Subscribe to RSS
DOI: 10.1055/s-0035-1562457
The Concept of Sequential Multicomponent Reactions: A Short Synthesis of Thiazolo- and Oxazolo[1,4]benzodiazepine-2,5-diones
Publication History
Received: 25 April 2016
Accepted after revision: 06 June 2016
Publication Date:
13 July 2016 (online)
Abstract
A new synthetic sequence including two sequential multicomponent reactions leading to a wide range of thiazolo- and oxazolo-annulated benzodiazepinediones is described. This strategy features simple one-pot operations under mild conditions in combination with a high degree of diversity, and can be realized based on commercially available or easily accessible starting materials.
#
Key words
Ugi reaction - multicomponent reactions - cyclization - heterocycles - imines - polycyclesThe benzodiazepinedione core is present in many natural products and is a prominent structure in numerous pharmaceutically important compounds.[1] Successful examples of the synthesis of benzodiazepinediones have been described to date. Specifically, the contribution of Lu et al. showed that 1,4-benzodiazepine-2,5-diones could be constructed through high-performance processes utilizing the Ugi four-component condensation reaction.[2] In addition, Hiller et al. reported a two-step synthesis of annulated 1,4-benzodiazepine-2,5-diones starting from the Ugi four-component reaction and a subsequent palladium-catalyzed ring-closure.[3] Recently, Zemribo and Smits presented a one-step synthesis from anthranilic acids and proline esters.[4] Most approaches to these and related benzo-fused heterocycles typically involve the elegant application of multicomponent reactions, such as the Ugi reaction, and a subsequent post-modification that requires precursors with appropriately positioned activating groups.[5]
Multicomponent reactions (MCRs) are convergent reactions in which at least three starting materials are transformed into a new product by simultaneous formation of at least two bonds with high atom economy in one-pot procedures.[6] MCRs benefit not only from commercially available and low-priced substrates, but also from the exclusive possibility to enable the direct preparation of densely substituted molecules containing various structural features for elaboration of substance libraries. In recent years, multicomponent reactions have become a powerful tool in many aspects of medicinal and organic chemistry, highlighted by their unique performance to create molecular complexity in single-step operations.[7] Beside these privileges, MCRs stand out due to the rapid construction of (hetero-)cyclic frameworks and the straightforward opportunity of classical post-modification by the employment of prefunctionalized substrates.[8]
Two well-established examples of MCRs are represented by the Asinger and the Ugi reactions. Studies by Friedrich Asinger revealed that the solvent-free interaction of ketones or aldehydes with ammonia and sulfur resulted in the synthesis of iminic 2,5-dihydro-1,3-thiazoles (3-thiazolines).[9] Later on, driven by the continuous importance of 3-thiazolines as key intermediates in the pharmaceutical chemistry sector,[10] the procedure was simplified by the use of α-chloro aldehydes, aqueous ammonia and sodium hydrosulfide.[11] Furthermore, this modified protocol was extended to oxygen-containing 2,5-dihydro-1,3-oxazoles (3-oxazolines) by means of sodium hydroxide, giving an example of an environmentally friendly reaction (only water and sodium chloride are lost).[12] In contrast to the rarely described Asinger 4CR,[13] the Ugi 3CR has a prestigious history in the field of synthetic chemistry.[6] Ivar Ugi discovered a three-component reaction that included an imine, an isocyanide and a carboxylic acid as substrates, and that resulted in the design of a peptoid structure.[14] In the recent past, we evaluated the Ugi 3CR in connection with the products of the Asinger 4CR as suitable imine components to assemble richly functionalized heterocyclic systems and were amazed at the high functional group tolerance of this reaction.[15]
Considering the great biological significance and application of benzodiazepinediones, and inspired by the efficiency of multicomponent reactions, we became interested in the development of a linear sequence of multicomponent reactions leading to a broad variety of annulated benzodiazepinedione derivatives under mild and operationally simple conditions (Scheme [1]). The first part of the intended sequence is the Asinger 4CR (A-4CR) that provides thiazolines 1 (X = S) and oxazolines 1 (X = O) as the desired key precursors. The high performance of the Ugi 3CR (U-3CR) associated with the good potential for post-modifications is the reason we chose this multicomponent reaction for the conversion of the imines 1 in combination with isocyanides and carboxylic acids as further substrates. This transformation results in highly substituted bisamides 2, whereby the incorporation of a secondary amido group in particular serves as a perfect starting point for a final single-step cyclization via an SNAr process in the absence of high-priced reagents. Very recently, our group described classical nucleophilic substitutions at electron-deficient aromatic compounds with high efficiency.[16] [17] The processes proceeded quickly at room temperature and avoided harsh conditions and cost-intensive reagents, while the waste materials were non-toxic ammonium salts. Our findings that displacement of the fluorine in 2-fluoro-5-nitro-substituted aromatic compounds can be quite facile suggests that such structural properties offer a benign strategy for the synthesis of thiazolo- and oxazolo-fused benzodiazepinediones 3. In addition, the sequential combination of both multicomponent reactions seems to be ideally suited to open access to target molecules with high levels of structural diversification. Furthermore, this attractive concept is part of an increasing pool of applications for diversity-oriented synthesis.[18]


According to our proposed synthetic route (Scheme [1]), we devoted our initial efforts into the Asinger 4CR, expecting that the reaction of a ketone, an α-chloro aldehyde, ammonia and sodium hydrogen sulfide or sodium hydroxide would result in a rapid synthesis of known heterocyclic imines 1.[17] Indeed, the reproduction of this known multicomponent reaction proceeded effectively, independently of the structural nature of the carbonyl compounds, and we obtained smoothly various types of thiazolines and oxazolines 1 in one-pot procedures; the substitution patterns are depicted in Table [1]. One advantage of this transformation is the direct generation of the reactive iminic bond, which enables a straightforward conversion of the precursors 1 in the intended sequence of multicomponent reactions. Hence, we turned our attention to the Ugi 3CR as a second multicomponent reaction and forceful one-pot method for the preparation of bisamides 2. We started our investigations with tetramethyl thiazoline 1a, 2-fluoro-5-nitrobenzoic acid and allyl isocyanide in methanol, and isolated the desired bisamide 2a in almost quantitative yield (Table [1], entry 1). Since the final cyclization of bisamides 2 is the key step for the formation of the benzodiazepinedione substructure, we considered a small selection of appropriate bases to increase the nucleophilicity of the secondary amido group for the nucleophilic aromatic substitution (Scheme [2]). It turned out that the combination of lithium diisopropylamide (LDA) in refluxing THF was well-suited to generate the desired benzodiazepinedione 3a in good yield (64%).


Next, we focused on the scope of the substrates and were able to telescope this two-step sequence leading to various benzodiazepinediones 3b –j in good isolated yields, which are summarized in Table [1] (entries 2–10). Besides a representative range of substitution patterns on the iminic heterocycle 1 (i.e., sulfur-containing thiazolines and oxygen-containing oxazolines), we expanded our concept to different classes of isocyanides. It was found that allyl, alkyl, aryl and benzyl isocyanides could be successfully applied generating bisamides 2b–j in good to very good yields while using 2-fluoro-5-nitrobenzoic acid derivatives as the third component in the Ugi reaction.
a See experimental section for details.
b The synthesis of imines 1 is well-established. For details, see our recent report.[17]
c Yields of isolated products.
Apart from sterically hindered secondary amido groups (i.e., bisamide 2c), all the prepared bisamides 2 underwent efficient cyclization under the optimized reaction conditions. Allyl-, alkyl-, benzyl- and even aryl-bearing amido groups were well-tolerated in our single-step transformation providing the corresponding benzodiazepinediones 3b and 3d–j in moderate to good yields (Table [1], entries 2 and 4–10). A profound effect on the cyclization rate based on the electronic nature of the substrate was not observed. Furthermore, we found that naphthalene derivative 2g underwent clean cyclization leading to benzodiazepinedione 3g in a good isolated yield of 71% (Table [1], entry 7). Finally, we explored a carboxylic acid that contains a highly derivatizable bromo substituent on the aryl ring as a representative example for a broad range of potential molecular scaffolds (Table [1], entries 8–10). This substrate underwent the Ugi reaction and the subsequent cyclization in good yields affording benzodiazepinediones 3h–j as the final products.
Bearing various functional groups, the new thiazolo- and oxazolo-annulated benzodiazepinediones 3 offer a convenient platform for selective derivatizations to construct heterocyclic structures by classical operations. Specifically, the utility of the nitro group as a starting point for the elaboration of a diverse-orientated substance library has recently been shown by us.[16]
In conclusion, we have developed a new and efficient synthetic route toward thiazolo- and oxazolo-annulated benzodiazepinediones by employing two sequential multicomponent reactions (i.e., A-4CR and U-3CR). With a synthetically simple cyclization as the final step, this strategy enables a rapid approach to multifunctionalized heterocyclic frameworks from a wide range of commercially available or easily accessible starting materials. Furthermore, the sequence was performed in one-pot procedures under mild conditions and opens new possibilities for the preparation of biologically important benzodiazepinedione motifs.
Synthetic procedures, conducted under argon atmosphere, were performed on a vacuum line using standard Schlenk techniques. Preparative column chromatography was carried out using Grace SiO2 (0.035–0.070 mm, type KG 60) and CH2Cl2, EtOAc, n-hexane and methyl tert-butyl ether were used as eluents. EtOAc and n-hexane were distilled prior to use. CH2Cl2 was dried and distilled from CaH2. TLC was performed with Machery-Nagel SiO2 F254 plates on aluminum sheets. Melting points were obtained using a melting point apparatus (Laboratory Devices) and are uncorrected. IR spectra were recorded with a Bruker Tensor 27 spectrometer fitted with a “Golden Gate” diamond-ATR (attenuated total reflection) unit. 1H and 13C NMR spectra were recorded with a Bruker AMX R 500 (measuring frequency: 1H NMR = 500.1 MHz, 13C NMR = 125.8 MHz) or a Bruker Avance III 500 (measuring frequency: 1H NMR = 499.9 MHz, 13C NMR = 125.7 MHz) spectrometer in CDCl3 or DMSO-d 6 solution. Chemical shifts are referenced to the residual peaks of the solvent [CDCl3: 7.26 ppm (1H NMR), 77.16 ppm (13C NMR); DMSO-d 6: 2.50 ppm (1H NMR), 39.52 ppm (13C NMR)].[19] Signal assignments were supported by measurements applying DEPT and COSY techniques. Mass spectra were obtained with Finnigan-MAT 95 (CI, EI) and Waters Q-TOF Premier (ESI) spectrometers. The syntheses of 2,2,5,5-tetramethyl-1,3-thiazoline (1a), 2,2,5,5-tetramethyl-1,3-oxazoline (1b), 2,2-dimethyl-1-thia-4-azaspiro[4,5]dec-3-ene (1c), 2,2-dimethyl-1-oxa-4-azaspiro[4.5]dec-3-ene (1d) and 7-thia-14-azadispiro[5.1.58.26]pentadec-14-ene (1e) were recently reported by us.[17] Allyl isocyanide,[20] 4-methoxybenzyl isocyanide[21] and 3-bromo-2-fluoro-5-nitrobenzoic acid[17] were prepared according to published procedures.
#
Ugi 3CR; General Procedure A (GPA)
A solution of the respective carboxylic acid (1 equiv) in anhydrous MeOH (1.0 mL per mmol of imine) was added dropwise to a solution of the respective imine 1 (1 equiv) in anhydrous MeOH (2.0 mL per mmol of imine) at 0 °C. After stirring for 30 min at r.t., the respective isocyanide (1 equiv) was added dropwise, and the solution was stirred for 2 d at r.t. The solvent was removed (rotary evaporator). The crude mixture was purified by recrystallization or by column chromatography on silica gel.
#
(RS)-4-N-Allylcarbamoyl-3-(2-fluoro-5-nitrobenzoyl)-2,2,5,5-tetramethyl-1,3-thiazolidine (2a)
Following GPA, 2,2,5,5-tetramethyl-1,3-thiazoline (1a) (430 mg, 3.00 mmol), 2-fluoro-5-nitrobenzoic acid (555 mg, 3.00 mmol) and allyl isocyanide (201 mg, 3.00 mmol) were used. Purification was not necessary. Product 2a was obtained as a colorless solid (1.160 g, 98%).
Mp 153–156 °C (CH2Cl2/n-hexane).
IR (ATR): 3309, 3070, 2984, 1689, 1624, 1533, 1481, 1427, 1391, 1309, 1254, 766, 748 cm–1.
1H NMR (500.1 MHz, CDCl3): δ = 8.30–8.26 (m, 1 H, p-CHArCO), 8.13–8.11 (m, 1 H, o-CHArCO), 7.29–7.25 (m, 1 H, m-CHArCO), 6.33–6.09 (m, 1 H, NH), 5.85–5.77 (m, 1 H, CH=CH2), 5.25–5.21, 5.20–5.18 (2 m, 2 H, CH=CH 2), 4.09 (s, 1 H, NCH), 3.83–3.81 (m, 2 H, NCH2), 2.14, 2.10, 1.73, 1.31 (4 s, 12 H, 4 × CH3).
13C NMR (125.8 MHz, CDCl3): δ = 168.6 (CONH), 162.7 (CON), 160.7 (d, 1 J C–F = 258.4 Hz, CArF), 144.4 (CArNO2), 133.2 (CH=CH2), 127.3 (d, 2 J C–F = 21.6 Hz, C ArCO), 127.0 (d, 3 J C–F = 10.0 Hz, p-CHArCO), 124.6 (o-CHArCO), 117.8 (CH=CH2), 117.5 (d, 2 J C–F = 25.2 Hz, m-CHArCO), 79.4 (NCH), 74.1 [C(CH3)2N], 50.4 [C(CH3)2CH], 42.2 (NHCH2), 33.5, 31.4, 29.9, 24.9 (4 × CH3).
MS (CI, isobutane): m/z (%) = 396.3 (100) [M + H]+.
HRMS (CI, isobutane): m/z [M + H]+ calcd for C18H23FN3O4S: 396.1393; found: 396.1403.
#
(RS)-4-N-Ethylcarbamoyl-3-(2-fluoro-5-nitrobenzoyl)-2,2,5,5-tetramethyl-1,3-oxazolidine (2b)
Following GPA, 2,2,5,5-tetramethyl-1,3-oxazoline (1b) (254 mg, 2.00 mmol), 2-fluoro-5-nitrobenzoic acid (370 mg, 2.00 mmol) and ethyl isocyanide (110 mg, 2.00 mmol) were used. Column chromatography on silica gel (n-hexane/EtOH, 7:3; Rf = 0.58) provided 2b as a colorless solid (184 mg, 25%).
Mp 132–134 °C (CH2Cl2/n-hexane).
IR (ATR): 3328, 3083, 2982, 2940, 1685, 1630, 1534, 1439, 1349, 1255, 1236, 1198, 1157, 1075, 1014, 922, 851, 747 cm–1.
1H NMR (499.9 MHz, CDCl3): δ = 8.28–8.25 (m, 1 H, p-CHArCO), 8.19–8.17 (m, 1 H, o-CHArCO), 7.28–7.24 (m, 1 H, m-CHArCO), 5.64–5.61 (m, 1 H, NH), 3.88 (s, 1 H, NCH), 3.13–3.07 (m, 2 H, CH2), 1.88, 1.82, 1.50, 1.27 [4 s, 12 H, 2 × C(CH3)2], 0.97–0.94 (m, 3 H, CH2CH 3).
13C NMR (125.7 MHz, CDCl3): δ = 168.1 (CONH), 161.7 (CON), 161.1 (d, 1 J C–F = 258.0 Hz, CArF), 144.4 (CArNO2), 127.0 (d, 3 J C–F = 10.0 Hz, p-CHArCO), 126.7 (d, 2 J C–F = 21.1 Hz, C ArCO), 125.1 (d, 3 J C–F = 5.2 Hz, o-CHArCO), 117.4 (d, 2 J C–F = 24.1 Hz, m-CHArCO), 97.3 [C(CH3)2N], 81.4 [C(CH3)2CH], 71.5 (NCH), 34.7 (CH2), 30.7, 27.6, 25.3 [C(CH3)2], 14.7 (CH2 CH3).
MS (ESI, TOF): m/z (%) = 390.1 (100) [M + Na]+.
HRMS (ESI, TOF): m/z [M + Na]+ calcd for C17H22FN3NaO5: 390.1441; found: 390.1436.
#
(RS)-4-N-Cyclohexylcarbamoyl-3-(2-fluoro-5-nitrobenzoyl)-2,2,5,5-tetramethyl-1,3-oxazolidine (2c)
Following GPA, 2,2,5,5-tetramethyl-1,3-oxazoline (1b) (382 mg, 3.00 mmol), 2-fluoro-5-nitrobenzoic acid (555 mg, 3.00 mmol) and cyclohexyl isocyanide (328 mg, 3.00 mmol) were used. Recrystallization from CH2Cl2/n-hexane provided 2c as a pale yellow solid (997 mg, 79%).
Mp 195–197 °C (CH2Cl2/n-hexane).
IR (ATR): 3317, 3063, 2932, 2857, 1680, 1631, 1536, 1447, 1350, 1256, 1199, 1082, 917, 884, 750 cm–1.
1H NMR (500.1 MHz, CDCl3): δ = 8.30–8.26 (m, 1 H, p-CHArCO), 8.21–8.19 (m, 1 H, o-CHArCO), 7.28–7.24 (m, 1 H, m-CHArCO), 5.35 (d, 3 J = 7.8 Hz, 1 H, NH), 3.86 (s, 1 H, NCH), 3.61–3.55 (m, 1 H, CHCy), 1.89, 1.84, 1.52, 1.28 (4 s, 12 H, 4 × CH3), 1.69–1.57, 1.47–1.33, 1.15–1.06, 0.94–0.87 (4 m, 10 H, 5 × CH2,Cy).
13C NMR (125.8 MHz, CDCl3): δ = 167.2 (CONH), 161.8 (CON), 161.0 (d, 1 J C–F = 257.7 Hz, CArF), 144.5 (CArNO2), 127.1 (d, 3 J C–F = 10.4 Hz, p-CHArCO), 126.6 (d, 2 J C–F = 21.5 Hz, C ArCO), 125.3 (d, 3 J C–F = 6.1 Hz, o-CHArCO), 117.4 (d, 2 J C–F = 24.0 Hz, m-CHArCO), 97.2 [C(CH3)2N], 81.5 [C(CH3)2CH], 71.5 (NCH), 48.7 (CHCy), 33.1, 33.0, 25.4, 24.8, 24.7 (5 × CH2,Cy), 30.8, 27.8, 27.6, 25.3 (4 × CH3).
MS (CI, isobutane): m/z (%) = 422.6 (100) [M + H]+.
HRMS (CI, isobutane): m/z [M + H]+ calcd for C21H29FN3O5: 422.2086; found: 422.2085.
#
(RS)-3-N-(4-Chlorophenyl)carbamoyl-4-(2-fluoro-5-nitrobenzoyl)-2,2-dimethyl-1-thia-4-azaspiro[4.5]decane (2d)
Following GPA, 2,2-dimethyl-1-thia-4-azaspiro[4,5]dec-3-ene (1c) (367 mg, 2.00 mmol), 2-fluoro-5-nitrobenzoic acid (370 mg, 2.00 mmol) and 4-chlorophenyl isocyanide (274 mg, 2.00 mmol) were used. Recrystallization from CH2Cl2 provided 2d as a yellow solid (610 mg, 61%).
Mp 259–261 °C (CH2Cl2/n-hexane).
IR (ATR): 3248, 3069, 2933, 2850, 1695, 1618, 1537, 1492, 1428, 1387, 1346, 1232, 1123, 1095, 834, 783 cm–1.
1H NMR (500.1 MHz, DMSO-d 6): δ = 9.70–9.66 (m, 1 H, NH), 8.33–8.27 (m, 1 H, p-CHArCO), 7.75–7.69 (m, 1 H, o-CHArCO), 7.29–7.26 (m, 5 H, 2 × m-CHArCl, 2 × o-CHArCl, m-CHArCO), 4.31 (s, 1 H, NCH), 3.11–3.06, 2.86–2.84, 2.69–2.66, 1.91–1.80, 1.66–1.57, 1.24–1.16 (6 m, 10 H, 5 × CH2,Cy), 1.63, 1.24 (2 s, 6 H, 2 × CH3).
13C NMR (125.8 MHz, DMSO-d 6): δ = 167.3 (CONH), 161.8 (d, 3 J C–F = 4.0 Hz, CON), 159.8 (d, 1 J C–F = 254.3 Hz, CArF), 143.6 (CArNO2), 136.5 (CArCl), 128.7 (2 × o-CHArCl), 127.5 (CArNH), 127.2 (d, 2 J C–F = 24.4 Hz, C ArCO), 126.8 (d, 3 J C–F = 9.3 Hz, p-CHArCO), 122.9 (o-CHArCO), 120.7 (2 × m-CHArCl), 118.5 (d, 2 J C–F = 25.7 Hz, m-CHArCO), 81.0 [C(CH2,Cy)5], 77.3 (NCH), 49.5 [C(CH3)2], 37.0, 34.8, 25.4, 25.0, 24.2 (5 × CH2,Cy), 33.2, 24.8 (2 × CH3).
MS (ESI, TOF): m/z (%) = 528.1 (100) [M + Na]+.
HRMS (ESI, TOF): m/z [M + Na]+ calcd for C24H25ClFN3NaO4S: 528.1136; found: 528.1127.
#
(RS)-4-(2-Fluoro-5-nitrobenzoyl)-3-N-(4-methoxybenzyl)carbamoyl-2,2-dimethyl-1-oxa-4-azaspiro[4.5]decane (2e)
Following GPA, 2,2-dimethyl-1-oxa-4-azaspiro[4.5]dec-3-ene (1d) (334 mg, 2.00 mmol), 2-fluoro-5-nitrobenzoic acid (370 mg, 2.00 mmol) and 4-methoxybenzyl isocyanide (294 mg, 2.00 mmol) were used. Column chromatography on silica gel (n-hexane/EtOAc, 3:1; Rf = 0.15) provided 2e as a colorless solid (350 mg, 35%).
Mp 180–182 °C (CH2Cl2/n-hexane).
IR (ATR): 3076, 2987, 2936, 1693, 1616, 1537, 1515, 1444, 1348, 1243, 1141, 1075, 1034, 1012, 915, 817, 743 cm–1.
1H NMR (499.9 MHz, CDCl3): δ = 8.22–8.19 (m, 1 H, p-CHArCO), 8.14–8.12 (m, 1 H, o-CHArCO), 7.20–7.16 (m, 1 H, m-CHArCO), 7.04–7.02 (m, 2 H, 2 × m-CH ArOCH3), 6.83–6.81 (m, 2 H, 2 × o-CH ArOCH3), 5.79–5.74 (m, 1 H, NH), 4.23 (dd, 2 J = 14.3 Hz, 3 J = 5.9 Hz, 1 H, CH2N), 4.12 (dd, 2 J = 14.1 Hz, 3 J = 4.5 Hz, 1 H, CH2N), 3.94 (s, 1 H, NCH), 3.81 (s, 3 H, OCH3), 2.71–2.63, 1.85–1.60, 1.38–1.24 (3 m, 10 H, 5 × CH2,Cy), 1.51, 1.28 [2 s, 6 H, C(CH3)2].
13C NMR (125.7 MHz, CDCl3): δ = 168.1 (CONH), 162.0 (CON), 160.9 (d, 1 J C–F = 257.8 Hz, CArF), 159.5 (C ArOCH3), 144.5 (CArNO2), 129.4 (2 × m-CHArOCH3), 129.1 (C ArCH2), 127.0 (d, 3 J C–F = 9.6 Hz, p-CHArCO), 126.9 (d, 2 J C–F = 22.6 Hz, C ArCO), 125.2 (d, 3 J C–F = 4.3 Hz, o-CHArCO), 117.4 (d, 2 J C–F = 24.4 Hz, m-CHArCO), 114.4 (2 × o-CHArOCH3), 99.4 [C(CH2,Cy)5], 81.3 [C(CH3)2], 71.5 (NCH), 55.4 (OCH3), 43.5 (CH2N), 36.0, 34.5, 24.7, 23.5, 23.4 (5 × CH2,Cy), 31.0, 25.7 [C(CH3)2].
MS (ESI, TOF): m/z (%) = 522.2 (100) [M + Na]+.
HRMS (ESI, TOF): m/z [M + Na]+ calcd for C26H30FN3NaO6: 522.2016; found: 522.2003.
#
(RS)-4-(2-Fluoro-5-nitrobenzoyl)-3-N-phenethylcarbamoyl-2,2-dimethyl-1-oxa-4-azaspiro[4.5]decane (2f)
Following GPA, 2,2-dimethyl-1-oxa-4-azaspiro[4.5]dec-3-ene (1d) (334 mg, 2.00 mmol), 2-fluoro-5-nitrobenzoic acid (370 mg, 2.00 mmol) and phenethyl isocyanide (262 mg, 2.00 mmol) were used. Recrystallization from CH2Cl2 provided 2f as a colorless solid (560 mg, 58%).
Mp 204–206 °C (CH2Cl2/n-hexane).
IR (ATR): 3085, 2929, 2859, 1683, 1627, 1553, 1537, 1448, 1347, 1255, 1235, 1182, 1136, 1038, 1009, 915, 850, 748 cm–1.
1H NMR (500.1 MHz, CDCl3): δ = 8.26–8.22 (m, 1 H, p-CHArCO), 8.07–8.05 (m, 1 H, o-CHArCO), 7.34–7.31 (m, 2 H, 2 × o-CHArCH2), 7.25–7.21 (m, 2 H, p-CHArCH2, m-CHArCO), 7.18–7.16 (m, 2 H, 2 × m-CHArCH2), 5.68–5.66 (m, 1 H, NH), 3.85 (s, 1 H, NCH), 3.53–3.46, 3.41–3.34 (2 m, 2 H, CH2NH), 2.82–2.76, 2.75–2.69 (2 m, 2 H, CH2CAr), 2.65–2.59, 2.54–2.47, 1.78–1.54, 1.38–1.26 (4 m, 10 H, 5 × CH2,Cy), 1.46, 1.21 (2 s, 6 H, 2 × CH3).
13C NMR (125.8 MHz, CDCl3): δ = 168.4 (CONH), 161.9 (CON), 160.9 (d, 1 J C–F = 254.0 Hz, CArF), 144.4 (CArNO2), 137.9 (C ArCH2), 129.1 (2 × m-CHArCH2), 128.7 (2 × o-CHArCH2), 127.1 (p-CHArCH2), 127.1 (d, 3 J C–F = 9.6 Hz, p-CHArCO), 126.8 (d, 2 J C–F = 21.3 Hz, C ArCO), 124.7 (d, 3 J C–F = 5.0 Hz, o-CHArCO), 117.5 (d, 2 J C–F = 24.0 Hz, m-CHArCO), 99.0 [C(CH2,Cy)5], 81.1 [C(CH3)2], 71.7 (NCH), 40.4 (CH2NH), 36.2, 34.2, 24.6, 23.4, 23.4 (5 × CH2,Cy), 35.2 (CH2CAr), 30.9, 25.6 (2 × CH3).
MS (ESI, TOF): m/z (%) = 506.2 (100) [M + Na]+.
HRMS (ESI, TOF): m/z [M + Na]+ calcd for C26H30FN3NaO5: 506.2067; found: 506.2056.
#
(RS)-14-(2-Fluoro-5-nitrobenzoyl)-15-N-(naphthalene-2-ylmethyl)carbamoyl-7-thia-14-azadispiro[5.1.58.26]pentadecane (2g)
Following GPA, 7-thia-14-azadispiro[5.1.58.26]pentadec-14-ene (1e) (670 mg, 3.00 mmol), 2-fluoro-5-nitrobenzoic acid (555 mg, 3.00 mmol) and 2-(isocyanomethyl)naphthalene (502 mg, 3.00 mmol) were used. Recrystallization from CH2Cl2/n-hexane provided 2g as a pale yellow solid (1.660 g, 96%).
Mp 169–172 °C (CH2Cl2/n-hexane).
IR (ATR): 3319, 3061, 2936, 2855, 1651, 1626, 1531, 1424, 1374, 1345, 1252, 1128, 741, 714 cm–1.
1H NMR (500.1 MHz, CDCl3): δ = 8.17–8.14 (m, 1 H, p-CHArCO), 8.13–8.09 (m, 1 H, CHAr), 7.82–7.79 (m, 3 H, 3 × CHAr), 7.71–7.68 (m, 1 H, o-CHArCO), 7.50–7.46 (m, 2 H, 2 × CHAr), 7.32–7.31 (m, 1 H, CHAr), 7.19–7.13 (m, 1 H, m-CHArCO), 6.70–6.50 (m, 1 H, NH), 4.56–4.49 (m, 2 H, CH2NH), 4.18 (s, 1 H, NCH), 3.17–3.07, 2.15–2.06, 1.86–1.61, 1.37–1.17 (5 m, 20 H, CH2,Cy).
13C NMR (125.8 MHz, CDCl3): δ = 168.4 (CONH), 163.9 (d, 1 J C–F = 261.8 Hz, CArF), 162.8 (CON), 144.2 (CArNO2), 134.6, 133.3, 132.8 (3 × CAr), 128.8, 127.8, 126.7, 126.7, 126.5, 126.2, 125.7 (o-CHArCO, p-CHArCO, 7 × CHAr), 127.8 (d, 2 J C–F = 21.6 Hz, C ArCO), 117.4 (d, 2 J C–F = 26.4 Hz, m-CHArCO), 81.0 [C(CH2,Cy)5N], 79.0 (NCH), 56.0 [C(CH2,Cy)5CH], 44.0 (CH2NH), 39.9, 37.5, 36.9, 34.6, 25.6, 25.6, 25.2, 24.4, 24.3, 22.6 (10 × CH2,Cy).
MS (CI, isobutane): m/z (%) = 576.5 (100) [M + H]+.
HRMS (CI, isobutane): m/z [M + H]+ calcd for C32H35FN3O4S: 576.2327; found: 576.2324.
#
(RS)-4-N-Allylcarbamoyl-3-(3-bromo-2-fluoro-5-nitrobenzoyl)-2,2,5,5-tetramethyl-1,3-thiazolidine (2h)
Following GPA, 2,2,5,5-tetramethyl-1,3-thiazoline (1a) (286 mg, 2.00 mmol), 3-bromo-2-fluoro-5-nitrobenzoic acid (528 mg, 2.00 mmol) and allyl isocyanide (134 mg, 2.00 mmol) were used. Column chromatography on silica gel (CH2Cl2; Rf = 0.23) provided 2h as a yellow solid (930 mg, 98%).
Mp 154–156 °C (CH2Cl2/n-hexane).
IR (ATR): 3318, 3087, 2987, 2936, 1682, 1626, 1537, 1430, 1392, 1346, 1231, 1166, 1129, 1080, 919, 739 cm–1.
1H NMR (500.1 MHz, CDCl3): δ = 8.43–8.41 (m, 1 H, p-CHArCO), 8.01–7.99 (m, 1 H, o-CHArCO), 6.28–6.20 (m, 1 H, NH), 5.75–5.66 (m, 1 H, CH=CH2), 5.14–5.11 (m, 2 H, CH=CH 2), 3.97 (s, 1 H, NCH), 3.77–3.71 (m, 2 H, CH 2NH), 2.07, 2.05, 1.67, 1.27 (4 s, 12 H, 4 × CH3).
13C NMR (125.8 MHz, CDCl3): δ = 168.3 (CONH), 161.4 (CON), 157.4 (d, 1 J C–F = 254.6 Hz, CArF), 144.2 (CArNO2), 133.1 (CH=CH2), 129.9 (p-CHArCO), 127.7 (d, 2 J C–F = 23.0 Hz, C ArCO), 123.3 (o-CHArCO), 117.6 (CH=CH2), 110.8 (CArBr), 79.0 (NCH), 74.2 [C(CH3)2N], 50.3 [C(CH3)2CH], 42.1 (CH2NH), 33.3, 31.2, 29.3, 24.8 (4 × CH3).
MS (ESI, TOF): m/z (%) = 496.0 (100) [M + Na]+.
HRMS (ESI, TOF): m/z [M + Na]+ calcd for C18H21BrFN3NaO4S: 496.0318; found: 496.0319.
#
(RS)-4-N-Allylcarbamoyl-3-(3-bromo-2-fluoro-5-nitrobenzoyl)-2,2,5,5-tetramethyl-1,3-oxazolidine (2i)
Following GPA, 2,2,5,5-tetramethyl-1,3-oxazoline (1b) (254 mg, 2.00 mmol), 3-bromo-2-fluoro-5-nitrobenzoic acid (528 mg, 2.00 mmol) and allyl isocyanide (134 mg, 2.00 mmol) were used. Column chromatography on silica gel (n-hexane/MTBE, 3:2; Rf = 0.13) provided 2i as a yellow oil (431 mg, 47%).
IR (ATR): 3309, 3086, 2987, 2941, 1633, 1536, 1435, 1374, 1346, 1256, 1196, 1157, 1136, 1014, 919, 739 cm–1.
1H NMR (499.9 MHz, CDCl3): δ = 8.47–8.46 (m, 1 H, p-CHArCO), 8.13–8.10 (m, 1 H, o-CHArCO), 5.67–5.59 (m, 1 H, CH=CH2), 5.58–5.54 (m, 1 H, NH), 5.11–5.09, 5.08–5.05 (2 m, 2 H, CH=CH 2), 3.85 (s, 1 H, NCH), 3.79–3.73, 3.69–3.64 (m, 2 H, CH 2NH), 1.88, 1.83, 1.53, 1.29 (4 s, 12 H, 4 × CH3).
13C NMR (125.7 MHz, CDCl3): δ = 167.9 (CONH), 160.7 (CON), 158.0 (d, 1 J C–F = 257.3 Hz, CArF), 144.5 (CArNO2), 133.0 (CH=CH2), 130.1 (p-CHArCO), 127.2 (d, 2 J C–F = 22.4 Hz, C ArCO), 123.7 (o-CHArCO), 118.0 (CH=CH2), 110.9 (d, 2 J C–F = 24.0 Hz, CArBr), 97.6 [C(CH3)2N], 81.5 [C(CH3)2CH], 71.5 (NCH), 42.3 (CH2NH), 30.7, 27.6, 27.6, 25.4 (4 × CH3).
MS (ESI, TOF): m/z (%) = 458.1 (100) [M + H]+.
HRMS (ESI, TOF): m/z [M + H]+ calcd for C18H22BrFN3O5: 458.0727; found: 458.0713.
#
(RS)-3-(3-Bromo-2-fluoro-5-nitrobenzoyl)-4-N-(4-methoxybenzyl)carbamoyl-2,2,5,5-tetramethyl-1,3-thiazolidine (2j)
Following GPA, 2,2,5,5-tetramethyl-1,3-thiazoline (1a) (286 mg, 2.00 mmol), 3-bromo-2-fluoro-5-nitrobenzoic acid (528 mg, 2.00 mmol) and 4-methoxybenzyl isocyanide (294 mg, 2.00 mmol) were used. Column chromatography on silica gel (n-hexane/EtOAc, 7:3; Rf = 0.35) provided 2j as a yellow solid (880 mg, 80%).
Mp 65–70 °C (CH2Cl2/n-hexane).
IR (ATR): 3315, 3068, 2935, 1659, 1633, 1537, 1513, 1448, 1427, 1345, 1248, 1166, 1032, 820, 742 cm–1.
1H NMR (499.9 MHz, CDCl3): δ = 8.48–8.47 (m, 1 H, p-CHArCO), 8.04–8.00 (m, 1 H, o-CHArCO), 7.19–7.17 (m, 2 H, 2 × m-CH ArOCH3), 6.89–6.88 (m, 2 H, 2 × o-CH ArOCH3), 6.43–6.30 (m, 1 H, NH), 4.30 (d, 3 J = 4.7 Hz, 2 H, CH2), 4.03 (s, 1 H, NCH), 3.82 (s, 3 H, OCH3), 2.11, 1.99, 1.72, 1.31 [4 s, 12 H, 2 × C(CH3)2].
13C NMR (125.7 MHz, CDCl3): δ = 168.3 (CONH), 161.6 (CON), 159.7 (d, 1 J C–F = 258.5 Hz, CArF), 159.4 (C ArOCH3), 144.4 (CArNO2), 130.1 (p-CHArCO), 129.4 (2 × m-CHArOCH3), 129.2 (C ArCH2), 127.8 (d, 2 J C–F = 22.8 Hz, C ArCO), 123.5 (o-CHArCO), 114.5 (2 × o-CHArOCH3), 110.9 (d, 2 J C–F = 29.4 Hz, CArBr), 79.3 (NCH), 74.3 [C(CH3)2N], 55.4 (OCH3), 50.5 [C(CH3)2CH], 43.6 (CH2), 33.4, 31.3, 29.6, 24.7 [2 × C(CH3)2].
MS (ESI, TOF): m/z (%) = 576.1 (96) [M + Na]+.
HRMS (ESI, TOF): m/z [M + Na]+ calcd for C23H25BrFN3NaO5S: 576.0580; found: 576.0577.
#
Intramolecular Cyclization; General Procedure B (GPB)
Under an argon atm, n-BuLi (1.6 M in hexane, 1.2 equiv) was added to a solution of diisopropylamine (1.3 equiv) in anhydrous THF (5 mL per mmol of bisamide) at –65 °C. After stirring for 1 h at –30 °C, a solution of the respective bisamide 2 (1 equiv) in anhydrous THF (5 mL per mmol of bisamide) was added dropwise. The solution was stirred for 3 d under reflux. The mixture was quenched with a sat. aq solution of NH4Cl (10 mL per mmol of bisamide), and the aq layer was extracted with CH2Cl2 (3 × 10 mL per mmol of bisamide). The combined organic layers were dried (MgSO4), and the solvent was removed (rotary evaporator). The crude mixture was purified by column chromatography on silica gel.
#
(RS)-10-Allyl-1,1,3,3-tetramethyl-7-nitro-1,11a-dihydro-3H,5H-benzothiazolo[3,4-a][1,4]diazepine-5,11-dione (3a)
Following GPB, (RS)-bisamide 2a (395 mg, 1.00 mmol), diisopropylamine (132 mg, 1.30 mmol) and n-BuLi (1.6 M in hexane, 77 mg, 1.20 mmol) were used. Column chromatography on silica gel (MTBE; Rf = 0.76) provided 3a as a pale yellow solid (240 mg, 64%).
Mp 85–87 °C (CH2Cl2/n-hexane).
IR (ATR): 3086, 2966, 2931, 2866, 1698, 1649, 1524, 1436, 1340, 1208, 1163, 1126, 1083, 914, 730 cm–1.
1H NMR (499.9 MHz, CDCl3): δ = 8.72 (d, 4 J = 2.7 Hz, 1 H, o-CHArCO), 8.31 (dd, 3 J = 9.0 Hz, 4 J = 2.7 Hz, 1 H, p-CHArCO), 7.45 (d, 3 J = 9.0 Hz, 1 H, m-CHArCO), 5.89–5.82 (m, 1 H, CH=CH2), 5.25–5.22, 5.20–5.16 (2 m, 2 H, CH=CH 2), 4.62–4.57, 4.53–4.48 (2 m, 2 H, CH2NH), 4.09 (s, 1 H, NCH), 2.14, 1.82, 1.68, 1.63 (4 s, 12 H, 4 × CH3).
13C NMR (125.7 MHz, CDCl3): δ = 165.5 (CONCH), 162.9 (COCAr), 144.8 (CArNO2), 144.6 (CArN), 133.2 (COC Ar), 132.2 (CH=CH2), 126.7 (p-CHArCO), 126.1 (o-CHArCO), 122.6 (m-CHArCO), 118.4 (CH=CH2), 74.7 [C(CH3)2N], 70.2 (NCH), 50.9 (CH2NH), 49.3 [C(CH3)2CH], 34.7, 32.3, 28.9, 22.9 (4 × CH3).
MS (CI, isobutane): m/z (%) = 376.2 (22) [M + H]+.
HRMS (CI, isobutane): m/z [M + H]+ calcd for C18H22N3O4S: 376.1326; found: 376.1320.
#
(RS)-10-Ethyl-1,1,3,3-tetramethyl-7-nitro-1,11a-dihydro-3H,5H-benzooxazolo[3,4-a][1,4]diazepine-5,11-dione (3b)
Following GPB, (RS)-bisamide 2b (100 mg, 0.27 mmol), diisopropylamine (35 mg, 0.35 mmol) and n-BuLi (1.6 M in hexane, 20 mg, 0.32 mmol) were used. Column chromatography on silica gel (n-hexane/MTBE, 7:3; Rf = 0.40) provided 3b as a yellow solid (83 mg, 89%).
Mp 197–199 °C (CH2Cl2/n-hexane).
IR (ATR): 3114, 2987, 2942, 1694, 1643, 1612, 1528, 1444, 1342, 1257, 1189, 1124, 1091, 1003, 905, 845, 809, 708 cm–1.
1H NMR (500.1 MHz, CDCl3): δ = 8.72 (d, 4 J = 2.7 Hz, 1 H, o-CHArCO), 8.33 (dd, 3 J = 9.0 Hz, 4 J = 2.7 Hz, 1 H, p-CHArCO), 7.44 (d, 3 J = 9.0 Hz, 1 H, m-CHArCO), 4.18, 3.79 (2 dq, 2 J = 14.3 Hz, 3 J = 7.0 Hz, 2 H, CH2), 3.77 (s, 1 H, NCH), 1.84, 1.77, 1.59, 1.37 [4 s, 12 H, 2 × C(CH3)2], 1.19–1.16 (m, 3 H, CH2CH 3).
13C NMR (125.8 MHz, CDCl3): δ = 165.7 (CONCH), 161.6 (COCAr), 144.8 (CArNO2), 144.7 (CArN), 133.0 (COC Ar), 126.8 (p-CHArCO), 126.0 (o-CHArCO), 123.5 (m-CHArCO), 96.8 [C(CH3)2N], 80.5 [C(CH3)2CH], 63.0 (NCH), 44.4 (CH2), 30.9, 27.6, 26.3, 23.2 [2 × C(CH3)2], 13.5 (CH2 CH3).
MS (CI, isobutane): m/z (%) = 348.4 (100) [M + H]+.
HRMS (CI, isobutane): m/z [M + H]+ calcd for C17H22N3O5: 348.1559; found: 348.1562.
#
(RS)-10-(4-Chlorophenyl)-1,1-dimethyl-7-nitro-1,11a-dihydro-5H-spiro(benzothiazolo[3,4-a][1,4]diazepine-3,1′-cyclohexane)-5,11-dione (3d)
Following GPB, (RS)-bisamide 2c (200 mg, 0.40 mmol), diisopropylamine (53 mg, 0.52 mmol) and n-BuLi (1.6 M in hexane, 31 mg, 0.48 mmol) were used. Column chromatography on silica gel (n-hexane/EtOAc, 4:1; Rf = 0.46) provided 3c as a yellow solid (80 mg, 40%).
Mp 280–282 °C (CH2Cl2/n-hexane).
IR (ATR): 3084, 2928, 2851, 1708, 1650, 1522, 1491, 1341, 1260, 1222, 1122, 1091, 825, 801, 727 cm–1.
1H NMR (500.1 MHz, CDCl3): δ = 8.75 (d, 4 J = 2.7 Hz, 1 H, o-CHArCO), 8.16 (dd, 3 J = 9.0 Hz, 4 J = 2.7 Hz, 1 H, p-CHArCO), 7.44–7.42 (m, 2 H, 2 × m-CHArCl), 7.14–7.12 (m, 2 H, 2 × o-CHArCl), 6.95 (d, 3 J = 9.0 Hz, 1 H, m-CHArCO), 4.27 (s, 1 H, NCH), 3.30–3.24, 2.82–2.76, 2.02–2.00, 1.89–1.86, 1.77–1.73, 1.66–1.58, 1.34–1.21 (7 m, 10 H, 5 × CH2,Cy), 1.72, 1.63 (2 s, 6 H, 2 × CH3).
13C NMR (125.8 MHz, CDCl3): δ = 165.6 (CONCH), 163.0 (COCAr), 144.8 (CArNO2), 144.3 (p-CArNO2), 138.4 (p-CArCl), 134.6 (CArCl), 133.5 (COC Ar), 130.2 (2 × m-CHArCl), 129.8 (2 × o-CHArCl), 126.4 (p-CHArCO), 126.2 (o-CHArCO), 125.3 (m-CHArCO), 82.4 [C(CH2,Cy)5], 70.2 (NCH), 48.5 [C(CH3)2], 38.1, 36.5, 25.7, 25.1, 24.4 (5 × CH2,Cy), 34.7, 23.1 (2 × CH3).
MS (EI, 70 eV): m/z (%) = 485.2 (100) [M]+.
HRMS (EI, 70 eV): m/z [M]+ calcd for C24H24ClN3O4S: 485.1171; found: 485.1173.
#
(RS)-10-(4-Methoxybenzyl)-1,1-dimethyl-7-nitro-1,11a-dihydro-5H-spiro(benzooxazolo[3,4-a][1,4]diazepine-3,1′-cyclohexane)-5,11-dione (3e)
Following GPB, (RS)-bisamide 2e (200 mg, 0.40 mmol), diisopropylamine (53 mg, 0.52 mmol) and n-BuLi (1.6 M in hexane, 31 mg, 0.48 mmol) were used. Column chromatography on silica gel (CH2Cl2; Rf = 0.33) provided 3e as a yellow solid (88 mg, 45%).
Mp 78–80 °C (CH2Cl2/n-hexane).
IR (ATR): 3089, 2935, 2862, 1696, 1649, 1611, 1513, 1442, 1341, 1246, 1183, 1142, 1090, 1034, 910, 802, 729 cm–1.
1H NMR (500.1 MHz, CDCl3): δ = 8.65 (d, 4 J = 2.8 Hz, 1 H, o-CHArCO), 8.24 (dd, 3 J = 9.0 Hz, 4 J = 2.8 Hz, 1 H, p-CHArCO), 7.42 (d, 3 J = 9.0 Hz, 1 H, m-CHArCO), 7.01–6.99 (m, 2 H, 2 × m-CH ArOCH3), 6.78–6.75 (m, 2 H, 2 × o-CH ArOCH3), 5.31, 4.85 (2 d, 2 J = 15.3 Hz, 2 H, CH2N), 3.84 (s, 1 H, NCH), 3.73 (s, 3 H, OCH3), 2.79–2.73, 2.24–2.16, 1.78–1.62, 1.53–1.51, 1.33–1.24 (5 m, 10 H, 5 × CH2,Cy), 1.80, 1.37 [2 s, 6 H, C(CH3)2].
13C NMR (125.8 MHz, CDCl3): δ = 166.5 (CONCH), 161.6 (COCAr), 159.3 (C ArOCH3), 144.8 (CArNO2), 144.4 (p-CArNO2), 133.5 (COC Ar), 128.7 (2 × m-CHArOCH3), 127.9 (C ArCH2), 126.5 (p-CHArCO), 126.0 (o-CHArCO), 123.6 (m-CHArCO), 114.4 (2 × o-CHArOCH3), 98.8 [C(CH2,Cy)5], 80.2 [C(CH3)2], 63.0 (NCH), 55.3 (OCH3), 50.9 (CH2N), 34.9, 34.3, 24.6, 23.5, 23.0 (5 × CH2,Cy), 31.1, 23.6 [2 × C(CH3)2].
MS (ESI, TOF): m/z (%) = 502.2 (100) [M + Na]+.
HRMS (ESI, TOF): m/z [M + Na]+ calcd for C26H29N3NaO6: 502.1954; found: 502.1953.
#
(RS)-1,1-Dimethyl-7-nitro-10-phenethyl-1,11a-dihydro-5H-spiro(benzooxazolo[3,4-a][1,4]diazepine-3,1′-cyclohexane)-5,11-dione (3f)
Following GPB, (RS)-bisamide 2f (100 mg, 0.21 mmol), diisopropylamine (27 mg, 0.27 mmol) and n-BuLi (1.6 M in hexane, 16 mg, 0.25 mmol) were used. Column chromatography on silica gel (CH2Cl2; Rf = 0.29) provided 3f as a yellow solid (65 mg, 67%).
Mp 153–155 °C (CH2Cl2/n-hexane).
IR (ATR): 3086, 3029, 2933, 2860, 1696, 1651, 1524, 1440, 1342, 1142, 1091, 1036, 997, 911, 735, 700 cm–1.
1H NMR (500.1 MHz, CDCl3): δ = 8.69 (d, 4 J = 2.7 Hz, 1 H, o-CHArCO), 8.30 (dd, 3 J = 9.0 Hz, 4 J = 2.8 Hz, 1 H, p-CHArCO), 7.33 (d, 3 J = 9.0 Hz, 1 H, m-CHArCO), 7.24–7.21 (m, 2 H, 2 × o-CH ArCH2), 7.18–7.15 (m, 1 H, p-CH ArCH2), 7.05–7.04 (m, 2 H, 2 × m-CH ArCH2), 4.60 (dt, 2 J = 14.1 Hz, 3 J = 7.8 Hz, 1 H, CH2N), 3.88 (dt, 2 J = 14.1 Hz, 3 J = 7.0 Hz, 1 H, CH2N), 3.72 (s, 1 H, NCH), 2.84–2.81 (m, 2 H, CH2CAr), 2.76–2.70, 2.13–2.07, 1.75–1.60, 1.36–1.35, 1.29–1.25 (5 m, 10 H, 5 × CH2,Cy), 1.77, 1.34 (2 s, 6 H, 2 × CH3).
13C NMR (125.8 MHz, CDCl3): δ = 166.4 (CONCH), 161.4 (COCAr), 144.7 (CArNO2), 144.2 (p-CArNO2), 137.3 (C ArCH2), 133.5 (COC Ar), 128.9 (2 × m-CHArCH2), 128.8 (2 × o-CHArCH2), 126.9 (p-CHArCH2), 126.6 (p-CHArCO), 126.2 (o-CHArCO), 123.3 (m-CHArCO), 98.8 [C(CH2,Cy)5], 80.1 [C(CH3)2], 63.0 (NCH), 49.4 (CH2N), 34.8, 34.5, 24.6, 23.5, 22.9 (5 × CH2,Cy), 34.1 (CH2CAr), 31.1, 23.6 [2 × C(CH3)2].
MS (ESI, TOF): m/z (%) = 486.2 (100) [M + Na]+.
HRMS (ESI, TOF): m/z [M + Na]+ calcd for C26H29N3NaO5: 486.2005; found: 486.1994.
#
(RS)-10′-(Naphthalen-2-ylmethyl)-7′-nitrodispiro(cyclohexane-1,1′-benzothiazolo[3,4-a][1,4]diazepine-3′,1′′-cyclohexane)-5′,11′-dione (3g)
Following GPB, (RS)-bisamide 2g (576 mg, 1.00 mmol), diisopropylamine (132 mg, 1.30 mmol) and n-BuLi (1.6 M in hexane, 77 mg, 1.20 mmol) were used. Column chromatography on silica gel (n-hexane/MTBE, 1:1; Rf = 0.37) provided 3g as a colorless solid (395 mg, 71%).
Mp 168–170 °C (CH2Cl2/n-hexane).
IR (ATR): 3059, 2931, 2856, 1649, 1629, 1519, 1427, 1339, 1271, 1130, 1083, 1020, 817, 735 cm–1.
1H NMR (500.1 MHz, CDCl3): δ = 8.64 (d, 4 J = 2.7 Hz, 1 H, o-CHArCO), 8.23 (dd, 3 J = 9.0 Hz, 4 J = 2.8 Hz, 1 H, p-CHArCO), 7.78–7.71 (m, 3 H, 3 × CHAr), 7.59–7.57 (m, 1 H, CHAr), 7.47–7.42 (m, 3 H, 3 × CHAr), 7.19–7.17 (m, 1 H, CHAr), 5.48, 5.17 (2 d, 2 J = 15.5 Hz, 2 H, CH2N), 4.30 (s, 1 H, NCH), 3.21–3.15, 2.70–2.67, 2.64–2.59, 2.01–1.99, 1.90–1.78, 1.66–1.44, 1.36–1.19 (7 m, 20 H, 10 × CH2,Cy).
13C NMR (125.8 MHz, CDCl3): δ = 165.9 (CONCH), 163.0 (COCAr), 144.7 (CArNO2), 144.2 (p-CArNO2), 134.1 (COC Ar), 133.2, 133.2, 132.9 (3 × CAr), 129.0, 127.8, 126.6, 126.5, 126.3, 126.0, 124.8, 122.9 (10 × CHAr), 80.9 [C(CH2,Cy)5N], 68.8 (NCH), 54.6 [C(CH3)2CH], 51.4 (CH2N), 40.4, 38.2, 36.1, 34.7, 27.0, 25.5, 25.3, 24.6, 24.3, 22.5 (10 × CH2,Cy).
MS (EI, 70 eV): m/z (%) = 552.2 (100) [M]+.
HRMS (EI, 70 eV): m/z [M]+ calcd for C32H33N3O4S: 555.2192; found: 555.2184.
#
(RS)-10-Allyl-9-bromo-1,1,3,3-tetramethyl-7-nitro-1,11a-dihydro-3H,5H-benzothiazolo[3,4-a][1,4]diazepine-5,11-dione (3h)
Following GPB, (RS)-bisamide 2h (200 mg, 0.42 mmol), diisopropylamine (56 mg, 0.55 mmol) and n-BuLi (1.6 M in hexane, 32 mg, 0.50 mmol) were used. Column chromatography on silica gel (CH2Cl2/EtOAc, 9:1; Rf = 0.70) provided 3h as a pale yellow solid (68 mg, 36%).
Mp 204–206 °C (CH2Cl2/n-hexane).
IR (ATR): 3098, 3063, 2980, 2932, 1697, 1654, 1525, 1338, 1213, 1122, 1084, 918, 742, 720 cm–1.
1H NMR (500.1 MHz, CDCl3): δ = 8.65–8.61 (m, 2 H, o-CHArCO, p-CHArCO), 5.59–5.51 (m, 1 H, CH=CH2), 5.17–5.14, 5.12–5.10 (2 m, 2 H, CH=CH 2), 5.06–5.02, 4.07–4.02 (2 m, 2 H, CH2N), 3.96 (s, 1 H, NCH), 2.09, 1.83, 1.67, 1.58 (4 s, 12 H, 4 × CH3).
13C NMR (125.8 MHz, CDCl3): δ = 165.9 (CONCH), 162.0 (COCAr), 146.1 (CArNO2), 143.0 (p-CArNO2), 137.8 (COC Ar), 131.5 (CHAr), 130.3 (CH=CH2), 124.1 (CHAr), 121.3 (CH=CH2), 120.6 (CArBr), 74.8 [C(CH3)2N], 70.6 (NCH), 50.8 (CH2N), 48.9 [C(CH3)2CH], 34.7, 32.2, 28.5, 22.7 (4 × CH3).
MS (ESI, TOF): m/z (%) = 476.0 (97) [M + Na]+.
HRMS (ESI, TOF): m/z [M + Na]+ calcd for C18H20BrN3NaO4S: 476.0256; found: 476.0249.
#
(RS)-10-Allyl-9-bromo-1,1,3,3-tetramethyl-7-nitro-1,11a-dihydro-3H,5H-benzooxazolo[3,4-a][1,4]diazepine-5,11-dione (3i)
Following GPB, (RS)-bisamide 2i (200 mg, 0.44 mmol), diisopropylamine (58 mg, 0.57 mmol) and n-BuLi (1.6 M in hexane, 34 mg, 0.53 mmol) were used. Column chromatography on silica gel (CH2Cl2/EtOAc, 9:1; Rf = 0.63) provided 3i as a yellow solid (61 mg, 32%).
Mp 168–170 °C (CH2Cl2/n-hexane).
IR (ATR): 3077, 2968, 2933, 1697, 1658, 1525, 1438, 1371, 1341, 1189, 1081, 915, 809, 742, 707 cm–1.
1H NMR (500.1 MHz, CDCl3): δ = 8.68–8.63 (m, 2 H, o-CHArCO, p-CHArCO), 5.58–5.50 (m, 1 H, CH=CH2), 5.12–5.11, 5.10–5.09 (2 m, 2 H, CH=CH 2), 5.04–5.00, 4.00–3.96 (m, 2 H, CH2N), 3.71 (s, 1 H, NCH), 1.82, 1.78, 1.61, 1.36 (4 s, 12 H, 4 × CH3).
13C NMR (125.8 MHz, CDCl3): δ = 166.2 (CONCH), 160.9 (COCAr), 146.2 (CArNO2), 143.2 (p-CArNO2), 137.2 (COC Ar), 131.5 (CHAr), 130.3 (CH=CH2), 124.1 (CHAr), 121.0 (CH=CH2), 121.0 (CArBr), 97.1 [C(CH3)2N], 80.3 [C(CH3)2CH], 63.4 (NCH), 50.9 (CH2N), 30.9, 27.6, 26.0, 23.0 (4 × CH3).
MS (ESI, TOF): m/z (%) = 460.0 (100) [M + Na]+.
HRMS (ESI, TOF): m/z [M + Na]+ calcd for C18H20BrN3NaO5: 460.0484; found: 460.0478.
#
(RS)-9-Bromo-10-(4-methoxybenzyl)-1,1,3,3-tetramethyl-7-nitro-1,11a-dihydro-3H,5H-benzothiazolo[3,4-a][1,4]diazepine-5,11-dione (3j)
Following GPB, (RS)-bisamide 2j (200 mg, 0.36 mmol), diisopropylamine (48 mg, 0.47 mmol) and n-BuLi (1.6 M in hexane, 28 mg, 0.43 mmol) were used. Column chromatography on silica gel (CH2Cl2; Rf = 0.13) provided 3j as a yellow solid (80 mg, 42%).
Mp 189–190 °C (CH2Cl2/n-hexane).
IR (ATR): 3083, 2963, 2934, 1703, 1654, 1512, 1438, 1342, 1247, 1088, 1031, 808, 741, 723 cm–1.
1H NMR (499.9 MHz, CDCl3): δ = 8.65–8.61 (m, 2 H, o-CHArCO, p-CHArCO), 6.97–6.95 (m, 2 H, 2 × m-CH ArOCH3), 6.72–6.70 (m, 2 H, 2 × o-CH ArOCH3), 5.44, 4.52 (2 d, 2 J = 14.5 Hz, 2 H, CH2), 3.92 (s, 1 H, NCH), 3.71 (s, 3 H, OCH3), 1.97, 1.66, 1.53, 1.20 [4 s, 12 H, 2 × C(CH3)2].
13C NMR (125.7 MHz, CDCl3): δ = 165.5 (CONCH), 161.6 (COCAr), 159.8 (C ArOCH3), 146.0 (CArNO2), 143.6 (p-CArNO2), 137.8 (COC Ar), 131.5 (CHAr), 130.7 (2 × m-CHArOCH3), 126.9 (C ArCH2), 124.1 (CHAr), 120.6 (CArBr), 114.2 (2 × o-CHArOCH3), 74.8 [C(CH3)2N], 70.5 (NCH), 55.4 (OCH3), 52.1 (CH2), 48.8 [C(CH3)2CH], 34.7, 32.1, 27.6, 22.6 [2 × C(CH3)2].
MS (ESI, TOF): m/z (%) = 556.1 (95) [M + Na]+.
HRMS (ESI, TOF): m/z [M + Na]+ calcd for C23H24BrN3NaO5S: 556.0518; found: 556.0516.
#
#
Acknowledgment
We are thankful to the Central analytic section of the University of Oldenburg for retrieving NMR and MS data.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org.accesdistant.sorbonne-universite.fr/10.1055/s-0035-1562457.
- Supporting Information
-
References
- 1a Koblish HK, Zhao S. Mol. Cancer Ther. 2006; 5: 160
- 1b Kuno F, Otoguro K, Shiomi K, Iwai Y, Omura S. J. Antibiot. 1996; 49: 742
- 1c Mohamed LW, El-Yamany MF. Arch. Pharm. Res. 2012; 35: 1369
- 2 Parks DJ, LaFrance LV, Calvo RR, Milkiewicz KL, Gupta V, Lattanze J, Ramachandren K, Carver TE, Petrella EC, Cummings MD, Maguire D, Grasberger BL, Lu T. Bioorg. Med. Chem. Lett. 2005; 15: 765
- 3 Kalinski C, Umkehrer M, Ross G, Kolb J, Burdack C, Hiller W. Tetrahedron Lett. 2006; 47: 3423
- 4 Smits G, Zemribo R. Synlett 2015; 26: 2272
- 5a Tempest P, Ma V, Thomas S, Hua Z, Kelly MG, Hulme C. Tetrahedron Lett. 2001; 42: 4959
- 5b Tempest P, Ma V, Kelly MG, Jones W, Hulme C. Tetrahedron Lett. 2001; 42: 4963
- 5c Kalinski C, Umkehrer M, Gonnard S, Jäger N, Ross G, Hiller W. Tetrahedron Lett. 2006; 47: 2041
- 5d Xu Z, De Moliner F, Cappelli AP, Hulme C. Org. Lett. 2013; 15: 2738
- 7a Colombo M, Peretto I. Drug Discovery Today 2008; 13: 677
- 7b Slobbe P, Ruijter E, Orru RV. A. Med. Chem. Commun. 2012; 3: 1189
- 7c Dömling A, Wang W, Wang K. Chem. Rev. 2012; 112: 3083
- 7d van der Heijden G, Ruijter E, Orru RV. A. Synlett 2013; 24: 666
- 7e Dömling A, Zarganes-Tzitzikas T. Org. Chem. Front. 2014; 1: 834
- 7f Hulme C, Ayaz M, Martinez-Ariza G, Medda F, Shaw A In Small Molecule Medicinal Chemistry: Strategies and Technologies . Czechtizky W, Hamley P. Wiley; Weinheim: 2015. Chap. 6
- 7g Gollner A. Synlett 2015; 26: 426
- 8a Dömling A. Chem. Rev. 2006; 106: 17
- 8b Huang Y, Dömling A In Isocyanide Chemistry: Applications in Synthesis and Material Science . Nenajdenko VG. Wiley-VCH; Weinheim: 2012. Chap. 12
- 9 Asinger F. Angew. Chem. 1956; 68: 376
- 10 Weigert WM, Offermanns H, Degussa PS. Angew. Chem., Int. Ed. Engl. 1975; 14: 330
- 11 Martens J, Offermanns H, Scherberich P. Angew. Chem., Int. Ed. Engl. 1981; 20: 668
- 12 Weber M, Jakob J, Martens J. Liebigs Ann. Chem. 1992; 1
- 13 Liu Z.-Q. Curr. Org. Synth. 2015; 12: 20
- 14a Ugi I, Meyer R, Fetzer U, Steinbrückner C. Angew. Chem. 1959; 71: 386
- 14b Ugi I. Angew. Chem., Int. Ed. Engl. 1962; 1: 8
- 14c Ugi I, Wischhöfer E. Chem. Ber. 1962; 95: 136
- 15a Kintscher J, Martens J. Synthesis 1992; 837
- 15b Hatam M, Tehranfar D, Martens J. Synth. Commun. 1995; 25: 1677
- 15c Brockmeyer F, Kröger D, Stalling T, Schwäblein A, Martens J. Helv. Chim. Acta 2012; 95: 1857
- 16 Stalling T, Pauly J, Kröger D, Martens J. Tetrahedron 2015; 71: 8290
- 17 Kröger D, Schlüter T, Fischer M, Geibel I, Martens J. ACS Comb. Sci. 2015; 17: 202
- 18a Van Berkel SS, Bögels BG. M, Wijdeven MA, Westermann B, Rutjes FP. J. T. Eur. J. Org. Chem. 2012; 3543
- 18b Banfi L, Riva R, Basso A. Synlett 2010; 23
- 18c Brockmeyer F, van Gerven D, Saak W, Martens J. Synthesis 2014; 46: 1603
- 19 Fulmer GR, Miller AJ. M, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, Bercaw JE, Goldberg KI. Organometallics 2010; 29: 2176
- 20 Guirado A, Zapata A, Gómez JL, Trabalón L, Gálvez J. Tetrahedron 1999; 55: 9631
- 21 Herman LW, Sharma W, Kronauge JF, Barbarics E, Herman LA, Piwnica-Worms D. J. Med. Chem. 1995; 38: 2955
For selected examples, see:
-
References
- 1a Koblish HK, Zhao S. Mol. Cancer Ther. 2006; 5: 160
- 1b Kuno F, Otoguro K, Shiomi K, Iwai Y, Omura S. J. Antibiot. 1996; 49: 742
- 1c Mohamed LW, El-Yamany MF. Arch. Pharm. Res. 2012; 35: 1369
- 2 Parks DJ, LaFrance LV, Calvo RR, Milkiewicz KL, Gupta V, Lattanze J, Ramachandren K, Carver TE, Petrella EC, Cummings MD, Maguire D, Grasberger BL, Lu T. Bioorg. Med. Chem. Lett. 2005; 15: 765
- 3 Kalinski C, Umkehrer M, Ross G, Kolb J, Burdack C, Hiller W. Tetrahedron Lett. 2006; 47: 3423
- 4 Smits G, Zemribo R. Synlett 2015; 26: 2272
- 5a Tempest P, Ma V, Thomas S, Hua Z, Kelly MG, Hulme C. Tetrahedron Lett. 2001; 42: 4959
- 5b Tempest P, Ma V, Kelly MG, Jones W, Hulme C. Tetrahedron Lett. 2001; 42: 4963
- 5c Kalinski C, Umkehrer M, Gonnard S, Jäger N, Ross G, Hiller W. Tetrahedron Lett. 2006; 47: 2041
- 5d Xu Z, De Moliner F, Cappelli AP, Hulme C. Org. Lett. 2013; 15: 2738
- 7a Colombo M, Peretto I. Drug Discovery Today 2008; 13: 677
- 7b Slobbe P, Ruijter E, Orru RV. A. Med. Chem. Commun. 2012; 3: 1189
- 7c Dömling A, Wang W, Wang K. Chem. Rev. 2012; 112: 3083
- 7d van der Heijden G, Ruijter E, Orru RV. A. Synlett 2013; 24: 666
- 7e Dömling A, Zarganes-Tzitzikas T. Org. Chem. Front. 2014; 1: 834
- 7f Hulme C, Ayaz M, Martinez-Ariza G, Medda F, Shaw A In Small Molecule Medicinal Chemistry: Strategies and Technologies . Czechtizky W, Hamley P. Wiley; Weinheim: 2015. Chap. 6
- 7g Gollner A. Synlett 2015; 26: 426
- 8a Dömling A. Chem. Rev. 2006; 106: 17
- 8b Huang Y, Dömling A In Isocyanide Chemistry: Applications in Synthesis and Material Science . Nenajdenko VG. Wiley-VCH; Weinheim: 2012. Chap. 12
- 9 Asinger F. Angew. Chem. 1956; 68: 376
- 10 Weigert WM, Offermanns H, Degussa PS. Angew. Chem., Int. Ed. Engl. 1975; 14: 330
- 11 Martens J, Offermanns H, Scherberich P. Angew. Chem., Int. Ed. Engl. 1981; 20: 668
- 12 Weber M, Jakob J, Martens J. Liebigs Ann. Chem. 1992; 1
- 13 Liu Z.-Q. Curr. Org. Synth. 2015; 12: 20
- 14a Ugi I, Meyer R, Fetzer U, Steinbrückner C. Angew. Chem. 1959; 71: 386
- 14b Ugi I. Angew. Chem., Int. Ed. Engl. 1962; 1: 8
- 14c Ugi I, Wischhöfer E. Chem. Ber. 1962; 95: 136
- 15a Kintscher J, Martens J. Synthesis 1992; 837
- 15b Hatam M, Tehranfar D, Martens J. Synth. Commun. 1995; 25: 1677
- 15c Brockmeyer F, Kröger D, Stalling T, Schwäblein A, Martens J. Helv. Chim. Acta 2012; 95: 1857
- 16 Stalling T, Pauly J, Kröger D, Martens J. Tetrahedron 2015; 71: 8290
- 17 Kröger D, Schlüter T, Fischer M, Geibel I, Martens J. ACS Comb. Sci. 2015; 17: 202
- 18a Van Berkel SS, Bögels BG. M, Wijdeven MA, Westermann B, Rutjes FP. J. T. Eur. J. Org. Chem. 2012; 3543
- 18b Banfi L, Riva R, Basso A. Synlett 2010; 23
- 18c Brockmeyer F, van Gerven D, Saak W, Martens J. Synthesis 2014; 46: 1603
- 19 Fulmer GR, Miller AJ. M, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, Bercaw JE, Goldberg KI. Organometallics 2010; 29: 2176
- 20 Guirado A, Zapata A, Gómez JL, Trabalón L, Gálvez J. Tetrahedron 1999; 55: 9631
- 21 Herman LW, Sharma W, Kronauge JF, Barbarics E, Herman LA, Piwnica-Worms D. J. Med. Chem. 1995; 38: 2955
For selected examples, see:


































