, Foresee LN, Tunge JA. J. Org. Chem. 2005; 70: 2881
- 24a Tsubusaki T, Nishino H. Tetrahedron 2009; 65: 9448
- 24b Mai WP, Wang JT, Yang LR, Yuan JW, Xiao YM, Mao P, Qu LB. Org. Lett. 2014; 16: 204
- 25 Fujita KI, Takahashi Y, Owaki M, Yamamoto K, Yamaguchi R. Org. Lett. 2004; 6: 2785
- 26 Akritopolou-Zanze I, Whitehead A, Waters JE, Henry RF, Djuric SW. Tetrahedron Lett. 2007; 48: 3549
- 27a Ye F, Alper H. Adv. Synth. Catal. 2006; 348: 1855
- 27b Tsuritani T, Yamamoto Y, Kawasaki M, Mase T. Org. Lett. 2009; 11: 1043
- 27c Park JO, Youn SW. Org. Lett. 2010; 12: 2258
- 28a Johnson TW, Corey EJ. J. Am. Chem. Soc. 2001; 123: 4475
- 28b Harmata M, Hong X. Org. Lett. 2007; 9: 2701
- 28c Bakowski A, Dressel M, Bauer A, Bach T. Org. Biomol. Chem. 2011; 9: 3516
- 28d Neel M, Gouin J, Voituriez A, Marinetti A. Synthesis 2011; 2003
- 28e Lee Y, Kim SG. J. Org. Chem. 2014; 79: 8234
- 28f Xia A.-B, Zhang X.-L, Wang T, Du X.-H, Xu D.-Q, Xu Z.-Y. New J. Chem. 2015; 39: 5088
- 29 Shaveta Mishra S, Singh P. Eur. J. Med. Chem. 2016; 124: 500
- 30a Khodabakhshi MR, Kiamehr M, Moghaddam FM, Villinger A, Langer P. ChemistrySelect 2018; 3: 11671
- 30b Kiamehr M, Moghaddam FM, Semeniuchenko V, Villinger A, Langer P, Iaroshenko VO. Tetrahedron Lett. 2013; 54: 5018
- 30c Kiamehr M, Moghaddam FM, Mkrtchyan S, Semeniuchenko V, Supe L, Villinger A, Langer P, Iaroshenko VO. Beilstein J. Org. Chem. 2013; 9: 1119
- 30d Kiamehr M, Moghaddam FM, Gormay PV, Semeniuchenko V, Villinger A, Langer P, Iaroshenko VO. Tetrahedron 2012; 68: 9685
- 30e Kiamehr M, Khodabakhshi MR, Moghaddam FM, Villinger A, Langer P. ARKIVOC 2017; (v):: 20
- 30f Khodabakhshi MR, Moghaddam FM, Kiamehr M. Tetrahedron Lett. 2018; 59: 4503
- 31 Apple IA, Meth-Cohn O. ARKIVOC 2002; (vi): 4
- 32 Synthesis of Products 3a–h by DKHDA Reaction; General Procedure A mixture of N-acrylated anthranilaldehyde 1 (0.5 mmol), N-phenyl pyrazolone 2 (0.5 mmol), and ZnBr2 (50 mol%) was stirred in EtOH heated to reflux (5 mL). The progress of the reaction was followed by TLC. After completion (5 h) and cooling down, ice-cold water (20 mL) was poured into the reaction mixture. The resulting precipitate was filtered after stirring for 5 min and washed with cold water. After air drying at room temperature, the pure product 3 was obtained by column chromatography on silica gel, by eluting with n-hexane/ethyl acetate (2:1). (5R*,5aS*,11bS*)-7-Ethyl-1,5-dimethyl-3-phenyl-5,5a,7,11b-tetrahydropyrazolo[4',3':5,6]pyrano[3,4-c]quinolin-6(3H)-one (3d) Pale yellow solid; yield: 84% (157 mg); mp 180–182 °C. IR (ATR): 3066, 2930, 1664, 1599, 1496, 1126, 757 cm–1. 1H NMR (300 MHz, CDCl3): δ = 1.24 (t, J = 6.4 Hz, 3 H, CH3), 1.49 (d, J = 6.5 Hz, 3 H, CH3), 2.17 (s, 3 H, CH3), 2.84 (dd, J = 7.3, 5.2 Hz, 1 H, Hb), 3.88–4.03 (m, 3 H, Ha, NCH2), 4.25 (d, J = 5.1 Hz, 1 H, Hc), 7.02–7.21 (m, 3 H, Ar-H), 7.27–7.40 (m, 4 H, Ar-H), 7.73 (d, J = 8.51 Hz, 2 H, Ar-H). 13C NMR (75 MHz, CDCl3): δ = 12.7 (CH3), 13.4 (CH3), 18.8 (CH3), 31.0 (CH), 38.0 (NCH2), 46.3 (CH), 72.4 (OCH), 115.0 (CH), 120.3 (CH), 121.1 (C), 123.3 (CH), 125.6 (CH), 128.3 (CH), 128.9 (CH), 129.1 (CH), 129.8 (C), 137.4 (C), 138.5 (C), 146.8 (C), 149.4 (C), 167.2 (CON). HRMS (EI): m/z calcd for C23H23N3O2 [M]+: 373.1785; found: 373.1781.
-
References and Notes
- 1a Tietze LF, Brasche G, Gericke KM. Domino Reactions in Organic Synthesis . Wiley-VCH; Weinheim: 2006
- 1b Tietze LF, Hippe T, Steinmetz A. Synlett 1996; 1043
- 1c Tietze LF, Modi A. Med. Res. Rev. 2000; 20: 304
- 1d Reddy BV. S, Divya B, Swain M, Rao TP, Yadav JS, Vardhan MV. P. S. V. Bioorg. Med. Chem. Lett. 2012; 22: 1995
- 1e Manian RD. R. S, Jayashankaran J, Raghunathan R. Synlett 2007; 874
- 1f Wu M, Yang J, Luo F, Cheng C, Zhu G. Org. Biomol. Chem. 2019; 17: 5684
- 2a Khoshkholgh MJ, Balalaie S, Bijanzadeh HR, Gross JH. Synlett 2009; 55
- 2b Kiamehr M, Moghaddam FM. Tetrahedron Lett. 2009; 50: 6723
- 2c Parmar NJ, Parmar BD, Sutariya TR, Kant R, Gupta VK. Tetrahedron Lett. 2014; 55: 6060
- 2d Bakthadoss M, Kannan D. RSC Adv. 2014; 4: 11723
- 2e Khoshkholgh MJ, Balalaie S, Gleiter R, Rominger F. Tetrahedron 2008; 64: 10924
- 2f Parmar BD, Sutariya TR, Brahmbhatt GC, Parmar NJ, Kant R, Gupta VK. J. Org. Chem. 2016; 81: 4955
- 2g Sutariya TR, Labana BM, Parmar BD, Parmar NJ, Kant R, Gupta VK. RSC Adv. 2015; 5: 23519
- 2h Martín-Acosta P, Feresin G, Tapia A, Estévez-Braun A. J. Org. Chem. 2016; 81: 9738
- 2i Majumdar KC, Taher A, Ponra S. Synthesis 2010; 4043
- 3a Ghandi M, Mohammadimehr E, Sadeghzadeh M, Bozcheloei AH. Tetrahedron 2011; 67: 8484
- 3b Moghaddam FM, Khodabakhshi MR, Kiamehr M, Ghahremannejad Z. Tetrahedron Lett. 2013; 54: 2685
- 3c Ghandi M, Nazeria MT, Kubicki M. Tetrahedron 2013; 69: 4979
- 3d Ghandi M, Sheibani S, Sadeghzadeh M, Daha FJ, Kubicki M. J. Iran. Chem. Soc. 2013; 10: 1057
- 4a Bakthadoss M, Kannan D, Sivakumar N, Malathi P, Manikandan V. Org. Biomol. Chem. 2015; 13: 5597
- 4b Moghaddam FM, Kiamehr M, Khodabakhshi MR, Mirjafary Z, Fathi S, Saeidian H. Tetrahedron 2010; 66: 8615
- 4c Moghaddam FM, Kiamehr M, Taheri S, Mirjafary Z. Helv. Chim. Acta 2010; 93: 964
- 5 Kiamehr M, Alipour B, Mohammadkhani L, Jafari B, Langer P. Tetrahedron 2017; 73: 3040
- 6 Wu CH, Hung MS, Song JS, Yeh TK, Chou MC, Chu CM, Jan JJ, Hsieh MT, Tseng SL, Chang CP, Hsieh WP, Lin YC, Yeh YN, Chung WL, Kuo CW, Lin CY, Shy HS, Chao YS, Shia KS. J. Med. Chem. 2009; 52: 4496
- 7 Dadiboyena S, Nefzi A. Eur. J. Med. Chem. 2011; 46: 5258
- 8 Lahm GP, Cordova D, Barry JD. Bioorg. Med. Chem. 2009; 17: 4127
- 9a Elguero J. In Comprehensive Heterocyclic Chemistry II, Vol. 3. Shinkai I. Pergamon Press; Oxford: 1996: 1
- 9b Eicher T, Hauptmann S. The Chemistry of Heterocycles, 2nd ed. Wiley-VCH; Weinheim: 2003: 179
- 9c Liu JJ, Zhao M.-y, Zhang X, Zhao X, Zhu HL. Mini-Rev. Med. Chem. 2013; 13: 1957
- 10 Terrett NK, Bell AS, Brown D, Ellis P. Bioorg. Med. Chem. Lett. 1996; 6: 1819
- 11a Hwang SH, Wagner KM, Morisseau C, Liu JY, Dong H, Wecksler AT, Hammock BD. J. Med. Chem. 2011; 54: 3037
- 11b Dai HX, Stepan AF, Plummer MS, Zhang YH, Yu JQ. J. Am. Chem. Soc. 2011; 133: 7222
- 12 Donohue SR, Halldin C, Pike VW. Bioorg. Med. Chem. 2006; 14: 3712
- 13 Terçariol PR. G, Godinho AF. Pestic. Biochem. Physiol. 2011; 99: 221
- 14 Gouda MA, Berghot MA, Shoeib AI, Khalil AM. Eur. J. Med. Chem. 2010; 45: 1843
- 15 Chovatia PT, Akabari JD, Kachhadia PK, Zalawadia PD, Joshi HS. J. Serb. Chem. Soc. 2007; 71: 713
- 16 Abadi AH, Eissa AA. H, Hassan GS. Chem. Pharm. Bull. 2003; 51: 838
- 17a Abdel-Aziz HA, El-Zahabi HS. A, Dawood KM. Eur. J. Med. Chem. 2010; 45: 2427
- 17b Vujasinovic I, Paravic-Radicevic A, Mlinaric-Majerski K, Brajsa K, Bertosa B. Bioorg. Med. Chem. 2012; 20: 2101
- 18 Kees KL, Fitzgerald JJ. Jr, Steiner KE, Mattes JF, Mihan B, Tosi T, Mondoro D, McCaleb ML. J. Med. Chem. 1996; 39: 3920
- 19a Brogden RN. Drugs 1986; 32: 60
- 19b Yang C, Li J, Zhou R, Chen X, Gao Y, He Z. Org. Biomol. Chem. 2015; 13: 4869
- 20a Zhou W, Zhang L, Jiao N. Tetrahedron 2009; 65: 1982
- 20b Ito C, Itoigawa M, Otsuka T, Tokuda H, Nishino H, Furukawa H. J. Nat. Prod. 2000; 63: 1344
- 20c Seitz W, Geneste H, Backfisch G, Delzer J, Graef C, Hornberger W, Kling A, Subkowskic T, Norbert Z. Bioorg. Med. Chem. 2008; 18: 527
- 20d Guthrie DB, Geib SJ, Curran DP. J. Am. Chem. Soc. 2009; 131: 15492
- 20e Wang H, Sun B, Yang J, Wang J, Mao P, Yang L, Mai W. J. Chem. Res. 2014; 38: 542
- 21a Joseph B, Darro F, Behard A, Lesur B, Collignon F, Decaestecker C, Frydman A, Guillaumet G, Kiss R. J. Med. Chem. 2002; 45: 2543
- 21b Huang L, Hsieh M, Teng C, Lee K, Kuo S. Bioorg. Med. Chem. 1998; 6: 1657
- 21c Suzuki M, Ohuchi Y, Asanuma KT, Yokomori S, Ito C, Isobe Y, Muramatsu M. Chem. Pharm. Bull. 2000; 48: 2003
- 22 Denmark SE, Venkataraman S. J. Org. Chem. 2006; 71: 1668
- 23a Jones G. In Comprehensive Heterocyclic Chemistry, Vol. 2. Boulton AJ, McKillop A. Pergamon; Oxford: 1984. Chap. 8
- 23b Li K, Foresee LN, Tunge JA. J. Org. Chem. 2005; 70: 2881
- 24a Tsubusaki T, Nishino H. Tetrahedron 2009; 65: 9448
- 24b Mai WP, Wang JT, Yang LR, Yuan JW, Xiao YM, Mao P, Qu LB. Org. Lett. 2014; 16: 204
- 25 Fujita KI, Takahashi Y, Owaki M, Yamamoto K, Yamaguchi R. Org. Lett. 2004; 6: 2785
- 26 Akritopolou-Zanze I, Whitehead A, Waters JE, Henry RF, Djuric SW. Tetrahedron Lett. 2007; 48: 3549
- 27a Ye F, Alper H. Adv. Synth. Catal. 2006; 348: 1855
- 27b Tsuritani T, Yamamoto Y, Kawasaki M, Mase T. Org. Lett. 2009; 11: 1043
- 27c Park JO, Youn SW. Org. Lett. 2010; 12: 2258
- 28a Johnson TW, Corey EJ. J. Am. Chem. Soc. 2001; 123: 4475
- 28b Harmata M, Hong X. Org. Lett. 2007; 9: 2701
- 28c Bakowski A, Dressel M, Bauer A, Bach T. Org. Biomol. Chem. 2011; 9: 3516
- 28d Neel M, Gouin J, Voituriez A, Marinetti A. Synthesis 2011; 2003
- 28e Lee Y, Kim SG. J. Org. Chem. 2014; 79: 8234
- 28f Xia A.-B, Zhang X.-L, Wang T, Du X.-H, Xu D.-Q, Xu Z.-Y. New J. Chem. 2015; 39: 5088
- 29 Shaveta Mishra S, Singh P. Eur. J. Med. Chem. 2016; 124: 500
- 30a Khodabakhshi MR, Kiamehr M, Moghaddam FM, Villinger A, Langer P. ChemistrySelect 2018; 3: 11671
- 30b Kiamehr M, Moghaddam FM, Semeniuchenko V, Villinger A, Langer P, Iaroshenko VO. Tetrahedron Lett. 2013; 54: 5018
- 30c Kiamehr M, Moghaddam FM, Mkrtchyan S, Semeniuchenko V, Supe L, Villinger A, Langer P, Iaroshenko VO. Beilstein J. Org. Chem. 2013; 9: 1119
- 30d Kiamehr M, Moghaddam FM, Gormay PV, Semeniuchenko V, Villinger A, Langer P, Iaroshenko VO. Tetrahedron 2012; 68: 9685
- 30e Kiamehr M, Khodabakhshi MR, Moghaddam FM, Villinger A, Langer P. ARKIVOC 2017; (v):: 20
- 30f Khodabakhshi MR, Moghaddam FM, Kiamehr M. Tetrahedron Lett. 2018; 59: 4503
- 31 Apple IA, Meth-Cohn O. ARKIVOC 2002; (vi): 4
- 32 Synthesis of Products 3a–h by DKHDA Reaction; General Procedure A mixture of N-acrylated anthranilaldehyde 1 (0.5 mmol), N-phenyl pyrazolone 2 (0.5 mmol), and ZnBr2 (50 mol%) was stirred in EtOH heated to reflux (5 mL). The progress of the reaction was followed by TLC. After completion (5 h) and cooling down, ice-cold water (20 mL) was poured into the reaction mixture. The resulting precipitate was filtered after stirring for 5 min and washed with cold water. After air drying at room temperature, the pure product 3 was obtained by column chromatography on silica gel, by eluting with n-hexane/ethyl acetate (2:1). (5R*,5aS*,11bS*)-7-Ethyl-1,5-dimethyl-3-phenyl-5,5a,7,11b-tetrahydropyrazolo[4',3':5,6]pyrano[3,4-c]quinolin-6(3H)-one (3d) Pale yellow solid; yield: 84% (157 mg); mp 180–182 °C. IR (ATR): 3066, 2930, 1664, 1599, 1496, 1126, 757 cm–1. 1H NMR (300 MHz, CDCl3): δ = 1.24 (t, J = 6.4 Hz, 3 H, CH3), 1.49 (d, J = 6.5 Hz, 3 H, CH3), 2.17 (s, 3 H, CH3), 2.84 (dd, J = 7.3, 5.2 Hz, 1 H, Hb), 3.88–4.03 (m, 3 H, Ha, NCH2), 4.25 (d, J = 5.1 Hz, 1 H, Hc), 7.02–7.21 (m, 3 H, Ar-H), 7.27–7.40 (m, 4 H, Ar-H), 7.73 (d, J = 8.51 Hz, 2 H, Ar-H). 13C NMR (75 MHz, CDCl3): δ = 12.7 (CH3), 13.4 (CH3), 18.8 (CH3), 31.0 (CH), 38.0 (NCH2), 46.3 (CH), 72.4 (OCH), 115.0 (CH), 120.3 (CH), 121.1 (C), 123.3 (CH), 125.6 (CH), 128.3 (CH), 128.9 (CH), 129.1 (CH), 129.8 (C), 137.4 (C), 138.5 (C), 146.8 (C), 149.4 (C), 167.2 (CON). HRMS (EI): m/z calcd for C23H23N3O2 [M]+: 373.1785; found: 373.1781.










