Subscribe to RSS
DOI: 10.1055/s-0034-1379213
A Highly Efficient Synthesis of 2,5-Disubstituted Furans from Enyne Acetates Catalyzed by Lewis Acid and Palladium
Publication History
Received: 02 June 2014
Accepted after revision: 11 July 2014
Publication Date:
08 September 2014 (online)
Abstract
A highly efficient synthesis of a wide range of 2,5-disubstituted furans from enyne acetates is described. The reactions are conducted by using Lewis acid and palladium catalyst and provide symmetrical and unsymmetrical products in good to excellent yields, with broad substrate scope, including a variety of aromatic and aliphatic substituents in the 2- and 5-position of the furan ring.
#
Furans are one of the most important classes of five-membered heterocycle compounds, and they are found as key structural units in many natural products, pharmaceuticals, and agrochemicals.[1] Substituted furans are also used as building blocks in organic synthesis and material science.[2] The classical approach to furan synthesis is the Paal–Knorr method, in which 1,4-dicarbonyl compounds are converted into furan derivatives.[3] As an alternative to classical furan synthesis, several studies have focused on the development of metal-catalyzed synthesis of furans employing acyclic precursors. These include the cyclization of alkynyl,[4] allenyl,[5] cyclopropenyl,[6] and cyclopropyl[7] ketone derivatives. Alternative strategies involve the cyclization of alkynols,[8] substituted oxiranes,[9] functionalized propargyl vinyl ethers,[10] enynediones,[11] 1,3-diynes,[12] and other substrates.[13]
2,5-Disubstituted furans are important substructures in various drugs and drug candidates.[14] Although a variety of well-established methods have proven to be very effective for the synthesis of 2,5-disubstituted furans,[12] [15] the search for efficient routes to substituted furans with flexible substituent patterns is an important goal of organic synthesis. Very recently, we reported a convenient and expedient method for the synthesis of 2,5-disubstituted 3-iodofurans through electrophilic iodocyclization of enyne acetates.[16] As a part of our continuing interest in the construction of furan derivatives, here we report a synthesis of 2,5-disubstituted furans from enyne acetates that is catalyzed by Lewis acid and palladium and is carried out in the presence of water (Scheme [1]). The approach is convenient for the construction of both symmetrical and unsymmetrical 2,5-disubstituted furans in good yields with broad functional group compatibilities.


Initial efforts focused on establishing efficient catalysts and suitable reaction conditions in acetonitrile, with enyne acetate 1a as the model substrate. As shown in Table [1], the reaction did not proceed without catalyst (Table [1], entry 1). Several commonly used metal salts were tested as the catalyst to conduct this reaction and found that whereas iron and silver salts were inactive for the transformation (entries 2 and 3), copper and palladium salts could both smoothly promote the transformation, with palladium acetate being the most efficient (entries 4–10). Previous work on furan synthesis have shown that Lewis or Brønsted acid favored triple bond activation, thus promoting subsequent oxygen attack on the triple bond. Different additives were therefore tried, and we were pleased to find that the inclusion of such acids did promote the reaction. Indeed, furan 2a was obtained in high conversions and yields when additives were used under the developed conditions (entries 11–14). Compared with Brønsted acid, Lewis acids were more beneficial to the transformation, and BF3·OEt2 was found to be the most suitable additive (entry 14). A control experiment showed that the catalyst was necessary in the present process (entry 15). We then screened the effect of solvent on this reaction, and showed that solvents played an important role in the outcome of the reaction (entries 17–23). Among the solvents used, MeNO2 was established as the solvent of choice for the reaction (entry 22). We considered that the optimized reaction conditions are as follows: 1a (0.25 mmol), H2O (1 equiv), Pd(OAc)2 (5 mol%), BF3·OEt2 (30 mol%), and MeNO2 at 80 °C for 10 h (entry 22).
a Reaction conditions: 1a (0.25 mmol), catalyst (5 mol%), additive (30 mol%), H2O (1 equiv), and solvent (0.5 mL), 80 °C, 10 h.
b Determined by GC analysis.
c Determined by GC analysis. Isolated yield of 2a given in parentheses.
With the optimized conditions in hand, we next focused on the scope of the reaction (Scheme [2]). In general, all of the substrates tested could form the corresponding 2,5-disubstituted furans in good to excellent yields. Substitution at the 2-position of the aromatic ring reduced the yields slightly (2h, 2j, and 2s). The reaction conditions were compatible with alkyl, alkyloxy, aryl, fluoro, chloro, bromo, and trifluoromethyl groups (2b–u). Initially, a set of substituents at the terminal alkyne moiety were evaluated in the standard conditions (2b–j). Substrates with either electron-donating or electron-withdrawing groups on the benzene ring could be used to generate the corresponding products (2b–j). A substrate with the bulky tert-butyl group afforded the product in 85% yield (2d). The presence of a CF3 group on the 2-position of benzene ring led to prolonged reaction time (2j). It should be pointed out that carbon–halogen bonds were well tolerated and the products containing halogen groups were afforded smoothly. Especially, the aryl chloride could be further functionalized (2i). Alkynes bearing aliphatic substituents were compatible with the reaction system (2k and 2l). We then evaluated the R1 groups on the double bond under the standard conditions (2m–u). Substrates with either electron-rich groups (methyl and methoxy) or the electron-deficient group (fluoro) attached to the benzene ring could produce the 2,5-disubstituted furans in satisfactory yields (2m–s). Gratifying, the standard conditions were compatible with the cyclohexyl group and gave the desired product in 83% yield (2u).


A possible mechanism was proposed as outlined in Scheme [3] on the basis of the reported mechanism[17] and the present results. First, triple-bond coordination to Pd(II) occurs to give a π-complex A. The nucleophilic oxygen then attacks the Pd-activated triple bond to give 3-furylpalladium intermediate B. Finally, B undergoes protodepalladation to afford 2,5-disubstituted furans 2. We supposed that Lewis acid could promote the substrate deacylation in situ in the presence of water, favoring the cyclization step.


In conclusion, we have presented a general and facile method for the synthesis of 2,5-disubstituted furans from enyne acetates, which can be prepared from terminal alkynes.[18] The approach is convenient for the construction of both symmetrical and unsymmetrical products in good to excellent yield. The results also indicate that the Lewis acid/palladium catalyzed cyclization reaction tolerates a wide range of functional groups. Further synthetic applications and studies of the mechanism of the reaction are underway in our laboratory.
#
Acknowledgment
The authors thank the NSFC (21202023 and 21162001), NSF of Jiangxi Province (20114BAB213006) and Gannan Normal University for financial support.
Supporting Information
- for this article is available online at http://www.thieme-connect.com.accesdistant.sorbonne-universite.fr/products/ejournals/journal/
10.1055/s-00000083.
- Supporting Information
-
References and Notes
- 1a Hou XL, Cheung HY, Hon TY, Kwan PL, Lo TH, Tong SY, Wong HN. C. Tetrahedron 1998; 54: 1955
- 1b Donohoe TJ, Ironmonger A, Kershaw NM. Angew. Chem. Int. Ed. 2008; 47: 7314
- 1c Kirsch SF. Org. Biomol. Chem. 2006; 4: 2076
- 2a Gulevich AV, Dudnik AS, Chernyak N, Gevorgyan V. Chem. Rev. 2013; 113: 3084
- 2b Brown RC. D. Angew. Chem. Int. Ed. 2005; 44: 850
- 2c Keay BA. Chem. Soc. Rev. 1999; 28: 209
- 2d Jeevanandam A, Ghule A, Ling YC. Curr. Org. Chem. 2002; 6: 841
- 3 For the Paal–Knorr synthesis, see: Minetto G, Raveglia LF, Sega A, Taddei M. Eur. J. Org. Chem. 2005; 5277 ; and references cited therein
- 4a Dudnik AS, Sromek AW, Rubina M, Kim JT, Kel’in AV, Gevorgyan V. J. Am. Chem. Soc. 2008; 130: 1440
- 4b Yao T, Zhang X, Larock RC. J. Am. Chem. Soc. 2004; 126: 11164
- 4c Sniady A, Durham A, Morreale MS, Wheeler KA, Dembinski R. Org. Lett. 2007; 9: 1175
- 4d Xiao Y, Zhang J. Angew. Chem. Int. Ed. 2008; 47: 1903
- 4e Sromek AW, Kel’in AV, Gevorgyan V. Angew. Chem. Int. Ed. 2004; 43: 2280
- 4f Umland K.-D, Palisse A, Haug TT, Kirsch SF. Angew. Chem. Int. Ed. 2011; 50: 9965
- 4g Zhang J, Schmalz H.-G. Angew. Chem. Int. Ed. 2006; 45: 6704
- 4h Liu F, Qian D, Li L, Zhao X, Zhang J. Angew. Chem. Int. Ed. 2010; 49: 6669
- 4i Liu R, Zhang J. Chem. Asian J. 2012; 7: 294
- 4j Gao H, Wu X, Zhang J. Chem. Eur. J. 2011; 17: 2838
- 5a Schwier T, Sromek AW, Yap DM. L, Chernyak D, Gevorgyan V. J. Am. Chem. Soc. 2007; 129: 9868
- 5b Dudnik AS, Xia Y, Li Y, Gevorgyan V. J. Am. Chem. Soc. 2010; 132: 7645
- 5c Sromek AW, Rubina M, Gevorgyan V. J. Am. Chem. Soc. 2005; 127: 10500
- 5d Dudnik AS, Gevorgyan V. Angew. Chem. Int. Ed. 2007; 46: 5195
- 5e Li Y, Brand JP, Waser J. Angew. Chem. Int. Ed. 2013; 52: 6743
- 5f Peng L, Zhang X, Ma M, Wang J. Angew. Chem. Int. Ed. 2007; 46: 1905
- 5g Ma S, Yu Z. Angew. Chem. Int. Ed. 2002; 41: 1775
- 6a Rubin M, Rubina M, Gevorgyan V. Chem. Rev. 2007; 107: 3117
- 6b Ma S, Zhang J. J. Am. Chem. Soc. 2003; 125: 12386
- 7a Ma S, Lu L, Zhang J. J. Am. Chem. Soc. 2004; 126: 9645
- 7b Zhang G, Huang X, Li G, Zhang L. J. Am. Chem. Soc. 2008; 130: 1814
- 7c Ma S, Zhang J. Angew. Chem. Int. Ed. 2003; 42: 183
- 8a Nishibayashi Y, Yoshikawa M, Inada Y, Milton MD, Hidai M, Uemura S. Angew. Chem. Int. Ed. 2003; 42: 2681
- 8b Lenden P, Entwistle DA, Willis MC. Angew. Chem. Int. Ed. 2011; 50: 10657
- 8c Gabriele B, Mancuso R, Maltese V, Veltri L, Salerno G. J. Org. Chem. 2012; 77: 8657
- 8d Gabriele B, Veltri L, Plastina P, Mancuso R, Vetere MV, Maltese V. J. Org. Chem. 2013; 78: 4919
- 8e Gabriele B, Salerno G, Lauria E. J. Org. Chem. 1999; 64: 7687
- 8f Wang T, Chen X, Chen L, Zhan Z. Org. Lett. 2011; 13: 3324
- 9a Shu X.-Z, Liu X.-Y, Xiao H.-Q, Ji K.-G, Guo L.-N, Qi C.-Z, Liang Y.-M. Adv. Synth. Catal. 2007; 349: 2493
- 9b Blanc A, Tenbrink K, Wiebel J.-M, Pale P. J. Org. Chem. 2009; 74: 4360
- 9c Hashmi AS. K, Sinha P. Adv. Synth. Catal. 2004; 346: 432
- 10a Suhre MH, Reif M, Kirsch SF. Org. Lett. 2005; 7: 3925
- 10b Tejedor D, Cotos L, García-Tellado F. Org. Lett. 2011; 13: 4422
- 10c Cao H, Jiang H, Yao W, Liu X. Org. Lett. 2009; 11: 1931
- 10d Cao H, Jiang H, Mai R, Zhu S, Qi C. Adv. Synth. Catal. 2010; 352: 143
- 10e Cao H, Jiang H, Yuan G, Chen Z, Qi C, Huang H. Chem. Eur. J. 2010; 16: 10553
- 10f Jiang H, Yao W, Cao H, Huang H, Cao D. J. Org. Chem. 2010; 75: 5347
- 11a Clark JS, Boyer A, Aimon A, Gurcía PE, Lindsay DM, Symington AD. F, Danoy Y. Angew. Chem. Int. Ed. 2012; 51: 12128
- 11b González J, González J, Pérez-Calleja C, López LA, Vicente R. Angew. Chem. Int. Ed. 2013; 52: 5853
- 11c Vicente R, González J, Riesgo L, González J, Lopez LA. Angew. Chem. Int. Ed. 2012; 51: 8063
- 11d Cao H, Zhan H, Cen J, Lin J, Lin Y, Zhu Q, Fu M, Jiang H. Org. Lett. 2013; 15: 1080
- 12a Jiang H, Zeng W, Li Y, Wu W, Huang L, Fu W. J. Org. Chem. 2012; 77: 5179
- 12b Num P, Dupuy S, Gaillard S, Poater A, Cavallo L, Nolan SP. Catal. Sci. Technol. 2011; 1: 58
- 12c Zheng Q, Hua R, Yin T. Curr. Org. Synth. 2013; 10: 161
- 12d Wang Y.-H, Liu H, Zhu L.-L, Li X.-X, Chen Z. Adv. Synth. Catal. 2011; 353: 707
- 12e Kramer S, Madsen JL. H, Rottländer M, Skrydstrup T. Org. Lett. 2010; 12: 2758
- 13a Cui X, Xu X, Wojtas L, Kim MM, Zhang XP. J. Am. Chem. Soc. 2012; 134: 19981
- 13b He C, Guo S, Ke J, Hao J, Xu H, Chen H, Lei A. J. Am. Chem. Soc. 2012; 134: 5766
- 13c Yeh M.-CP, Lin M.-N, Hsu C.-H, Liang C.-J. J. Org. Chem. 2013; 78: 12381
- 13d Okamoto N, Yanada R. J. Org. Chem. 2012; 77: 3944
- 13e Yang Y, Yao J, Zhang Y. Org. Lett. 2013; 15: 3206
- 13f Li J, Liu L, Ding D, Sun J, Ji Y, Dong J. Org. Lett. 2013; 15: 2884
- 13g Butkevich AN, Meerpoel L, Stansfield I, Angibaud P, Corbu A, Cossy J. Org. Lett. 2013; 15: 3840
- 13h Jiang H, Cheng Y, Zhang Y, Yu S. Org. Lett. 2013; 15: 4884
- 13i Zheng M, Huang L, Wu W, Jiang H. Org. Lett. 2013; 15: 1838
- 13j Zheng X, Lu S, Li Z. Org. Lett. 2013; 15: 5432
- 13k Kramer S, Skrydstrup T. Angew. Chem. Int. Ed. 2012; 51: 4681
- 13l Huang X, Peng B, Luparia M, Gomes LF. R, Veiros LF, Maulide N. Angew. Chem. Int. Ed. 2012; 51: 8886
- 14 Schmidt B, Geißler D. Eur. J. Org. Chem. 2011; 4814 ; and references cited therein
- 15a Zhang M, Jiang H.-F, Neumann H, Beller M, Dixneuf PH. Angew. Chem. Int. Ed. 2009; 48: 1681
- 15b Dheur J, Sauthier M, Castanet Y, Mortreux A. Adv. Synth. Catal. 2010; 352: 557
- 15c Chang S, Desai S, Leznoff DB, Merbouh N, Britton R. Eur. J. Org. Chem. 2013; 3219
- 15d Pridmore SJ, Slatford PA, Williams JM. J. Tetrahedron Lett. 2007; 48: 5111
- 15e Kel’in AV, Gevorgyan V. J. Org. Chem. 2002; 67: 95
- 15f Donohoe TJ, Fishlock LP, Lacy AR, Procopiou PA. Org. Lett. 2007; 9: 953
- 16a Chen Z, Li J, Jiang H, Zhu S, Li Y, Qi C. Org. Lett. 2010; 12: 3262
- 16b Chen Z, Huang G, Jiang H, Huang H, Pan X. J. Org. Chem. 2011; 76: 1134
- 17 Fukuda Y, Shiragami H, Utimoto K, Nozaki H. J. Org. Chem. 1991; 56: 5816
- 18 Preparation of 2,5-Disubstituted Furans from Enyne Acetates; Typical Procedure: To a mixture of (Z)-1,4-diphenylbut-1-en-3-yn-1-yl acetate (1a; 0.25 mmol) and MeNO2 (1.0 mL), Pd(OAc)2 (5 mol%), BF3·OEt2 (30 mol%), and H2O (1 equiv) were added. The mixture was stirred at 80 °C for 10 h, then H2O (10 mL) was added and the solution was extracted with EtOAc (3 × 8 mL). The combined extract was dried with anhydrous MgSO4, the solvent was removed, and the residue was separated by column chromatography (petroleum ether–EtOAc, 30:1) to give the desired product 2a.
For selected recent examples, see:
For selected recent examples, see:
For selected recent examples, see:
For selected recent examples, see:
For selected recent examples, see:
For selected recent examples, see:
For selected recent examples, see:
For selected recent examples, see:
-
References and Notes
- 1a Hou XL, Cheung HY, Hon TY, Kwan PL, Lo TH, Tong SY, Wong HN. C. Tetrahedron 1998; 54: 1955
- 1b Donohoe TJ, Ironmonger A, Kershaw NM. Angew. Chem. Int. Ed. 2008; 47: 7314
- 1c Kirsch SF. Org. Biomol. Chem. 2006; 4: 2076
- 2a Gulevich AV, Dudnik AS, Chernyak N, Gevorgyan V. Chem. Rev. 2013; 113: 3084
- 2b Brown RC. D. Angew. Chem. Int. Ed. 2005; 44: 850
- 2c Keay BA. Chem. Soc. Rev. 1999; 28: 209
- 2d Jeevanandam A, Ghule A, Ling YC. Curr. Org. Chem. 2002; 6: 841
- 3 For the Paal–Knorr synthesis, see: Minetto G, Raveglia LF, Sega A, Taddei M. Eur. J. Org. Chem. 2005; 5277 ; and references cited therein
- 4a Dudnik AS, Sromek AW, Rubina M, Kim JT, Kel’in AV, Gevorgyan V. J. Am. Chem. Soc. 2008; 130: 1440
- 4b Yao T, Zhang X, Larock RC. J. Am. Chem. Soc. 2004; 126: 11164
- 4c Sniady A, Durham A, Morreale MS, Wheeler KA, Dembinski R. Org. Lett. 2007; 9: 1175
- 4d Xiao Y, Zhang J. Angew. Chem. Int. Ed. 2008; 47: 1903
- 4e Sromek AW, Kel’in AV, Gevorgyan V. Angew. Chem. Int. Ed. 2004; 43: 2280
- 4f Umland K.-D, Palisse A, Haug TT, Kirsch SF. Angew. Chem. Int. Ed. 2011; 50: 9965
- 4g Zhang J, Schmalz H.-G. Angew. Chem. Int. Ed. 2006; 45: 6704
- 4h Liu F, Qian D, Li L, Zhao X, Zhang J. Angew. Chem. Int. Ed. 2010; 49: 6669
- 4i Liu R, Zhang J. Chem. Asian J. 2012; 7: 294
- 4j Gao H, Wu X, Zhang J. Chem. Eur. J. 2011; 17: 2838
- 5a Schwier T, Sromek AW, Yap DM. L, Chernyak D, Gevorgyan V. J. Am. Chem. Soc. 2007; 129: 9868
- 5b Dudnik AS, Xia Y, Li Y, Gevorgyan V. J. Am. Chem. Soc. 2010; 132: 7645
- 5c Sromek AW, Rubina M, Gevorgyan V. J. Am. Chem. Soc. 2005; 127: 10500
- 5d Dudnik AS, Gevorgyan V. Angew. Chem. Int. Ed. 2007; 46: 5195
- 5e Li Y, Brand JP, Waser J. Angew. Chem. Int. Ed. 2013; 52: 6743
- 5f Peng L, Zhang X, Ma M, Wang J. Angew. Chem. Int. Ed. 2007; 46: 1905
- 5g Ma S, Yu Z. Angew. Chem. Int. Ed. 2002; 41: 1775
- 6a Rubin M, Rubina M, Gevorgyan V. Chem. Rev. 2007; 107: 3117
- 6b Ma S, Zhang J. J. Am. Chem. Soc. 2003; 125: 12386
- 7a Ma S, Lu L, Zhang J. J. Am. Chem. Soc. 2004; 126: 9645
- 7b Zhang G, Huang X, Li G, Zhang L. J. Am. Chem. Soc. 2008; 130: 1814
- 7c Ma S, Zhang J. Angew. Chem. Int. Ed. 2003; 42: 183
- 8a Nishibayashi Y, Yoshikawa M, Inada Y, Milton MD, Hidai M, Uemura S. Angew. Chem. Int. Ed. 2003; 42: 2681
- 8b Lenden P, Entwistle DA, Willis MC. Angew. Chem. Int. Ed. 2011; 50: 10657
- 8c Gabriele B, Mancuso R, Maltese V, Veltri L, Salerno G. J. Org. Chem. 2012; 77: 8657
- 8d Gabriele B, Veltri L, Plastina P, Mancuso R, Vetere MV, Maltese V. J. Org. Chem. 2013; 78: 4919
- 8e Gabriele B, Salerno G, Lauria E. J. Org. Chem. 1999; 64: 7687
- 8f Wang T, Chen X, Chen L, Zhan Z. Org. Lett. 2011; 13: 3324
- 9a Shu X.-Z, Liu X.-Y, Xiao H.-Q, Ji K.-G, Guo L.-N, Qi C.-Z, Liang Y.-M. Adv. Synth. Catal. 2007; 349: 2493
- 9b Blanc A, Tenbrink K, Wiebel J.-M, Pale P. J. Org. Chem. 2009; 74: 4360
- 9c Hashmi AS. K, Sinha P. Adv. Synth. Catal. 2004; 346: 432
- 10a Suhre MH, Reif M, Kirsch SF. Org. Lett. 2005; 7: 3925
- 10b Tejedor D, Cotos L, García-Tellado F. Org. Lett. 2011; 13: 4422
- 10c Cao H, Jiang H, Yao W, Liu X. Org. Lett. 2009; 11: 1931
- 10d Cao H, Jiang H, Mai R, Zhu S, Qi C. Adv. Synth. Catal. 2010; 352: 143
- 10e Cao H, Jiang H, Yuan G, Chen Z, Qi C, Huang H. Chem. Eur. J. 2010; 16: 10553
- 10f Jiang H, Yao W, Cao H, Huang H, Cao D. J. Org. Chem. 2010; 75: 5347
- 11a Clark JS, Boyer A, Aimon A, Gurcía PE, Lindsay DM, Symington AD. F, Danoy Y. Angew. Chem. Int. Ed. 2012; 51: 12128
- 11b González J, González J, Pérez-Calleja C, López LA, Vicente R. Angew. Chem. Int. Ed. 2013; 52: 5853
- 11c Vicente R, González J, Riesgo L, González J, Lopez LA. Angew. Chem. Int. Ed. 2012; 51: 8063
- 11d Cao H, Zhan H, Cen J, Lin J, Lin Y, Zhu Q, Fu M, Jiang H. Org. Lett. 2013; 15: 1080
- 12a Jiang H, Zeng W, Li Y, Wu W, Huang L, Fu W. J. Org. Chem. 2012; 77: 5179
- 12b Num P, Dupuy S, Gaillard S, Poater A, Cavallo L, Nolan SP. Catal. Sci. Technol. 2011; 1: 58
- 12c Zheng Q, Hua R, Yin T. Curr. Org. Synth. 2013; 10: 161
- 12d Wang Y.-H, Liu H, Zhu L.-L, Li X.-X, Chen Z. Adv. Synth. Catal. 2011; 353: 707
- 12e Kramer S, Madsen JL. H, Rottländer M, Skrydstrup T. Org. Lett. 2010; 12: 2758
- 13a Cui X, Xu X, Wojtas L, Kim MM, Zhang XP. J. Am. Chem. Soc. 2012; 134: 19981
- 13b He C, Guo S, Ke J, Hao J, Xu H, Chen H, Lei A. J. Am. Chem. Soc. 2012; 134: 5766
- 13c Yeh M.-CP, Lin M.-N, Hsu C.-H, Liang C.-J. J. Org. Chem. 2013; 78: 12381
- 13d Okamoto N, Yanada R. J. Org. Chem. 2012; 77: 3944
- 13e Yang Y, Yao J, Zhang Y. Org. Lett. 2013; 15: 3206
- 13f Li J, Liu L, Ding D, Sun J, Ji Y, Dong J. Org. Lett. 2013; 15: 2884
- 13g Butkevich AN, Meerpoel L, Stansfield I, Angibaud P, Corbu A, Cossy J. Org. Lett. 2013; 15: 3840
- 13h Jiang H, Cheng Y, Zhang Y, Yu S. Org. Lett. 2013; 15: 4884
- 13i Zheng M, Huang L, Wu W, Jiang H. Org. Lett. 2013; 15: 1838
- 13j Zheng X, Lu S, Li Z. Org. Lett. 2013; 15: 5432
- 13k Kramer S, Skrydstrup T. Angew. Chem. Int. Ed. 2012; 51: 4681
- 13l Huang X, Peng B, Luparia M, Gomes LF. R, Veiros LF, Maulide N. Angew. Chem. Int. Ed. 2012; 51: 8886
- 14 Schmidt B, Geißler D. Eur. J. Org. Chem. 2011; 4814 ; and references cited therein
- 15a Zhang M, Jiang H.-F, Neumann H, Beller M, Dixneuf PH. Angew. Chem. Int. Ed. 2009; 48: 1681
- 15b Dheur J, Sauthier M, Castanet Y, Mortreux A. Adv. Synth. Catal. 2010; 352: 557
- 15c Chang S, Desai S, Leznoff DB, Merbouh N, Britton R. Eur. J. Org. Chem. 2013; 3219
- 15d Pridmore SJ, Slatford PA, Williams JM. J. Tetrahedron Lett. 2007; 48: 5111
- 15e Kel’in AV, Gevorgyan V. J. Org. Chem. 2002; 67: 95
- 15f Donohoe TJ, Fishlock LP, Lacy AR, Procopiou PA. Org. Lett. 2007; 9: 953
- 16a Chen Z, Li J, Jiang H, Zhu S, Li Y, Qi C. Org. Lett. 2010; 12: 3262
- 16b Chen Z, Huang G, Jiang H, Huang H, Pan X. J. Org. Chem. 2011; 76: 1134
- 17 Fukuda Y, Shiragami H, Utimoto K, Nozaki H. J. Org. Chem. 1991; 56: 5816
- 18 Preparation of 2,5-Disubstituted Furans from Enyne Acetates; Typical Procedure: To a mixture of (Z)-1,4-diphenylbut-1-en-3-yn-1-yl acetate (1a; 0.25 mmol) and MeNO2 (1.0 mL), Pd(OAc)2 (5 mol%), BF3·OEt2 (30 mol%), and H2O (1 equiv) were added. The mixture was stirred at 80 °C for 10 h, then H2O (10 mL) was added and the solution was extracted with EtOAc (3 × 8 mL). The combined extract was dried with anhydrous MgSO4, the solvent was removed, and the residue was separated by column chromatography (petroleum ether–EtOAc, 30:1) to give the desired product 2a.
For selected recent examples, see:
For selected recent examples, see:
For selected recent examples, see:
For selected recent examples, see:
For selected recent examples, see:
For selected recent examples, see:
For selected recent examples, see:
For selected recent examples, see:






