Subscribe to RSS
DOI: 10.1055/s-0037-1611841
Synthesis of β-Selenylated Cyclopentanones via Photoredox-Catalyzed Selenylation/Ring-Expansion Cascades of Alkenyl Cyclobutanols
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (Grant-No. NRF-2016-R1D1A1B03933723) and Soonchunhyang University Research Fund.
Publication History
Received: 19 April 2019
Accepted after revision: 08 May 2019
Publication Date:
29 May 2019 (online)
Abstract
A photoredox strategy to access β-selenated cyclic ketone derivatives through the coupling reaction of 1-(1-arylvinyl)cyclobutanols with diselenides under blue LED irradiation and an air atmosphere was developed. This reaction employs the easily accessible and shelf-stable diselenides as a selenium radical source, and the reaction has advantages of mild reaction conditions and broad substrate scope.
#
Key words
selenylation - semipinacol rearrangement - 1,2-alkyl migration - 1-(1-arylvinyl)cyclobutanols - photoredox reactionOrganoselenium compounds have attracted considerable attention in pharmaceutical and material sciences due to their biological and chemical properties.[1] It can also be used as a chemical intermediate for organic synthesis.[2] The widespread application of these compounds has led to intensive efforts to develop novel and convenient synthetic methods.[3] Deselenide, a reagent that is easily accessible and stable on the shelf, has emerged as a valuable selenium formulation for synthesizing organic selenium compounds. Various reactions of diselenides with alkene, boronic acid, aromatics, and diazonium salt have been used to supply a variety of organoselenium compounds.[4]
The radical-initiated addition reaction to alkenes provided a practical protocol for the difunctionalization of unactivated alkenes with high chemoselectivity.[5] [6] Recently, several groups reported radical additions and ring-expansion cascades via semipinacol rearrangement of alkenyl alcohols with a variety of radicals, such as acyl, alkyl, amine, aryl, azido, difluoromethyl, phenylsulfonyl, and trifluoromethyl radicals, for the synthesis of β-functionalized carbonyl compounds (Scheme [1, a]).[7]


Over the last decade, the visible-light-mediated photoredox catalysis has emerged as a powerful approach for organic chemists to introduce the functional group to organic compounds because of its environmentally friendly and practical properties.[8] Very recently, we have reported the electrochemical selenylation/ring-expansion sequences of alkenyl cyclobutanols (Scheme [1, b]).[7j] Although this method has been achieved by this system, a more efficient, mild, and environmentally benign approaches for the selenylation/ring-expansion sequences of alkenyl alcohols are highly desired. We envisioned transformation of alkenyl cyclobutanols to β-selenated cyclopentanones by visible-light-mediated photoredox-catalyzed selenylation/ring-expansion sequence via semipinacol rearrangement with diselenides as selenium radical precursors (Scheme [1, c]).
As part of a study for redox reaction and ring closure, we have reported internal redox reactions[9] and radical additions/ring-expansion sequences under mild conditions.[7`] [e] [f] [g] [h] [i] [j] [k] [l] [m]
a Reaction conditions: 1-[1-(4-methoxyphenyl)vinyl]cyclobutanol (1c, 0.1 mmol), diphenyl diselenide (2a, 0.06 mmol), photocatalyst, solvent (1 mL), blue LEDs, room temperature under air.
b Isolated yields.
c F(Ir)pic = bis(3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl) iridium (III).
d 3 mol% photocatalyst loading.
e 1 mol% photocatalyst loading.
f White LEDs instead of blue LEDs.
g Green LEDs instead of blue LEDs.
h Without photocatalyst.
i The reaction was performed in the dark.
j The reaction was performed under N2.
Herein, we report photoredox catalytic selenylation/ring-expansion cascades via semipinacol rearrangement of alkenyl cyclobutanols. To determine optimized reaction conditions for visible-light-mediated photoredox catalytic selenylation/1,2-alkyl-migration sequences of alkenyl cyclobutanol derivatives, we choose 1-[1-(4-methoxyphenyl)vinyl] cyclobutanol (1c) and diphenyl diselenide (2a) as the model substrates. The reaction proceeded in visible-light irradiation using blue LED (5 W, λmax = 455 nm) in acetonitrile with 5 mol% of photocatalyst. The reaction was conducted with various organic and metal photocatalysts (Table [1], entries 1–9), among which a ruthenium complex, Ru(bpy)3Cl2·6H2O, afforded the optimal result (94% yield, Table [1], entry 8). An intensive screening revealed that the reaction is best conducted in acetonitrile (Table [1], entries 8 and 10–19). The reaction tolerates photocatalyst loading down to 3 mol% without a decrease in yield (Table [1], entries 20 and 21). Using white or green LEDs to replace blue LEDs led to a slight decrease in reaction yields (Table [1], entries 22 and 23). The controlled experiments showed that the reaction completely suppressed in the absence of photocatalyst or light source (Table [1], entries 24 and 25).
We turned our attention to study the substrate scope of 1-(1-arylvinyl)cyclobutanols 1 with diphenyl diselenide (2a, Scheme [2]). The reactions of cyclobutanol substrates 1a–h showed that a variety of functional groups were well tolerated, including methyl, methoxy, fluoro, and chloro; and the corresponding cyclopentanone products 3a–h were obtained with 64–94% yields (Scheme [2]). The electronic effect on the aryl of cyclobutanols 1 is important to the reactivity of this selenylation and ring-expansion sequences: cyclopentanones containing electron-donating-substituted aryl groups had higher yields than those with electron-withdrawing ones. The 2-naphthyl-substituted cyclobutanol 1i provided the corresponding product 3i in 72% yield. Notably, this radical selenylation/1,2-alkyl-migration reaction with alkyl-substituted alkenyl cyclobutanol gave 61% yield of corresponding product 3j under the optimized reaction conditions. Next, dibenzyl diselenide (2b) was also effective in the reaction, resulting in the corresponding products 3k–o were obtained in moderate to high yields (55–75%, Scheme [2]).


The practical synthesis of β-selenated cyclic ketones has been achieved by the photoredox-catalyzed selenylation and ring-expansion cascades of 1-(1-arylvinyl)cyclobutanol derivatives with diselenides. Under the optimized reaction conditions, 1-[1-(p-tolyl)vinyl]cyclobutanol (1b) with diphenyl diselenide (2a) afford the desired β-selenated cyclopentanone 3b with 81% yield (Scheme [3]). It is noteworthy that this cascade can also be conducted on gram scale.


To demonstrate the feasibility of this protocol, we decided to further investigate synthetic utility of β-selenated cyclopentanones 3 through Dowd–Beckwith-type ring expansion to afford ring-enlarged cyclohexanone derivatives 4.[10] The reaction of cyclopentanones 3 with Bu3SnH and azobis(isobutyronitrile) (AIBN) affords high yields of ring-enlarged cyclohexanones 4 in toluene at 100 °C for 5 hours (Scheme [4]).


In order to gain insight into the reaction mechanism, some control experiments were performed. When the reaction was carried out under anhydrous nitrogen, significantly reducing yield of product was obtained (Table [1], entry 26). This result indicates that the oxygen plays an important role in the reaction. In addition, when 2,2,6,6-tetramethylpiperidin-1-yloxyl (TEMPO), as a radical inhibitor, was added into the reaction, no desired product was detected (Scheme [5]). This outcome was consistent with our hypothesis that a radical pathway can be involved in this cascade reaction. We propose the reaction mechanism as shown in Scheme [6] based on the results of the experiment and related literature.[11] A photocatalyst Ru(bpy)3Cl2·6H2O is converted into the excited state [Ru(bpy)3Cl2·6H2O]* under visible-light irradiation. Energy-transfer process then occurs to diphenyl diselenide (2a) and would generate ground-state Ru(bpy)3Cl2·6H2O and selenium radicals I. After that, selenium radical I react with 1-(1-phenylvinyl) cyclobutanol (1a) to give carbon radical III, which is oxidized to cation intermediate IV by oxygen (path a). The semipinacol rearrangement through 1,2-alkyl migration of intermediate IV affords the cyclopentanone 3a. Alternatively, radical I can also be oxidized by oxygen to selenium cation II which react with 1-(1-phenylvinyl) cyclobutanol (1a) to give corresponding cation IV (path b).




In conclusion, we have developed a practical synthesis of β-selenated cyclopentanone derivatives 3 via photoredox-catalyzed selenylation and ring-expansion cascade of alkenyl cyclobutanol derivatives 1 with diselenides.[12] [13] This approach is environmentally friendly by using shelf-stable diselenides as selenium radical source and visible light as source of energy. This synthetic method affords a facile way to prepare β-selenated cyclopentanone derivatives.
#
Supporting Information
- Supporting information for this article is available online at https://doi-org.accesdistant.sorbonne-universite.fr/10.1055/s-0037-1611841.
- Supporting Information
-
References and Notes
- 1a Mugesh G, Singh HB. Acc. Chem. Res. 2002; 35: 226
- 1b Nogueira CW, Zeni G, Rocha JB. T. Chem. Rev. 2004; 104: 6255
- 1c Kumar S, Johansson H, Kanda T, Engman L, Müller T, Bergenudd H, Jonsson M, Pedulli GF, Amorati R, Valgimigli L. J. Org. Chem. 2010; 75: 716
- 1d Sarma BK, Manna D, Minoura M, Mugesh G. J. Am. Chem. Soc. 2010; 132: 5364
- 1e Santi C. In Organoselenium Chemistry Between Synthesis and Biochemistry. Bentham Science; Sharjah: 2014
- 1f Sancineto L, Mariotti A, Bagnoli L, Marini F, Desantis J, Iraci N, Santi C, Pannecouque C, Tabarrini O. J. Med. Chem. 2015; 58: 9601
- 1g Mondal S, Manna D, Mugesh G. Angew. Chem. Int. Ed. 2015; 54: 9298
- 1h Pang Y, An B, Lou L, Zhang J, Yan J, Huang L, Li X, Yin S. J. Med. Chem. 2017; 60: 7300
- 1i Kumar S, Johansson H, Kanda T, Engman L, Müller T, Bergenudd H, Jonsson M. Eur. J. Org. Chem. 2017; 3055
- 2a Silveira CC, Braga AL, Vieira AS, Zeni G. J. Org. Chem. 2003; 68: 662
- 2b Kundu D, Ahammed S, Ranu BC. Org. Lett. 2014; 16: 1814
- 2c Luo J, Zhu Z, Liu Y, Zhao X. Org. Lett. 2015; 17: 3620
- 2d Verma A, Jana S, Prasad CD, Yadav A, Kumar S. Chem. Commun. 2016; 52: 4179
- 3a Zeni G, Ludtke DS, Panatieri RB, Braga AL. Chem. Rev. 2006; 106: 1032
- 3b Perin G, Lenardao EJ, Jacob RG, Panatieri RB. Chem. Rev. 2009; 109: 1277
- 3c Freudendahl DM, Santoro S, Shahzad SA, Santi C, Wirth T. Angew. Chem. Int. Ed. 2009; 48: 8409
- 3d Abdo M, Zhang Y, Schramm VL, Knapp S. Org. Lett. 2010; 12: 2982
- 3e Rafique J, Saba S, Rosario AR, Braga AL. Chem. Eur. J. 2016; 22: 11854
- 3f Shu S, Fan Z, Yao Q, Zhang A. J. Org. Chem. 2016; 81: 5263
- 3g Sun K, Wang X, Lv Y, Li G, Jiao H, Dai C, Li Y, Zhanga C, Liu L. Chem. Commun. 2016; 52: 8471
- 4a Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
- 4b Ivanova A, Arsenyan P. Coord. Chem. Rev. 2018; 370: 55
- 4c Zheng Y, He Y, Rong G, Zhang X, Weng Y, Dong K, Xu X, Mao J. Org. Lett. 2015; 17: 5444
- 4d Sun J, Zhang-Negrerie D, Du Y. Adv. Synth. Catal. 2016; 358: 2035
- 4e Qiu J.-K, Shan C, Wang D.-C, Wei P, Jiang B, Tu S.-J, Li G, Guo K. Adv. Synth. Catal. 2017; 359: 4332
- 4f Zhu Y.-Q, He J.-L, Niu Y.-X, Kang H.-Y, Han T.-F, Li H.-Y. J. Org. Chem. 2018; 83: 9958
- 4g Liu Y, Li C, Mu S, Li Y, Feng R, Sun K. Asian J. Org. Chem. 2018; 7: 720
- 4h Yu J.-M, Cai C. Org. Biomol. Chem. 2018; 16: 490
- 4i Zhao F, Sun T, Liu Z, Sun K, Zhang C, Wang X. Curr. Org. Chem. 2018; 22: 613
- 4j Wu P, Wu K, Wang L, Yu Z. Org. Lett. 2017; 19: 5450
- 4k Ricordi VG, Freitas CS, Perin G, Lenardão EJ, Jacob RG, Savegnago L, Alves D. Green Chem. 2012; 14: 1030
- 4l Zheng B, Gong Y, Xu H.-J. Tetrahedron 2013; 69: 5342
- 4m Kumar A, Kumar S. Tetrahedron 2014; 70: 1763
- 4n Jana S, Chakraborty A, Mondal S, Hajra A. RSC Adv. 2015; 5: 77534
- 4o Ricordi VG, Thurow S, Penteado F, Schumacher RF, Perin G, Lenardão EJ, Alves D. Adv. Synth. Catal. 2015; 357: 933
- 4p Yu S, Wan B, Li X. Org. Lett. 2015; 17: 58
- 4q Ferreira NL, Azeredo JB, Fiorentin BL, Braga AL. Eur. J. Org. Chem. 2015; 23: 5070
- 4r Mandal A, Sahoo H, Baidya M. Org. Lett. 2016; 18: 3202
- 4s Sahoo H, Mandal A, Selvakumar J, Baidya M. Eur. J. Org. Chem. 2016; 25: 4321
- 4t Gandeepan P, Koeller J, Ackermann L. ACS Catal. 2017; 7: 1030
- 4u Kibriya G, Samanta S, Singsardar M, Jana S, Hajra A. Eur. J. Org. Chem. 2017; 3055
- 4v Zhang Q.-B, Ban Y.-L, Yuan P.-F, Peng S.-J, Fang J.-G, Liu L.-ZW. Q. Green Chem. 2017; 19: 5559
- 4w Saba S, Rafique J, Franco MS, Schneider AR, Espíndola L, Silva DO, Brag AL. Org. Biomol. Chem. 2018; 16: 880
- 4x Kumaraswamy G, Ramesh V, Gangadhar M, Vijaykumar S. Asian J. Org. Chem. 2018; 7: 1689
- 5a Sha W, Deng L, Ni S, Mei H, Han J, Pan Y. ACS Catal. 2018; 8: 7489
- 5b Zhang Y.-X, Jin R.-X, Yin H, Li Y, Wang X.-S. Org. Lett. 2018; 20: 7283
- 5c Nakafuku KM, Fosu SC, Nagib DA. J. Am. Chem. Soc. 2018; 140: 11202
- 5d Song ZL, Fan CA, Tu YQ. Chem. Rev. 2011; 111: 7523
- 5e Wang B, Tu YQ. Acc. Chem. Res. 2011; 44: 1207
- 5f Wang SH, Li BS, Tu YQ. Chem. Commun. 2014; 50: 2393
- 5g Chen ZM, Zhang XM, Tu YQ. Chem. Soc. Rev. 2015; 44: 5220
- 6a Zhang E, Fan CA, Tu YQ, Zhang FM, Song YL. J. Am. Chem. Soc. 2009; 131: 14626
- 6b Zhang QW, Fan CA, Zhang HJ, Tu YQ, Zhao YM, Gu P, Chen ZM. Angew. Chem. Int. Ed. 2009; 48: 8572
- 6c Romanov-Michailidis F, Guénée L, Alexakis A. Angew. Chem. Int. Ed. 2013; 52: 9266
- 6d Yin Q, You SL. Org. Lett. 2014; 16: 1810
- 6e Xu MH, Dai KL, Tu YQ, Zhang XM, Zhanga FM, Wanga SH. Chem. Commun. 2018; 54: 7685
- 6f Xi CC, Chen ZM, Zhang SY, Tu YQ. Org. Lett. 2018; 20: 4227
- 7a Weng W.-Z, Zhang B. Chem. Eur. J. 2018; 24: 10934
- 7b Shu XZ, Zhang M, He Y, Frei H, Toste FD. J. Am. Chem. Soc. 2014; 136: 5844
- 7c Sahoo B, Li JL, Glorius F. Angew. Chem. Int. Ed. 2015; 54: 11577
- 7d Suh CW, Kim DY. Tetrahedron Lett. 2015; 56: 5661
- 7e Woo SB, Kim DY. J. Fluorine Chem. 2015; 178: 214
- 7f Kwon SJ, Kim YJ, Kim DY. Tetrahedron Lett. 2016; 57: 4371
- 7g Kwon SJ, Kim DY. Org. Lett. 2016; 18: 4562
- 7h Kim YJ, Kim DY. J. Fluorine Chem. 2018; 211: 119
- 7i Kim YJ, Choo MH, Kim DY. Tetrahedron Lett. 2018; 59: 3864
- 7j Kim YJ, Kim DY. Org. Lett. 2019; 21: 1021
- 7k Jung HI, Kim Y, Kim DY. Org. Biomol. Chem. 2019; 17: 3319
- 7l Kim Y, Kim DY. Asian J. Org. Chem. 2019; 8: 679
- 7m Kim YJ, Kim DY. Tetrahedron Lett. 2019; 60: 1287
- 7n Honeker R, Sanchez RA. G, Hopkinson MN, Glorius F. Chem. Eur. J. 2016; 22: 4395
- 7o Bergonzini G, Cassani C, Olsson HL, Hörberg J, Wallentin CJ. Chem. Eur. J. 2016; 22: 3292
- 7p Weng WZ, Sun JG, Li P, Zhang B. Chem. Eur. J. 2017; 23: 9752
- 7q Zhang JJ. Chin. J. Chem. 2017; 35: 311
- 7r Wu H, Wang Q, Zhu J. Chem. Eur. J. 2017; 23: 13037
- 7s Yao S, Zhang K, Zhou QQ, Zhao Y, Shi DQ, Xiao WJ. Chem. Commun. 2018; 54: 8096
- 8a Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
- 8b Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
- 8c Maity S, Zheng N. Synlett 2012; 23: 1851
- 8d Tucker JW, Stephenson CR. J. J. Org. Chem. 2012; 77: 1617
- 8e Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
- 8f Maity S, Zheng N. Synlett 2012; 23: 1851
- 8g Xi Y.-M, Yi H, Lei A.-W. Org. Biomol. Chem. 2013; 11: 2387
- 8h Prier CK, Rankic DA, MacMillan DW. Chem. Rev. 2013; 113: 5322
- 8i Schultz DM, Yoon TP. Science 2014; 343: 985
- 8j Koike T, Akita M. Top. Catal. 2014; 57: 967
- 8k Hopkinson MN, Sahoo B, Li J.-L, Glorius F. Chem. Eur. J. 2014; 20: 3874
- 8l Koike T, Akita M. Inorg. Chem. Front. 2014; 1: 562
- 8m Majek M, Filace F, Wangelin AJ. Beilstein J. Org. Chem. 2014; 10: 981
- 8n Meggers E. Chem. Commun. 2015; 51: 3290
- 8o Cismesia MA, Yoon TP. Chem. Sci. 2015; 6: 5426
- 8p Angnes RA, Li Z, Correia CR. D, Hammond GB. Org. Biomol. Chem. 2015; 13: 9152
- 8q Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
- 8r Ravelli D, Protti S, Fagnoni M. Chem. Rev. 2016; 116: 9850
- 8s Kärkäs MD, Porco JA. Jr, Stephenson CR. J. Chem. Rev. 2016; 116: 9683
- 8t Garbarino S, Ravelli D, Protti S, Basso A. Angew. Chem. Int. Ed. 2016; 55: 15476
- 8u Matsui JK, Lang SB, Heitz DR, Molander GA. ACS. Catal. 2017; 7: 2564
- 8v Bogdos MK, Pinard E, Murphy JA. Beilstein J. Org. Chem. 2018; 14: 2035
- 9a Kang YK, Kim SM, Kim DY. J. Am. Chem. Soc. 2010; 132: 11847
- 9b Kang YK, Kim DY. Adv. Synth. Catal. 2013; 355: 3131
- 9c Suh CW, Woo SB, Kim DY. Asian J. Org. Chem. 2014; 3: 399
- 9d Kang YK, Kim DY. Chem. Commun. 2014; 50: 222
- 9e Suh CW, Kim DY. Org. Lett. 2014; 16: 5374
- 9f Kwon SJ, Kim DY. Chem. Rec. 2016; 16: 1191
- 9g Suh CW, Kwon SJ, Kim DY. Org. Lett. 2017; 19: 1334
- 9h Jeong HJ, Kim DY. Org. Lett. 2018; 20: 2944
- 10a Dowd P, Choi S.-C. J. Am. Chem. Soc. 1987; 109: 3493
- 10b Dowd P, Choi S.-C. J. Am. Chem. Soc. 1987; 109: 6548
- 10c Beckwith AL. J, O’Shea DM, Westwood SW. J. Chem. Soc., Chem. Commun. 1987; 666
- 10d Beckwith AL. J, O’Shea DM, Westwood SW. J. Am. Chem. Soc. 1988; 110: 2565
- 10e Shono T, Kise N, Uematsu N, Morimoto S, Okazaki E. J. Org. Chem. 1990; 55: 5037
- 10f Dowd P, Zhang W. Chem. Rev. 1993; 93: 2091
- 10g Hasegawa E, Mori K, Tsuji S, Nemoto K, Ohta T, Iwamoto H. Aust. J. Chem. 2015; 68: 1648
- 10h Hasegawa E, Nemoto K, Nagumo R, Tayama E, Iwamoto H. J. Org. Chem. 2016; 81: 2692
- 10i Liu Y, Yeung Y.-Y. Org. Lett. 2017; 19: 1422
- 11a Ogawa A, Obayashi R, Doi M, Sonoda N, Hirao T. J. Org. Chem. 1998; 63: 4277
- 11b Pandey G, Gadre SR. Acc. Chem. Res. 2004; 37: 201
- 11c Zhang Q.-B, Ban Y.-L, Yuan P.-F, Peng S.-J, Fang J.-G, Wu L.-Z, Liu Q. Green Chem. 2017; 19: 5559
- 11d Sahoo H, Mandal A, Dana S, Baidya M. Adv. Synth. Catal. 2018; 360: 1099
- 12 General Procedure for Photoredox Selenylation/Ring-Expansion Sequences of Alkenyl Cyclobutanols An oven-dried flask equipped with a magnetic stir bar was charged with 1-(1-arylvinyl)cyclobutanols 1 (0.1 mmol), diselenide 2 (0.06 mmol), Ru(bpy)3Cl2·6H2O (2.2 mg, 3 μmol), and acetonitrile (1 mL) under air. The reaction mixture was stirred for 8–25 h under irradiation of blue LEDs (5 W, 455 nm). The reaction mixture was concentrated under vacuum and purified by chromatography on silica gel (ethyl acetate/n-hexane = 1:20) to afford β-selenated cyclic ketone derivatives 3.
- 13 2-Phenyl-2-[(phenylselanyl)methyl]cyclopentanone (3a) Yield 83%; yellow oil. 1H NMR (400 MHz, CDCl3): δ = 7.42–7.37 (m, 4 H), 7.34–7.30 (m, 2 H), 7.27–7.23 (m, 1 H), 7.21–7.18 (m, 3 H), 3.39 (d, J = 12 Hz, 1 H), 3.30 (d, J = 12.4 Hz, 1 H), 2.70–2.65 (m, 1 H), 2.40–2.20 (m, 3 H), 2.00–1.90 (m, 1 H), 1.84–1.73 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 217.9, 138.4, 132.6, 131.0, 128.9, 128.7, 127.4, 126.8, 126.7, 57.8, 37.8, 37.4, 33.6, 18.4. HRMS (ESI): m/z calcd for C18H18OSe [M]+ : 330.0523; found: 330.0527.
Reviews for reactions with diselenides, see:
For selected examples for the reaction of diselenides with various substrates, see:
Selected recent reviews for difunctionalization of alkenes, see:
Reviews for semipinacol-type rearrangement, see:
Selected recent examples, see:
Review for radical-mediated 1,2-migration of allyl alcohols, see:
For selected examples, see:
For representative recent reviews and papers for photocatalysis, see:
For a selection of our recent work on C–H activation, see:
-
References and Notes
- 1a Mugesh G, Singh HB. Acc. Chem. Res. 2002; 35: 226
- 1b Nogueira CW, Zeni G, Rocha JB. T. Chem. Rev. 2004; 104: 6255
- 1c Kumar S, Johansson H, Kanda T, Engman L, Müller T, Bergenudd H, Jonsson M, Pedulli GF, Amorati R, Valgimigli L. J. Org. Chem. 2010; 75: 716
- 1d Sarma BK, Manna D, Minoura M, Mugesh G. J. Am. Chem. Soc. 2010; 132: 5364
- 1e Santi C. In Organoselenium Chemistry Between Synthesis and Biochemistry. Bentham Science; Sharjah: 2014
- 1f Sancineto L, Mariotti A, Bagnoli L, Marini F, Desantis J, Iraci N, Santi C, Pannecouque C, Tabarrini O. J. Med. Chem. 2015; 58: 9601
- 1g Mondal S, Manna D, Mugesh G. Angew. Chem. Int. Ed. 2015; 54: 9298
- 1h Pang Y, An B, Lou L, Zhang J, Yan J, Huang L, Li X, Yin S. J. Med. Chem. 2017; 60: 7300
- 1i Kumar S, Johansson H, Kanda T, Engman L, Müller T, Bergenudd H, Jonsson M. Eur. J. Org. Chem. 2017; 3055
- 2a Silveira CC, Braga AL, Vieira AS, Zeni G. J. Org. Chem. 2003; 68: 662
- 2b Kundu D, Ahammed S, Ranu BC. Org. Lett. 2014; 16: 1814
- 2c Luo J, Zhu Z, Liu Y, Zhao X. Org. Lett. 2015; 17: 3620
- 2d Verma A, Jana S, Prasad CD, Yadav A, Kumar S. Chem. Commun. 2016; 52: 4179
- 3a Zeni G, Ludtke DS, Panatieri RB, Braga AL. Chem. Rev. 2006; 106: 1032
- 3b Perin G, Lenardao EJ, Jacob RG, Panatieri RB. Chem. Rev. 2009; 109: 1277
- 3c Freudendahl DM, Santoro S, Shahzad SA, Santi C, Wirth T. Angew. Chem. Int. Ed. 2009; 48: 8409
- 3d Abdo M, Zhang Y, Schramm VL, Knapp S. Org. Lett. 2010; 12: 2982
- 3e Rafique J, Saba S, Rosario AR, Braga AL. Chem. Eur. J. 2016; 22: 11854
- 3f Shu S, Fan Z, Yao Q, Zhang A. J. Org. Chem. 2016; 81: 5263
- 3g Sun K, Wang X, Lv Y, Li G, Jiao H, Dai C, Li Y, Zhanga C, Liu L. Chem. Commun. 2016; 52: 8471
- 4a Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
- 4b Ivanova A, Arsenyan P. Coord. Chem. Rev. 2018; 370: 55
- 4c Zheng Y, He Y, Rong G, Zhang X, Weng Y, Dong K, Xu X, Mao J. Org. Lett. 2015; 17: 5444
- 4d Sun J, Zhang-Negrerie D, Du Y. Adv. Synth. Catal. 2016; 358: 2035
- 4e Qiu J.-K, Shan C, Wang D.-C, Wei P, Jiang B, Tu S.-J, Li G, Guo K. Adv. Synth. Catal. 2017; 359: 4332
- 4f Zhu Y.-Q, He J.-L, Niu Y.-X, Kang H.-Y, Han T.-F, Li H.-Y. J. Org. Chem. 2018; 83: 9958
- 4g Liu Y, Li C, Mu S, Li Y, Feng R, Sun K. Asian J. Org. Chem. 2018; 7: 720
- 4h Yu J.-M, Cai C. Org. Biomol. Chem. 2018; 16: 490
- 4i Zhao F, Sun T, Liu Z, Sun K, Zhang C, Wang X. Curr. Org. Chem. 2018; 22: 613
- 4j Wu P, Wu K, Wang L, Yu Z. Org. Lett. 2017; 19: 5450
- 4k Ricordi VG, Freitas CS, Perin G, Lenardão EJ, Jacob RG, Savegnago L, Alves D. Green Chem. 2012; 14: 1030
- 4l Zheng B, Gong Y, Xu H.-J. Tetrahedron 2013; 69: 5342
- 4m Kumar A, Kumar S. Tetrahedron 2014; 70: 1763
- 4n Jana S, Chakraborty A, Mondal S, Hajra A. RSC Adv. 2015; 5: 77534
- 4o Ricordi VG, Thurow S, Penteado F, Schumacher RF, Perin G, Lenardão EJ, Alves D. Adv. Synth. Catal. 2015; 357: 933
- 4p Yu S, Wan B, Li X. Org. Lett. 2015; 17: 58
- 4q Ferreira NL, Azeredo JB, Fiorentin BL, Braga AL. Eur. J. Org. Chem. 2015; 23: 5070
- 4r Mandal A, Sahoo H, Baidya M. Org. Lett. 2016; 18: 3202
- 4s Sahoo H, Mandal A, Selvakumar J, Baidya M. Eur. J. Org. Chem. 2016; 25: 4321
- 4t Gandeepan P, Koeller J, Ackermann L. ACS Catal. 2017; 7: 1030
- 4u Kibriya G, Samanta S, Singsardar M, Jana S, Hajra A. Eur. J. Org. Chem. 2017; 3055
- 4v Zhang Q.-B, Ban Y.-L, Yuan P.-F, Peng S.-J, Fang J.-G, Liu L.-ZW. Q. Green Chem. 2017; 19: 5559
- 4w Saba S, Rafique J, Franco MS, Schneider AR, Espíndola L, Silva DO, Brag AL. Org. Biomol. Chem. 2018; 16: 880
- 4x Kumaraswamy G, Ramesh V, Gangadhar M, Vijaykumar S. Asian J. Org. Chem. 2018; 7: 1689
- 5a Sha W, Deng L, Ni S, Mei H, Han J, Pan Y. ACS Catal. 2018; 8: 7489
- 5b Zhang Y.-X, Jin R.-X, Yin H, Li Y, Wang X.-S. Org. Lett. 2018; 20: 7283
- 5c Nakafuku KM, Fosu SC, Nagib DA. J. Am. Chem. Soc. 2018; 140: 11202
- 5d Song ZL, Fan CA, Tu YQ. Chem. Rev. 2011; 111: 7523
- 5e Wang B, Tu YQ. Acc. Chem. Res. 2011; 44: 1207
- 5f Wang SH, Li BS, Tu YQ. Chem. Commun. 2014; 50: 2393
- 5g Chen ZM, Zhang XM, Tu YQ. Chem. Soc. Rev. 2015; 44: 5220
- 6a Zhang E, Fan CA, Tu YQ, Zhang FM, Song YL. J. Am. Chem. Soc. 2009; 131: 14626
- 6b Zhang QW, Fan CA, Zhang HJ, Tu YQ, Zhao YM, Gu P, Chen ZM. Angew. Chem. Int. Ed. 2009; 48: 8572
- 6c Romanov-Michailidis F, Guénée L, Alexakis A. Angew. Chem. Int. Ed. 2013; 52: 9266
- 6d Yin Q, You SL. Org. Lett. 2014; 16: 1810
- 6e Xu MH, Dai KL, Tu YQ, Zhang XM, Zhanga FM, Wanga SH. Chem. Commun. 2018; 54: 7685
- 6f Xi CC, Chen ZM, Zhang SY, Tu YQ. Org. Lett. 2018; 20: 4227
- 7a Weng W.-Z, Zhang B. Chem. Eur. J. 2018; 24: 10934
- 7b Shu XZ, Zhang M, He Y, Frei H, Toste FD. J. Am. Chem. Soc. 2014; 136: 5844
- 7c Sahoo B, Li JL, Glorius F. Angew. Chem. Int. Ed. 2015; 54: 11577
- 7d Suh CW, Kim DY. Tetrahedron Lett. 2015; 56: 5661
- 7e Woo SB, Kim DY. J. Fluorine Chem. 2015; 178: 214
- 7f Kwon SJ, Kim YJ, Kim DY. Tetrahedron Lett. 2016; 57: 4371
- 7g Kwon SJ, Kim DY. Org. Lett. 2016; 18: 4562
- 7h Kim YJ, Kim DY. J. Fluorine Chem. 2018; 211: 119
- 7i Kim YJ, Choo MH, Kim DY. Tetrahedron Lett. 2018; 59: 3864
- 7j Kim YJ, Kim DY. Org. Lett. 2019; 21: 1021
- 7k Jung HI, Kim Y, Kim DY. Org. Biomol. Chem. 2019; 17: 3319
- 7l Kim Y, Kim DY. Asian J. Org. Chem. 2019; 8: 679
- 7m Kim YJ, Kim DY. Tetrahedron Lett. 2019; 60: 1287
- 7n Honeker R, Sanchez RA. G, Hopkinson MN, Glorius F. Chem. Eur. J. 2016; 22: 4395
- 7o Bergonzini G, Cassani C, Olsson HL, Hörberg J, Wallentin CJ. Chem. Eur. J. 2016; 22: 3292
- 7p Weng WZ, Sun JG, Li P, Zhang B. Chem. Eur. J. 2017; 23: 9752
- 7q Zhang JJ. Chin. J. Chem. 2017; 35: 311
- 7r Wu H, Wang Q, Zhu J. Chem. Eur. J. 2017; 23: 13037
- 7s Yao S, Zhang K, Zhou QQ, Zhao Y, Shi DQ, Xiao WJ. Chem. Commun. 2018; 54: 8096
- 8a Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
- 8b Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
- 8c Maity S, Zheng N. Synlett 2012; 23: 1851
- 8d Tucker JW, Stephenson CR. J. J. Org. Chem. 2012; 77: 1617
- 8e Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
- 8f Maity S, Zheng N. Synlett 2012; 23: 1851
- 8g Xi Y.-M, Yi H, Lei A.-W. Org. Biomol. Chem. 2013; 11: 2387
- 8h Prier CK, Rankic DA, MacMillan DW. Chem. Rev. 2013; 113: 5322
- 8i Schultz DM, Yoon TP. Science 2014; 343: 985
- 8j Koike T, Akita M. Top. Catal. 2014; 57: 967
- 8k Hopkinson MN, Sahoo B, Li J.-L, Glorius F. Chem. Eur. J. 2014; 20: 3874
- 8l Koike T, Akita M. Inorg. Chem. Front. 2014; 1: 562
- 8m Majek M, Filace F, Wangelin AJ. Beilstein J. Org. Chem. 2014; 10: 981
- 8n Meggers E. Chem. Commun. 2015; 51: 3290
- 8o Cismesia MA, Yoon TP. Chem. Sci. 2015; 6: 5426
- 8p Angnes RA, Li Z, Correia CR. D, Hammond GB. Org. Biomol. Chem. 2015; 13: 9152
- 8q Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
- 8r Ravelli D, Protti S, Fagnoni M. Chem. Rev. 2016; 116: 9850
- 8s Kärkäs MD, Porco JA. Jr, Stephenson CR. J. Chem. Rev. 2016; 116: 9683
- 8t Garbarino S, Ravelli D, Protti S, Basso A. Angew. Chem. Int. Ed. 2016; 55: 15476
- 8u Matsui JK, Lang SB, Heitz DR, Molander GA. ACS. Catal. 2017; 7: 2564
- 8v Bogdos MK, Pinard E, Murphy JA. Beilstein J. Org. Chem. 2018; 14: 2035
- 9a Kang YK, Kim SM, Kim DY. J. Am. Chem. Soc. 2010; 132: 11847
- 9b Kang YK, Kim DY. Adv. Synth. Catal. 2013; 355: 3131
- 9c Suh CW, Woo SB, Kim DY. Asian J. Org. Chem. 2014; 3: 399
- 9d Kang YK, Kim DY. Chem. Commun. 2014; 50: 222
- 9e Suh CW, Kim DY. Org. Lett. 2014; 16: 5374
- 9f Kwon SJ, Kim DY. Chem. Rec. 2016; 16: 1191
- 9g Suh CW, Kwon SJ, Kim DY. Org. Lett. 2017; 19: 1334
- 9h Jeong HJ, Kim DY. Org. Lett. 2018; 20: 2944
- 10a Dowd P, Choi S.-C. J. Am. Chem. Soc. 1987; 109: 3493
- 10b Dowd P, Choi S.-C. J. Am. Chem. Soc. 1987; 109: 6548
- 10c Beckwith AL. J, O’Shea DM, Westwood SW. J. Chem. Soc., Chem. Commun. 1987; 666
- 10d Beckwith AL. J, O’Shea DM, Westwood SW. J. Am. Chem. Soc. 1988; 110: 2565
- 10e Shono T, Kise N, Uematsu N, Morimoto S, Okazaki E. J. Org. Chem. 1990; 55: 5037
- 10f Dowd P, Zhang W. Chem. Rev. 1993; 93: 2091
- 10g Hasegawa E, Mori K, Tsuji S, Nemoto K, Ohta T, Iwamoto H. Aust. J. Chem. 2015; 68: 1648
- 10h Hasegawa E, Nemoto K, Nagumo R, Tayama E, Iwamoto H. J. Org. Chem. 2016; 81: 2692
- 10i Liu Y, Yeung Y.-Y. Org. Lett. 2017; 19: 1422
- 11a Ogawa A, Obayashi R, Doi M, Sonoda N, Hirao T. J. Org. Chem. 1998; 63: 4277
- 11b Pandey G, Gadre SR. Acc. Chem. Res. 2004; 37: 201
- 11c Zhang Q.-B, Ban Y.-L, Yuan P.-F, Peng S.-J, Fang J.-G, Wu L.-Z, Liu Q. Green Chem. 2017; 19: 5559
- 11d Sahoo H, Mandal A, Dana S, Baidya M. Adv. Synth. Catal. 2018; 360: 1099
- 12 General Procedure for Photoredox Selenylation/Ring-Expansion Sequences of Alkenyl Cyclobutanols An oven-dried flask equipped with a magnetic stir bar was charged with 1-(1-arylvinyl)cyclobutanols 1 (0.1 mmol), diselenide 2 (0.06 mmol), Ru(bpy)3Cl2·6H2O (2.2 mg, 3 μmol), and acetonitrile (1 mL) under air. The reaction mixture was stirred for 8–25 h under irradiation of blue LEDs (5 W, 455 nm). The reaction mixture was concentrated under vacuum and purified by chromatography on silica gel (ethyl acetate/n-hexane = 1:20) to afford β-selenated cyclic ketone derivatives 3.
- 13 2-Phenyl-2-[(phenylselanyl)methyl]cyclopentanone (3a) Yield 83%; yellow oil. 1H NMR (400 MHz, CDCl3): δ = 7.42–7.37 (m, 4 H), 7.34–7.30 (m, 2 H), 7.27–7.23 (m, 1 H), 7.21–7.18 (m, 3 H), 3.39 (d, J = 12 Hz, 1 H), 3.30 (d, J = 12.4 Hz, 1 H), 2.70–2.65 (m, 1 H), 2.40–2.20 (m, 3 H), 2.00–1.90 (m, 1 H), 1.84–1.73 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 217.9, 138.4, 132.6, 131.0, 128.9, 128.7, 127.4, 126.8, 126.7, 57.8, 37.8, 37.4, 33.6, 18.4. HRMS (ESI): m/z calcd for C18H18OSe [M]+ : 330.0523; found: 330.0527.
Reviews for reactions with diselenides, see:
For selected examples for the reaction of diselenides with various substrates, see:
Selected recent reviews for difunctionalization of alkenes, see:
Reviews for semipinacol-type rearrangement, see:
Selected recent examples, see:
Review for radical-mediated 1,2-migration of allyl alcohols, see:
For selected examples, see:
For representative recent reviews and papers for photocatalysis, see:
For a selection of our recent work on C–H activation, see:












