Subscribe to RSS
DOI: 10.1055/s-0036-1591775
Copper-Catalyzed Tandem Multi-Component Approach to 1,3-Oxazines at Room Temperature by Cross-Dehydrogenative Coupling Using Methanol as C1 Feedstock
M.L.D. is thankful to Science and Engineering Research Board (SERB), India (Grant No. SB/FT/CS-073/2014) for financial support under Fast Track Scheme. P.K.B. is thankful to DST, India, (Grant No. SB/FT/CS-100/2012) for financial support. P.J.B. thanks AICTE for a research fellowship.
Publication History
Received: 25 January 2018
Accepted after revision: 13 February 2018
Publication Date:
20 March 2018 (online)
Abstract
A copper(II)-catalyzed multi-component one-pot approach for the synthesis of 1,3-oxazines at room temperature is reported here. Methanol is used as the solvent as well as the carbon source. The methylene carbon of the oxazine product comes from methanol via formaldehyde. tert-Butyl hydroperoxide is used as the oxidant. The reaction uses an environmentally benign metal catalyst and oxidant. No inert atmosphere or precaution is required for the reaction. Most importantly, the reaction avoids the use of carcinogenic formaldehyde.
#
Key words
methanol - 1,3-oxazine - copper(II) catalyst - multi-component reaction - C–H functionalizationThe development of sustainable processes for organic synthesis which exploit inexpensive and easily available feedstocks and reagents has recently become a centre of attraction in chemical research.[1] For this purpose, methanol has appeared as a renewable resource with high potential which is used to produce plentiful daily-life commodities and industrial chemicals.[2] It is a very simple aliphatic, cheap and biodegradable alcohol, which is used as an alternative fuel for internal combustion.[3] Usually, methylation of organic molecules is achieved by using toxic methyl compounds such as methyl iodide, dimethyl sulfate and diazomethane,[4] or by using carcinogenic formaldehyde.[5] However, methanol can be used as a C1 source through the in situ generation of formaldehyde by dehydrogenative activation of methanol. The formaldehyde thus generated can be transformed to methyl, methylene and hydroxylmethyl functional groups.[6] Researchers have even used methanol as a carbonyl source to synthesize urea derivatives.[7] Usually Ru, Ir and Rh complexes are employed to catalyze these reactions.[6] [7] [8] However, rarely a Cu catalyst is used.[9]
1,3-Oxazine derivatives have shown anti-HIV, antitumor, antibacterial, antituberculosis, fungicidal and many other activities.[10] In addition, specifically 1,3-naphthoxazine derivatives are highly useful for the treatment of Parkinson’s disease and as potent nonsteroidal progesterone receptor agonists.[11] Many synthetic routes have been developed for their preparation;[12] however, because the cross-dehydrogenative coupling (CDC) technique offers many advantages such as atom-economical, directive and environmentally benign properties and non-requirement of prefunctionalized substrates,[13] synthetic chemists also synthesized these compounds by using this strategy.[14]
Moreover, multi-component reactions are one of the most powerful techniques in synthetic organic chemistry for the synthesis of highly functionalized organic molecules.[15] They have gained much attention because of their advantages such as atom and step economy, simpler procedures and as an energy-saving synthetic tactic to generate new bonds in a single step.[16] By using these techniques, we herein disclose a tandem three-component route to 1,3-oxazines in methanol as the solvent as well as C1 source by CDC (Scheme [1]). To the best of our knowledge, this is the first report of synthesizing 1,3-oxazines with use of methanol as the C1 source.


We chose the combination of 2-naphthol (1a) and tetrahydroisoquinoline (2a) in MeOH using different catalysts/oxidants to synthesize 1,3-oxazine 3a. By using Fe(III), Ru(III) and I2 catalysts in the presence of TBHP as the oxidant no reaction was observed. Copper(II) acetate monohydrate (10 mol%) in the presence of TBHP (2 equiv) gave 3a in 56% yield (Table [1], entry 4). However, increasing the amount of solvent from 2 to 5 mL increased the yield and we isolated product 3a in 68% yield; this were the optimal conditions for this reaction (Table [1], entry 11). The reason may be that in higher dilution the unidentified little impurities which otherwise formed were not observed. However, further dilution lowered the product yield (Table [1], entry 12). Additional changes of the oxidant to H2O2 or oxone gave lower yield or no yield (Table [1], entries 5–6). Other copper catalysts such as CuBr, CuSO4 . 5H2O and copper triflate offered lower yields (Table [1], entries 8–10). An increase of the reaction time did not improve the yield (Table [1], compare entry 11 and entry 13). At higher temperature the reaction was unsuccessful to form the product (Table [1], entry 7). Increase of catalyst/oxidant loading did not affect the yield (Table [1], entries 16 and 14), but reduction of their amount reduced the yield to a little extent (Table [1], entries 17 and 15).
a Unless otherwise mentioned, all reactions were performed by using 1a (1 mmol, 144 mg) and 2a (1 mmol, 133 mg) in MeOH at room temperature. Products were purified by column chromatography and yields are given for the isolated products.
b Reaction was carried out under reflux.


After establishing the optimal conditions, we subsequently investigated the substrate scope for the synthesis of 3, and the products were characterized by NMR and mass spectroscopy as well as single-crystal X-ray crystallography (see Figure [1] and Figure [2]).[17] [18] We screened different amines such as pyrrolidine, piperidine and obtained moderate yields. Open-chain amines did not respond to this reaction. We also screened different naphthols and obtained optimistic results. Moreover, we used phenolic substrates for this reaction; however, they gave relatively low yields. Other alcohols such as ethyl, propyl or benzyl alcohol did not give positive results.
To gain insights in the mechanism for this reaction, we performed control experiments. A representative reaction was carried out in complete absence of air/O2 (in N2 atmosphere), which did not affect the yield. This ensures that molecular O2 is not the oxidant in this reaction. We also performed the reaction in the presence of radical scavengers such as BHT and TEMPO (using 1.5 equiv of each), under the optimized conditions, which provided very low yield of 3a (12% of 3a was obtained by using BHT and 8% of 3a by using TEMPO). These experiments indicate that the reaction proceeds through a free-radical route. Moreover, when we replaced MeOH with CD3OD, 49% of deuterated product 3a' was formed, which was confirmed through NMR and mass spectroscopy analysis. This suggests that the methylene carbon of the product absolutely comes from MeOH (Scheme [2]).
To check the possibility of a [4+2] cycloaddition mechanism for this reaction, we performed a cross reaction between 2c' and 2e' (synthesized by a reported procedure[14a]) under the optimized conditions. However, we did not notice any cross product from the reaction and obtained only two normal CDC products, namely 3c and 3e (Scheme [3]). Therefore, we believe that this method for the synthesis of 1,3-oxazines does not proceed through [4+2] cycloaddition of imine and o-quinone methide unlike the mechanism reported by Maycock et al.[14a]








Based on the above experiments, a tentative mechanism is proposed for the reaction (Scheme [4]). First, TBHP in the presence of Cu(II) gives tert-butyl peroxy radical (X) and Cu(II) is converted into Cu(I). Radical X then reacts with one molecule of MeOH generating hydroxymethyl radical (Y). Subsequently, TBHP in the presence of Cu(I) gives tert-butoxy radical (Z), which in the presence of a hydroxymethyl radical gives formaldehyde. Next, the 3-component Mannich reaction of naphthol, amine and formaldehyde gives α-alkyl amino naphthol 2', which is then converted into the corresponding iminium ion 2'' in the presence of Cu(II) and finally cyclized to the desired product 3.
In conclusion, we have successfully developed a 3-component route for the synthesis of 1,3-oxazines using methanol as C1 feedstock. The methylene carbon of the product originates from methanol. The reaction is carried out at room temperature and utilizes an environmentally benign metal catalyst. On the basis of our control experiments, a tentative free-radical mechanism is also proposed.
#
Acknowledgment
The authors acknowledge Dr. Ranjit Thakuria, Dept. of Chemistry, Gauhati University for X-ray structure analysis and Dr. S. Karmakar, Gauhati University for collecting single-crystal X-ray data.
Supporting Information
- Supporting information for this article is available online at https://doi-org.accesdistant.sorbonne-universite.fr/10.1055/s-0036-1591775.
- Supporting Information
-
References
- 1a Li C.-J. Trost BM. Proc. Natl. Acad. Sci. U. S. A. 2008; 105: 13197
- 1b Sheldon RA. Chem. Soc. Rev. 2012; 41: 1437
- 2a Ganesh I. Renew. Sustain. Energy Rev. 2014; 31: 221
- 2b Shuttleworth PS. De bruyn M. Parker HL. Hunt AJ. Budarin VL. Matharu AS. Clark JH. Green Chem. 2014; 16: 573
- 2c Goeppert A. Czaun M. Jones J.-P. Prakash GK. S. Olah GA. Chem. Soc. Rev. 2014; 43: 7995
- 2d Du X.-L. Jiang Z. Su DS. Wang J.-Q. ChemSusChem 2016; 9: 322
- 2e Serrano-Ruiz JC. West RM. Dumesic JA. Annu. Rev. Chem. Biomol. Eng. 2010; 1: 79
- 2f Lanzafame P. Centi G. Perathoner S. Chem. Soc. Rev. 2014; 43: 7562
- 2g Shamsul NS. Kamarudin SK. Rahman NA. Kofli NT. Renew. Sustain. Energy Rev. 2014; 33: 578
- 2h Hasegawa F. Yokoyama S. Imou K. Bioresour. Technol. 2010; 101: 109
- 3 Olah GA. Angew. Chem. Int. Ed. 2005; 44: 2636
- 4 Lamoureux G. Agüero C. ARKIVOC 2009; (i): : 251
- 5a Eschweiler W. Ber. Dtsch. Chem. Ges. 1905; 38: 880
- 5b Clarke HT. Gillespie HB. Weisshaus SZ. J. Am. Chem. Soc. 1933; 55: 4571
- 6a Chakrabarti K. Maji M. Panja D. Paul B. Shee S. Das GK. Kundu S. Org. Lett. 2017; 19: 4750
- 6b Li Y. Li H. Junge H. Beller M. Chem. Commun. 2014; 50: 14991
- 6c Shen D. Poole DL. Shotton CC. Kornahrens AF. Healy MP. Donohoe TJ. Angew. Chem. Int. Ed. 2015; 54: 1642
- 6d Chen S.-J. Lu G.-P. Cai C. RSC Adv. 2015; 5: 70329
- 6e Moran J. Preetz A. Mesch RA. Krische MJ. Nat. Chem. 2011; 3: 287
- 6f Natte K. Neumann H. Beller M. Jagadeesh RV. Angew. Chem. Int. Ed. 2017; 56: 6384
- 7 Kim SH. Hong SH. Org. Lett. 2016; 18: 212
- 8a Kim S. Hong SY. Adv. Synth. Catal. 2017; 359: 798
- 8b Ogawa S. Obora Y. 2014; 50: 2491
- 8c Chan LK. M. Poole DL. Shen D. Healy MP. Donohoe TJ. Angew. Chem. Int. Ed. 2014; 53: 761
- 9 Gogoi N. Begum T. Dutta S. Bora U. Gogoi PK. RSC Adv. 2015; 5: 95344
- 10a Pedersen OS. Pedersen EB. Synthesis 2000; 479
- 10b Gomez PG. Pabon HP. Carvajal MA. Rincon JM. Rev. Colomb. Cienc. Quim. Farm. 1985; 8: 15
- 10c Cocuzza AJ. Chidester DR. Cordova BC. Jeffrey S. Parsons RL. Bacheler LT. Viitanen SE. Trainor GL. Ko SS. Bioorg. Med. Chem. Lett. 2001; 11: 1177
- 10d Waisser K. Gregor K. Kubicova L. Klimesova V. Kunes J. Machacek M. Kaustova J. Eur. J. Med. Chem. 2000; 35: 733
- 10e Benameur L. Bouaziz Z. Nebois P. Bartoli MH. Boitard M. Fillion H. Chem. Pharm. Bull. 1996; 44: 605
- 10f Chylinska JB. Urbanski T. Mordarski M. J. Med. Chem. 1963; 6: 484
- 10g Mathew BP. Kumar A. Sharma S. Shula PK. Nath M. Eur. J. Med. Chem. 2010; 45: 1502
- 10h Petrlikova E. Waisser K. Divisova H. Husakova P. Vrabcova P. Kunes J. Kolar K. Stolarikova J. Bioorg. Med. Chem. 2010; 18: 8178
- 10i Bouaziz Z. Riondel J. Mey A. Berlion M. Villard J. Filliond H. Eur. J. Med. Chem. 1991; 26: 469
- 10j Olianas MC. Onali P. Life Sci. 1999; 65: 2233
- 10k Johns BA. Weatherhead JG. US Patent WO2010011812 A1, 2010
- 10l Arai AC. Kessler M. Rogers G. Lynch G. Mol. Pharmacol. 2000; 58: 802
- 10m Böhme TM. Augelli-Szafran CE. Hussein H. Pugsley T. Serpa K. Schwarz RD. J. Med. Chem. 2002; 45: 3094
- 11a Zhang P. Terefenko EA. Fensome A. Zhang Z. Zhu Y. Cohen J. Winneker R. Wrobel J. Yardley J. Bioorg. Med. Chem. Lett. 2002; 12: 787
- 11b Joyce JN. Presgraves S. Renish L. Borwege S. Osredkar DH. Replogle M. PazSoldan M. Millan MJ. Exp. Neurol. 2003; 184: 93
- 12a Xuan J. Feng Z.-J. Duan S.-W. Xiao W.-J. RSC Adv. 2012; 2: 4065
- 12b Katritzky AR. Xu Y.-J. Jain R. J. Org. Chem. 2002; 67: 8234
- 12c Mathew BP. Nath M. J. Heterocycl. Chem. 2009; 46: 1003
- 12d Kienzle F. Tetrahedron Lett. 1983; 24: 2213
- 12e Pandey G. Kumaraswamy G. Reddy PY. Tetrahedron 1992; 48: 8295
- 12f Okimoto M. Ohashi K. Yamamori H. Nishikawa S. Hoshi M. Yoshida T. Synthesis 2012; 44: 1315
- 12g Chen C.-K. Hortmann AG. Marzabadi MR. J. Am. Chem. Soc. 1988; 110: 4829
- 12h Mathis CL. Gist BM. Frederickson CK. Midkiff KM. Marvin CC. Tetrahedron Lett. 2013; 54: 2101
- 12i Tang Z. Zhu Z. Xia Z. Liu H. Chen J. Xia W. Ou X. Molecules 2012; 17: 8174
- 13a Zhang C. Tang C. Jiao N. Chem. Soc. Rev. 2012; 41: 3464
- 13b Li C.-J. Acc. Chem. Res. 2009; 42: 335
- 13c Anastas P. Eghbali N. Chem. Soc. Rev. 2010; 39: 301
- 13d Yoo W.-J. Li C.-J. Top. Curr. Chem. 2010; 292: 281
- 13e Yeung CS. Dong VM. Chem. Rev. 2011; 111: 1215
- 13f Klussmann M. Sureshkumar D. Synthesis 2011; 353
- 13g Shi Z. Glorius F. Angew. Chem. Int. Ed. 2012; 51: 9220
- 13h Li Z. Bohle DS. Li C.-J. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 8928
- 13i Guo S.-R. Kumar PS. Yang M. Adv. Synth. Catal. 2017; 359: 2
- 13j Lakshman MK. Vuram PK. Chem. Sci. 2017; 8: 5845
- 13k Yi H. Zhang G. Wang H. Huang Z. Wang J. Singh AK. Lei A. Chem. Rev. 2017; 117: 9016
- 14a Deb ML. Dey SS. Bento I. Barros MT. Maycock CD. Angew. Chem. Int. Ed. 2013; 52: 9791
- 14b Mahato S. Haldar S. Jana CK. Chem. Commun. 2014; 50: 332
- 14c Gupta KS. V. Ramana DV. Vinayak B. Sridhar B. Chandrasekharam M. New J. Chem. 2016; 40: 6389
- 14d Deb ML. Borpatra PJ. Saikia PJ. Baruah PK. Synlett 2017; 28: 461
- 14e Deb ML. Pegu CD. Borpatra PJ. Saikia PJ. Baruah PK. Green Chem. 2017; 19: 4036
- 15a Ganem B. Acc. Chem. Res. 2009; 42: 463
- 15b Touré BB. Hall DG. Chem. Rev. 2009; 109: 4439
- 15c Ruijter E. Scheffelaar R. Orru RV. A. Angew. Chem. Int. Ed. 2011; 50: 6234
- 15d D’Souza DM. Müller TJ. J. Chem. Soc. Rev. 2007; 36: 1095
- 15e Climent MJ. Corma A. Iborra S. RSC Adv. 2012; 2: 16
- 16a Shiri M. Chem. Rev. 2012; 112: 3508
- 16b Dömling A. Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
- 16c Dömling A. Chem. Rev. 2006; 106: 17
- 16d Dömling A. Huang Y. Synthesis 2010; 2859
- 16e Tsepalov VF. Zh. Fiz. Khim. 1961; 35: 1691
- 16f Strecker A. Liebigs Ann. Chem. 1850; 75: 27
- 17 Crystallographic data for compound 3a has been deposited with CCDC 1812944 and can be obtained free of charge from the Cambridge Crystallographic Data Centre, www.ccdc.cam.ac.uk/ conts/retrieving.html.
- 18 Representative Procedure for the Synthesis of 3a 2-Naphthol (1a, 1 mmol, 144 mg), tetrahydroisoquinoline (2a, 1 mmol, 133 mg), and methanol (5 mL) were combined in a round-bottom flask. Cu(OAc)2 . H2O (10 mol%, 20 mg) and TBHP (70% in H2O, 2 mmol, 257 mg) were added and the reaction mixture was stirred at r.t. for 15 h. Progress of the reaction was monitored by TLC. Removal of the solvent under vacuum and purification by column chromatography (100–200 mesh silica gel, hexane/ethyl acetate) afforded product 3a as a white solid. Yield: 68% (195 mg). 1H NMR (300 MHz, CDCl3): δ = 7.79 (d, J = 7.9 Hz, 1 H), 7.69–7.64 (m, 2 H), 7.53–7.45 (m, 2 H), 7.40–7.30 (m, 3 H), 7.23 (d, J = 7.9 Hz, 1 H), 7.07 (d, J = 8.7 Hz, 1 H), 5.80 (s, 1 H), 4.81 (d, J = 16.3 Hz, 1 H), 4.30 (d, J = 16.6 Hz, 1 H), 3.49–3.41 (m, 1 H), 3.17–3.12 (m, 1 H), 2.97–2.92 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 151.7, 134.9, 133.0, 131.5, 129.0, 128.9, 128.8, 128.5, 128.2, 126.5, 126.3, 123.5, 121.2, 118.8, 111.1, 86.9, 51.3, 45.2, 29.2. HRMS (ESI): m/z calcd for C20H17NO [M+H]+: 288.1388; found: 288.1389.
-
References
- 1a Li C.-J. Trost BM. Proc. Natl. Acad. Sci. U. S. A. 2008; 105: 13197
- 1b Sheldon RA. Chem. Soc. Rev. 2012; 41: 1437
- 2a Ganesh I. Renew. Sustain. Energy Rev. 2014; 31: 221
- 2b Shuttleworth PS. De bruyn M. Parker HL. Hunt AJ. Budarin VL. Matharu AS. Clark JH. Green Chem. 2014; 16: 573
- 2c Goeppert A. Czaun M. Jones J.-P. Prakash GK. S. Olah GA. Chem. Soc. Rev. 2014; 43: 7995
- 2d Du X.-L. Jiang Z. Su DS. Wang J.-Q. ChemSusChem 2016; 9: 322
- 2e Serrano-Ruiz JC. West RM. Dumesic JA. Annu. Rev. Chem. Biomol. Eng. 2010; 1: 79
- 2f Lanzafame P. Centi G. Perathoner S. Chem. Soc. Rev. 2014; 43: 7562
- 2g Shamsul NS. Kamarudin SK. Rahman NA. Kofli NT. Renew. Sustain. Energy Rev. 2014; 33: 578
- 2h Hasegawa F. Yokoyama S. Imou K. Bioresour. Technol. 2010; 101: 109
- 3 Olah GA. Angew. Chem. Int. Ed. 2005; 44: 2636
- 4 Lamoureux G. Agüero C. ARKIVOC 2009; (i): : 251
- 5a Eschweiler W. Ber. Dtsch. Chem. Ges. 1905; 38: 880
- 5b Clarke HT. Gillespie HB. Weisshaus SZ. J. Am. Chem. Soc. 1933; 55: 4571
- 6a Chakrabarti K. Maji M. Panja D. Paul B. Shee S. Das GK. Kundu S. Org. Lett. 2017; 19: 4750
- 6b Li Y. Li H. Junge H. Beller M. Chem. Commun. 2014; 50: 14991
- 6c Shen D. Poole DL. Shotton CC. Kornahrens AF. Healy MP. Donohoe TJ. Angew. Chem. Int. Ed. 2015; 54: 1642
- 6d Chen S.-J. Lu G.-P. Cai C. RSC Adv. 2015; 5: 70329
- 6e Moran J. Preetz A. Mesch RA. Krische MJ. Nat. Chem. 2011; 3: 287
- 6f Natte K. Neumann H. Beller M. Jagadeesh RV. Angew. Chem. Int. Ed. 2017; 56: 6384
- 7 Kim SH. Hong SH. Org. Lett. 2016; 18: 212
- 8a Kim S. Hong SY. Adv. Synth. Catal. 2017; 359: 798
- 8b Ogawa S. Obora Y. 2014; 50: 2491
- 8c Chan LK. M. Poole DL. Shen D. Healy MP. Donohoe TJ. Angew. Chem. Int. Ed. 2014; 53: 761
- 9 Gogoi N. Begum T. Dutta S. Bora U. Gogoi PK. RSC Adv. 2015; 5: 95344
- 10a Pedersen OS. Pedersen EB. Synthesis 2000; 479
- 10b Gomez PG. Pabon HP. Carvajal MA. Rincon JM. Rev. Colomb. Cienc. Quim. Farm. 1985; 8: 15
- 10c Cocuzza AJ. Chidester DR. Cordova BC. Jeffrey S. Parsons RL. Bacheler LT. Viitanen SE. Trainor GL. Ko SS. Bioorg. Med. Chem. Lett. 2001; 11: 1177
- 10d Waisser K. Gregor K. Kubicova L. Klimesova V. Kunes J. Machacek M. Kaustova J. Eur. J. Med. Chem. 2000; 35: 733
- 10e Benameur L. Bouaziz Z. Nebois P. Bartoli MH. Boitard M. Fillion H. Chem. Pharm. Bull. 1996; 44: 605
- 10f Chylinska JB. Urbanski T. Mordarski M. J. Med. Chem. 1963; 6: 484
- 10g Mathew BP. Kumar A. Sharma S. Shula PK. Nath M. Eur. J. Med. Chem. 2010; 45: 1502
- 10h Petrlikova E. Waisser K. Divisova H. Husakova P. Vrabcova P. Kunes J. Kolar K. Stolarikova J. Bioorg. Med. Chem. 2010; 18: 8178
- 10i Bouaziz Z. Riondel J. Mey A. Berlion M. Villard J. Filliond H. Eur. J. Med. Chem. 1991; 26: 469
- 10j Olianas MC. Onali P. Life Sci. 1999; 65: 2233
- 10k Johns BA. Weatherhead JG. US Patent WO2010011812 A1, 2010
- 10l Arai AC. Kessler M. Rogers G. Lynch G. Mol. Pharmacol. 2000; 58: 802
- 10m Böhme TM. Augelli-Szafran CE. Hussein H. Pugsley T. Serpa K. Schwarz RD. J. Med. Chem. 2002; 45: 3094
- 11a Zhang P. Terefenko EA. Fensome A. Zhang Z. Zhu Y. Cohen J. Winneker R. Wrobel J. Yardley J. Bioorg. Med. Chem. Lett. 2002; 12: 787
- 11b Joyce JN. Presgraves S. Renish L. Borwege S. Osredkar DH. Replogle M. PazSoldan M. Millan MJ. Exp. Neurol. 2003; 184: 93
- 12a Xuan J. Feng Z.-J. Duan S.-W. Xiao W.-J. RSC Adv. 2012; 2: 4065
- 12b Katritzky AR. Xu Y.-J. Jain R. J. Org. Chem. 2002; 67: 8234
- 12c Mathew BP. Nath M. J. Heterocycl. Chem. 2009; 46: 1003
- 12d Kienzle F. Tetrahedron Lett. 1983; 24: 2213
- 12e Pandey G. Kumaraswamy G. Reddy PY. Tetrahedron 1992; 48: 8295
- 12f Okimoto M. Ohashi K. Yamamori H. Nishikawa S. Hoshi M. Yoshida T. Synthesis 2012; 44: 1315
- 12g Chen C.-K. Hortmann AG. Marzabadi MR. J. Am. Chem. Soc. 1988; 110: 4829
- 12h Mathis CL. Gist BM. Frederickson CK. Midkiff KM. Marvin CC. Tetrahedron Lett. 2013; 54: 2101
- 12i Tang Z. Zhu Z. Xia Z. Liu H. Chen J. Xia W. Ou X. Molecules 2012; 17: 8174
- 13a Zhang C. Tang C. Jiao N. Chem. Soc. Rev. 2012; 41: 3464
- 13b Li C.-J. Acc. Chem. Res. 2009; 42: 335
- 13c Anastas P. Eghbali N. Chem. Soc. Rev. 2010; 39: 301
- 13d Yoo W.-J. Li C.-J. Top. Curr. Chem. 2010; 292: 281
- 13e Yeung CS. Dong VM. Chem. Rev. 2011; 111: 1215
- 13f Klussmann M. Sureshkumar D. Synthesis 2011; 353
- 13g Shi Z. Glorius F. Angew. Chem. Int. Ed. 2012; 51: 9220
- 13h Li Z. Bohle DS. Li C.-J. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 8928
- 13i Guo S.-R. Kumar PS. Yang M. Adv. Synth. Catal. 2017; 359: 2
- 13j Lakshman MK. Vuram PK. Chem. Sci. 2017; 8: 5845
- 13k Yi H. Zhang G. Wang H. Huang Z. Wang J. Singh AK. Lei A. Chem. Rev. 2017; 117: 9016
- 14a Deb ML. Dey SS. Bento I. Barros MT. Maycock CD. Angew. Chem. Int. Ed. 2013; 52: 9791
- 14b Mahato S. Haldar S. Jana CK. Chem. Commun. 2014; 50: 332
- 14c Gupta KS. V. Ramana DV. Vinayak B. Sridhar B. Chandrasekharam M. New J. Chem. 2016; 40: 6389
- 14d Deb ML. Borpatra PJ. Saikia PJ. Baruah PK. Synlett 2017; 28: 461
- 14e Deb ML. Pegu CD. Borpatra PJ. Saikia PJ. Baruah PK. Green Chem. 2017; 19: 4036
- 15a Ganem B. Acc. Chem. Res. 2009; 42: 463
- 15b Touré BB. Hall DG. Chem. Rev. 2009; 109: 4439
- 15c Ruijter E. Scheffelaar R. Orru RV. A. Angew. Chem. Int. Ed. 2011; 50: 6234
- 15d D’Souza DM. Müller TJ. J. Chem. Soc. Rev. 2007; 36: 1095
- 15e Climent MJ. Corma A. Iborra S. RSC Adv. 2012; 2: 16
- 16a Shiri M. Chem. Rev. 2012; 112: 3508
- 16b Dömling A. Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
- 16c Dömling A. Chem. Rev. 2006; 106: 17
- 16d Dömling A. Huang Y. Synthesis 2010; 2859
- 16e Tsepalov VF. Zh. Fiz. Khim. 1961; 35: 1691
- 16f Strecker A. Liebigs Ann. Chem. 1850; 75: 27
- 17 Crystallographic data for compound 3a has been deposited with CCDC 1812944 and can be obtained free of charge from the Cambridge Crystallographic Data Centre, www.ccdc.cam.ac.uk/ conts/retrieving.html.
- 18 Representative Procedure for the Synthesis of 3a 2-Naphthol (1a, 1 mmol, 144 mg), tetrahydroisoquinoline (2a, 1 mmol, 133 mg), and methanol (5 mL) were combined in a round-bottom flask. Cu(OAc)2 . H2O (10 mol%, 20 mg) and TBHP (70% in H2O, 2 mmol, 257 mg) were added and the reaction mixture was stirred at r.t. for 15 h. Progress of the reaction was monitored by TLC. Removal of the solvent under vacuum and purification by column chromatography (100–200 mesh silica gel, hexane/ethyl acetate) afforded product 3a as a white solid. Yield: 68% (195 mg). 1H NMR (300 MHz, CDCl3): δ = 7.79 (d, J = 7.9 Hz, 1 H), 7.69–7.64 (m, 2 H), 7.53–7.45 (m, 2 H), 7.40–7.30 (m, 3 H), 7.23 (d, J = 7.9 Hz, 1 H), 7.07 (d, J = 8.7 Hz, 1 H), 5.80 (s, 1 H), 4.81 (d, J = 16.3 Hz, 1 H), 4.30 (d, J = 16.6 Hz, 1 H), 3.49–3.41 (m, 1 H), 3.17–3.12 (m, 1 H), 2.97–2.92 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 151.7, 134.9, 133.0, 131.5, 129.0, 128.9, 128.8, 128.5, 128.2, 126.5, 126.3, 123.5, 121.2, 118.8, 111.1, 86.9, 51.3, 45.2, 29.2. HRMS (ESI): m/z calcd for C20H17NO [M+H]+: 288.1388; found: 288.1389.












