Subscribe to RSS
DOI: 10.1055/s-0034-1378337
Transition-Metal-Free Arylation of N-Alkyl-tetrahydroisoquinolines under Oxidative Conditions: A Convenient Synthesis of C1-Arylated Tetrahydroisoquinoline Alkaloids
Publication History
Received: 06 May 2014
Accepted after revision: 27 May 2014
Publication Date:
08 July 2014 (online)
Abstract
A simple protocol for the C1 arylation of tetrahydroisoquinolines with aryl Grignard reagents via diethyl azodicarboxylate (DEAD) mediated oxidative C–H activation under metal-free conditions has been developed. The target compounds, including some naturally occurring alkaloids, were obtained in moderate to good yields.
#
The tetrahydroisoquinoline motif forms the basic framework of many naturally occurring alkaloids of pharmaceutical importance.[1] In particular, 1-aryl-1,2,3,4-tetrahydroisoquinolines are of wide biological significance as they exhibit anti-HIV,[2a] [b] antitumor,[2c,d] and antibacterial activity.[2e] Various analogues of C1-arylated tetrahydroisoquinolines (Figure [1]) act as dopamine D1 like receptor antagonists[3a] [b] and they are neuroprotective agents for the treatment of Alzheimer’s and Parkinson’s type diseases.[3c] [d] Solifenacin (Figure [1]) has been investigated as a bladder-selective muscarinic M3 receptor antagonist.[4] Other naturally occurring alkaloids such as cryptostylines I, II, and III (Figure [1]) belong to this family and show interesting pharmacological properties.[5] The synthesis of 1-aryl-tetrahydroisoquinolines is an attractive area of research due to their applicability in the areas of pharmaceutics and medicine. Earlier reported methods for the synthesis of 1-aryl-tetrahydroisoquinolines include Pictet–Spengler condensation,[6] Bischler–Napieralski cyclization,[7] and a modified Pummerer reaction.[8] Apart from these common procedures, a number of other methods have also been developed.[9]


In the recent past, direct C–H bond activation under oxidative conditions has attracted much attention as it provides efficient routes for the synthesis of biologically active natural products.[10] Enormous efforts have been made for the modification of known methods and to develop new procedures for the synthesis of C–H arylated heterocyclic compounds.[11] Metal-catalyzed arylation of (un)protected tetrahydroisoquinolines at C1 has been demonstrated by Schnürch and co-workers using tert-butyl hydroperoxide (TBHP) as an oxidant.[11d] Li and co-workers have used copper salts as catalysts to couple 2-phenyl-1,2,3,4-tetrahydroisoquinolines and other N-protected tetrahydroisoquinolines with indole,[12a] [b] [c] [d] 2-naphthol,[12e] and arylboronic acids.[12f] One drawback here is that removal of the phenyl group from the nitrogen is difficult and further functionalization cannot be pursued.[13] Klussmann and Schweitzer-Chaput described a two-step tert-butyl hydroperoxide mediated C1 arylation of N-Cbz-, N-Boc-, and N-benzyl-protected tetrahydroisoquinolines catalyzed by a Brønsted acid.[14] A one-step C1 arylation of N-Cbz-protected tetrahydroisoquinolines using triphenylcarbenium perchlorate has been achieved by Xie et al.[15] It was also noted that such arylation reactions did not succeed with N-methyl-tetrahydroisoquinoline and only overoxidation products were detected.[14] Recently Li and co-workers reported α-sp3 C–H arylation reactions of N-(4-methoxyphenyl) (N-PMP) and benzyl-protected tetrahydroisoquinolines using aryl Grignard reagents in the presence of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) or hypervalent iodine(III) as oxidants under metal-free conditions.[16a] [b] The latest report describes the arylation of N-carbamoyl-protected tetrahydroisoquinolines using sodium persulfate.[16c] In all these reports, N-aryl-tetrahydroisoquinolines or N-protected tetrahydroisoquinolines were used as substrates and, therefore, these procedures could not be used for the one-step synthesis of α-arylated N-methyl-tetrahydroisoquinolines. Some other related coupling reactions of tertiary amines with different nucleophiles have also been reported.[17]
We recently reported our findings on the direct arylation of a C–H bond in N-methyl-tetrahydroisoquinolines involving the reactions of amino carbanions[18] with in situ generated benzyne intermediates.[19] In continuation of our interest in exploring new oxidative coupling reactions, involving dithiolanes with ketones and indoles,[20a] formamides with diphenyl diselenides,[20b] and our earlier finding on the use of readily available diethyl azodicarboxylate as a suitable oxidant in the regioselective alkynylation of N-methyl-tetrahydroisoquinolines[20c] or unactivated aliphatic tertiary amines,[21] the direct coupling of the α-position in N-alkyl tetrahydroisoquinolines with aryl Grignard reagents in the presence of diethyl azodicarboxylate seemed a viable option. This article describes the outcome of these investigations, which also resulted in a convenient and direct route for the synthesis of 2-alkyl-1-aryl-1,2,3,4-tetrahydroisoquinolines under transition-metal-free conditions.
a Reaction conditions: 1a (1 equiv), oxidant (1.1 equiv), solvent (2 mL), r.t., 2 h.
b Isolated yield.
c The Grignard reagent was prepared in THF and the iminium cation was generated in DMF, toluene or CHCl3.
d 3 h.
e 1 h.
f Refluxing THF.
g CuI (5 mol%) was used as a catalyst.
h DEAD (0.5 equiv).
i DEAD (2.2 equiv).
j DEAD (3.3 equiv).
Initially, we reacted 2-methyl-1,2,3,4-tetrahydroisoquinoline (1a) with phenylmagnesium bromide (2 equiv) using diethyl azodicarboxylate (1.1 equiv) in tetrahydrofuran at room temperature for two hours under a nitrogen atmosphere. The desired product 2-methyl-1-phenyl-1,2,3,4-tetrahydroisoquinoline (3a) was obtained in 20% yield (Table [1], entry 1). Use of four and six equivalents of Grignard reagent increased the yield of 3a to 42% and 65%, respectively (entries 2 and 3). A further increase in the amount of the Grignard reagent to eight equivalents did not improve the yield (entry 4). Solvents like N,N-dimethylformamide and toluene gave inferior results (entries 5 and 6) while in case of chloroform and diethyl ether 3a was obtained in 60–62% yield (entries 7 and 8). Among the other oxidants which were investigated, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone[22] afforded the product in 22% yield (entry 9) while cerium ammonium nitrate (CAN) and 3-chloroperoxybenzoic acid, were ineffective (entries 10 and 11). With the tert-butyl hydroperoxide/iodine[23] system, the arylation reaction occurred to a lesser extent (entry 12). Increasing the reaction time did not improve the yield of 3a (entry 13), but decreasing the reaction time somewhat lowered the yield (entry 14). No improvement in the yield of 3a was observed with the use of copper(I) iodide as a catalyst (entry 16). Using a higher reaction temperature did not affect the reaction (entry 15). The use of 0.5 equivalents of diethyl azodicarboxylate decreased the product yield as expected, (entry 17). Increasing the amount of oxidant to 2.2 equivalents only marginally changed the yield of 3a (entry 18). Surprisingly, further increase in the amount of the oxidant to 3.3 equivalents depressed the yield (entry 19). Thus, the optimized conditions for the coupling of 1a used 6 equivalents of Grignard’s reagent in tetrahydrofuran using diethyl azodicarboxylate as the oxidant and without the use of a metal salt (entry 3).
To investigate the scope and generality of the reaction, various arylmagnesium bromides were reacted with differently substituted N-methyl-tetrahydroisoquinolines under the optimized conditions. Tetrahydroisoquinolines 1a–c coupled well with Grignard reagents 2a–f to give the desired products 3a–m in moderate to good yields (55–67%) (Scheme [1]). The reaction tolerated methoxy/methyl substituents on the phenyl rings of the coupling partners. Even meta-substituted aryl Grignard reagent 2d worked well to afford 3j in 57% yield. 1-Naphthylmagnesium bromide (2e) and 2-methoxy-1-naphthylmagnesium bromide (2f) also coupled effectively to give the corresponding products 3e,f,k in 58–67% yields. 2-Ethyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (1d) was also evaluated and the C1-arylated products 3n,o were obtained in good yields. However, 2-benzyl-1,2,3,4-tetrahydroisoquinoline (1e) coupled to a lesser extent with 2a and 2b to furnish the products 3p and 3q in 51% and 40% yields, respectively.




With the aim of demonstrating the utility of this procedure for the synthesis of naturally occurring alkaloids, we applied these metal-free conditions to the synthesis of cryptostyline II (3r) and cryptostyline III (3s). The coupling of 1b with 2g and 2h afforded the products 3r and 3s in 58% and 54% yield, respectively (Scheme [2]).


This arylation procedure may be compared with that described by Costa and Radesca in which they used triphenylcarbenium tetrafluoroborate to generate iminium cation for further reaction with Grignard reagent.[9b] [24] It may be pointed out that triphenylcarbenium tetrafluoroborate is a corrosive and air-sensitive reagent that requires very careful handling. Furthermore, the yields of the products are significantly lower in many cases using this reagent.[9b]
A plausible mechanism for the coupling of 1a and 2a is depicted in Scheme [3]. As already established,[14] [20c] [21] [25] iminium ion A is formed during oxidation of tetrahydroisoquinoline with diethyl azodicarboxylate. Subsequent attack of the nucleophile 2a on iminium ion A furnishes the arylated product 3a.
In summary, a direct and convenient procedure for the synthesis of 1-aryl-2-methyl-tetrahydroisoquinoline via oxidative coupling of N-alkyltetrahydroisoquinolines and Grignard reagents using diethyl azodicarboxylate under metal-free conditions has been developed. Moreover, the synthesis of naturally occurring alkaloids cryptostyline II and III has also been achieved.
Melting points were taken in open capillaries and are uncorrected. 1H NMR spectra were recorded on Bruker 400 MHz spectrometer in CDCl3 solution relative to internal standard TMS. 13C NMR spectra were obtained at 100 MHz and referenced to the internal solvent signals (δ = 77.00). MS and HRMS data were obtained on Q-Tof MicroTM Mass Spectrometer. Differently substituted starting amines were prepared according to literature procedure.[26] Products were isolated and purified by column chromatography (silica gel, hexane–EtOAc).
#
2-Methyl-1-phenyl-1,2,3,4-tetrahydroisoquinoline (3a);[7e] [27] Typical Procedure
To a flame-dried two-necked round-bottom flask, charged with 1-methyl-1,2,3,4-tetrahydroisoquinoline (1a, 0.2 mL, 1.36 mmol) in THF (2 mL) was added DEAD (0.267 mL, 1.49 mmol) dropwise at 5–10 °C and the mixture was stirred for 15 min under N2. To this was added phenylmagnesium bromide (2a, 8.16 mmol) in THF slowly and the mixture was stirred at r.t. for 2 h. The reaction was quenched with 10% HCl (20–25 mL), basified with Na2CO3, and extracted with EtOAc (2 × 25 mL). The solvent was evaporated and the residue was purified by column chromatography (silica gel, 230–400 mesh, EtOAc–hexane) to afford 3a (197 mg, 65%) as a yellow oil.
1H NMR (400 MHz, CDCl3–CCl4): δ = 7.23–7.16 (m, 5 H), 7.01–6.85 (m, 3 H), 6.53 (d, J = 7.8 Hz, 1 H), 4.13 (s, 1 H), 3.19–3.01 (m, 2 H), 2.76–2.52 (m, 2 H), 2.14 (s, 3 H).
13C NMR (100 MHz, CDCl3–CCl4): δ = 144.0, 138.5, 134.1, 129.7, 128.6, 128.3, 127.3, 125.9, 125.7, 71.6, 52.4, 44.4, 29.6.
#
1-(4-Methoxyphenyl)-2-methyl-1,2,3,4-tetrahydroisoquinoline (3b)
Yellow solid; yield: 206 mg (60%); mp 76–78 °C (Lit.[19b] 78–80 °C).
1H NMR (400 MHz, CDCl3–CCl4): δ = 7.09–7.05 (m, 2 H), 7.00–6.95 (m, 2 H), 6.89–6.85 (m, 1 H), 6.75–6.71 (m, 2 H), 6.54 (d, J = 7.8 Hz, 1 H), 4.08 (s, 1 H), 3.71 (s, 3 H), 3.21–3.12 (m, 1 H), 3.04–2.99 (m, 1 H), 2.74–2.69 (m, 1 H), 2.56–2.50 (m, 1 H), 2.13 (s, 3 H).
13C NMR (100 MHz, CDCl3–CCl4): δ = 158.8, 138.8, 135.9, 134.1, 130.5, 128.5, 128.2, 125.8, 125.6, 113.5, 70.9, 55.0, 52.4, 44.3, 29.5.
#
2-Methyl-1-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline (3c)
Yellow oil; yield: 200 mg (62%).
1H NMR (400 MHz, CDCl3–CCl4): δ = 7.13–7.02 (m, 6 H), 6.95–6.91 (m, 1 H), 6.60 (d, J = 7.8 Hz, 1 H), 4.17 (s, 1 H), 3.29–3.21 (m, 1 H), 3.12–3.08 (m, 1 H), 2.82–2.77 (m, 1 H), 2.64–2.58 (m, 1 H), 2.33 (s, 3 H), 2.21 (s, 3 H).
13C NMR (100 MHz, CDCl3–CCl4): δ = 140.8, 138.6, 136.6, 134.0, 129.9, 129.5, 128.9, 128.5, 128.2, 125.8, 125.6, 71.2, 52.3, 44.3, 29.5, 21.2.
HRMS (ES+): m/z [M + H]+ calcd for C17H20N: 237.1517; found: 238.1564.
#
1-(3,4-Dimethoxyphenyl)-2-methyl-1,2,3,4-tetrahydroisoquinoline (3d)[19b]
Yellow solid; yield: 211 mg (55%); mp 76–78 °C.
1H NMR (400 MHz, CDCl3): δ = 7.05–7.01 (m, 2 H), 6.94–6.89 (m, 1 H), 6.79–6.70 (m, 3 H), 6.60 (d, J = 7.8 Hz, 1 H), 4.11 (s, 1 H), 3.81 (s, 3 H), 3.74 (s, 3 H), 3.24–3.17 (m, 1 H), 3.11–3.06 (m, 1 H), 2.77–2.53 (m, 2 H), 2.18 (s, 3 H).
13C NMR (100 MHz, CDCl3): δ = 149.0, 148.2, 134.0, 131.4, 128.3, 128.2, 125.9, 125.6, 122.1, 111.8, 110.2, 71.4, 55.8, 55.7, 52.5, 44.3, 29.3.
#
2-Methyl-1-(naphthalen-1-yl)-1,2,3,4-tetrahydroisoquinoline (3e)
Yellow solid; yield: 237 mg (64%); mp 111–112 °C.
1H NMR (400 MHz, CDCl3): δ = 8.17 (d, J = 8.5 Hz, 1 H), 7.72 (t, J = 8.7 Hz, 2 H), 7.39–7.21 (m, 4 H), 7.09 (t, J = 8.8 Hz, 1 H), 6.98 (t, J = 7.4 Hz, 1 H), 6.77 (t, J = 7.5 Hz, 1 H), 6.47 (d, J = 7.8 Hz, 1 H), 4.70 (s, 1 H), 3.37–3.28 (m, 1 H), 3.17–3.12 (m, 1 H), 2.83–2.79 (m, 1 H), 2.64–2.57 (m, 1 H), 2.09 (s, 3 H).
13C NMR (100 MHz, CDCl3): δ = 139.0, 138.6, 134.3, 133.8, 131.6, 128.9, 128.4, 128.3, 128.2, 127.4, 125.9, 125.8, 125.5, 125.3, 125.0, 53.3, 44.5, 29.3.
HRMS (ES+): m/z [M + H]+ calcd for C20H20N: 273.1517; found: 274.1534.
#
1-(2-Methoxynaphthalen-1-yl)-2-methyl-1,2,3,4-tetrahydroisoquinoline (3f)[28]
Yellow solid; yield: 138 mg (67%); mp 107–108 °C.
1H NMR (400 MHz, CDCl3): δ = 8.07 (d, J = 7.3 Hz, 1 H), 7.72–7.60 (m, 2 H), 7.24 (d, J = 9.1 Hz, 1 H), 7.13–7.05 (m, 3 H), 6.96 (t, J = 7.3 Hz, 1 H), 6.76 (t, J = 7.5 Hz, 1 H), 6.42 (d, J = 7.8 Hz, 1 H), 5.37 (s, 1 H), 3.89 (s, 3 H), 3.45–3.37 (m, 1 H), 3.19–3.16 (m, 1 H), 2.83 (d, J = 16 Hz, 1 H), 2.67–2.60 (m, 1 H), 2.07 (s, 3 H).
13C NMR (100 MHz, CDCl3): δ = 156.4, 139.2, 134.0, 129.6, 128.1, 127.9, 126.7, 126.5, 125.8, 125.4, 123.3, 113.1, 62.2, 57.0, 54.4, 44.1, 29.9.
#
6,7-Dimethoxy-2-methyl-1-phenyl-1,2,3,4-tetrahydroisoquinoline (3g)[29]
Yellow oil; yield: 162 mg (60%).
1H NMR (400 MHz, CDCl3–CCl4): δ = 7.23–7.16 (m, 5 H), 6.48 (s, 1 H), 5.97 (s, 1 H), 4.07 (s, 1 H), 3.76 (s, 3 H), 3.47 (s, 3 H), 3.13–2.98 (m, 2 H), 2.66–2.49 (m, 2 H), 2.14 (s, 3 H).
13C NMR (100 MHz, CDCl3–CCl4): δ = 147.5, 147.2, 144.0, 130.5, 129.6, 128.3, 127.4, 126.4, 111.6, 110.9, 71.2, 55.8, 55.7, 52.4, 44.4, 29.1.
#
6,7-Dimethoxy-1-(4-methoxyphenyl)-N-methyl-1,2,3,4-tetrahydroisoquinoline (3h)
Yellow solid; yield: 174 mg (58%); mp 93–95 °C (Lit.[30] 96–97 °C).
1H NMR (400 MHz, CDCl3): δ = 7.18 (d, J = 8.6 Hz, 2 H), 6.85 (d, J = 8.6 Hz, 2 H), 6.59 (s, 1 H), 6.11 (s, 1 H), 4.20 (s, 1 H), 3.84 (s, 3 H), 3.80 (s, 3 H), 3.58 (s, 3 H), 3.20–3.08 (m, 2 H), 2.78–2.60 (m, 2 H), 2.25 (s, 3 H).
13C NMR (100 MHz, CDCl3): δ = 158.8, 147.3, 146.9, 135.1, 131.4, 130.5, 130.1, 126.2, 114.5, 113.5, 111.3, 110.5, 70.0, 55.7, 55.1, 51.8, 43.9, 28.6.
#
6,7-Dimethoxy-2-methyl-1-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline (3i)
Yellow oil; yield: 191 mg (67%).
1H NMR (400 MHz, CDCl3): δ = 7.15–7.12 (m, 4 H), 6.60 (s, 1 H), 6.12 (s, 1 H), 4.20 (s, 1 H), 3.84 (s, 3 H), 3.57 (s, 3 H), 3.17–3.07 (m, 2 H), 2.77–2.60 (m, 2 H), 2.33 (s, 3 H), 2.24 (s, 3 H).
13C NMR (100 MHz, CDCl3): δ = 147.2, 146.8, 140.0, 136.8, 130.0, 129.7, 129.3, 128.8, 128.6, 126.2, 111.3, 110.5, 70.3, 55.6, 51.7, 43.9, 28.6, 21.0.
HRMS (ES+): m/z [M + H]+ calcd for C19H24NO2: 297.1729; found: 298.1798.
#
6,7-Dimethoxy-1-(3-methoxyphenyl)-2-methyl-1,2,3,4-tetrahydroisoquinoline (3j)[19b]
Yellow oil; yield: 170 mg (57%).
1H NMR (400 MHz, CDCl3): δ = 7.16–7.14 (m, 1 H), 6.80–6.73 (m, 3 H), 6.53 (s, 1 H), 6.07 (s, 1 H), 4.16 (br s, 1 H), 3.78 (s, 3 H), 3.71 (s, 3 H), 3.51 (s, 3 H), 3.09–3.05 (m, 2 H), 2.71–2.58 (m, 2 H), 2.21 (s, 3 H).
13C NMR (100 MHz, CDCl3): δ = 159.7, 147.6, 147.1, 129.2, 126.2, 122.2, 115.0, 113.0, 111.3, 110.7, 100.0, 55.9, 55.8, 55.3, 52.0, 44.1, 28.6.
#
6,7-Dimethoxy-2-methyl-1-(naphthalen-1-yl)-1,2,3,4-tetrahydroisoquinoline (3k)
Yellow solid; yield: 185 mg (58%); mp 139–140 °C (Lit.[31] 140–142 °C).
1H NMR (400 MHz, CDCl3): δ = 8.22 (d, J = 8.4 Hz, 1 H), 7.74–7.69 (m, 2 H), 7.35–7.25 (m, 4 H), 6.57 (s, 1 H), 5.97 (s, 1 H), 4.70 (br s, 1 H), 3.76 (s, 3 H), 3.30 (s, 3 H), 3.27–3.11 (m, 2 H), 2.78–2.73 (m, 1 H), 2.64–2.58 (m, 1 H), 2.14 (s, 3 H).
13C NMR (100 MHz, CDCl3): δ = 147.4, 147.1, 134.3, 130.3, 128.4, 128.2, 126.1, 125.5, 125.3, 110.8, 110.6, 55.6, 52.7, 44.3, 28.4.
#
7-Ethoxy-6-methoxy-2-methyl-1-phenyl-1,2,3,4-tetrahydroisoquinoline (3l)[19b]
Yellow oil; yield: 170 mg (64%).
1H NMR (400 MHz, CDCl3): δ = 7.25–7.16 (m, 5 H), 6.53 (s, 1 H), 6.02 (s, 1 H), 4.10 (s, 1 H), 3.76–3.62 (m, 5 H), 3.05–3.01 (m, 2 H), 2.68–2.54 (m, 2 H), 2.16 (s, 3 H), 1.19 (t, J = 7 Hz, 3 H).
13C NMR (100 MHz, CDCl3): δ = 146.7, 145.1, 142.8, 129.2, 128.5, 127.2, 126.2, 125.5, 112.1, 109.8, 70.0, 63.1, 54.8, 51.2, 43.2, 27.9, 13.5.
#
7-Ethoxy-6-methoxy-1-(4-methoxyphenyl)-2-methyl-1,2,3,4-tetrahydroisoquinoline (3m)
Creamy solid; yield: 190 mg (65%); mp 85–87 °C (Lit.[19b] 87–89 °C).
1H NMR (400 MHz, CDCl3): δ = 7.10–7.07 (m, 2 H), 6.79–6.75 (m, 2 H), 6.52 (s, 1 H), 6.04 (s, 1 H), 4.08 (s, 1 H), 3.79–3.64 (m, 8 H), 3.09–2.99 (m, 2 H), 2.69–2.51 (m, 2 H), 2.16 (s, 3 H), 1.21 (s, 3 H).
13C NMR (100 MHz, CDCl3): δ = 158.8, 147.7, 146.2, 130.5, 130.4, 126.4, 113.5, 113.1, 110.8, 70.2, 64.2, 55.8, 55.2, 52.1, 44.1, 28.8, 14.6.
#
2-Ethyl-6,7-dimethoxy-1-phenyl-1,2,3,4-tetrahydroisoquinoline (3n)
Yellow solid; yield: 201 mg (68%); mp 73–74 °C.
1H NMR (400 MHz, CDCl3): δ = 7.23–7.13 (m, 5 H), 6.52 (s, 1 H), 6.09 (s, 1 H), 4.46 (s, 1 H), 3.77 (s, 3 H), 3.51 (s, 3 H), 3.09–3.04 (m, 1 H), 2.96–2.89 (m, 1 H), 2.74–2.68 (m, 1 H), 2.58–2.49 (m, 2 H), 2.35–2.26 (m, 1 H), 0.99–0.96 (t, J = 7.1 Hz, 3 H).
13C NMR (100 MHz, CDCl3): δ = 147.3, 146.9, 144.0, 130.1, 129.4, 128.0, 127.0, 126.8, 111.6, 110.7, 67.2, 55.7, 48.0, 46.3, 28.1, 11.6.
HRMS (ES+): m/z [M + H]+ calcd for C19H24NO2: 297.1729; found: 298.1802.
#
2-Ethyl-6,7-dimethoxy-1-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline (3o)
Yellow solid; yield: 182 mg (65%); mp 66–68 °C (Lit.[32] 64–66 °C).
1H NMR (400 MHz, CDCl3): δ = 7.10–7.06 (m, 2 H), 6.77–6.74 (m, 2 H), 6.52 (s, 1 H), 6.10 (s, 1 H), 4.43 (s, 1 H), 3.77 (s, 3 H), 3.72 (s, 3 H), 3.53 (s, 3 H), 3.09–3.03 (m, 1 H), 2.92–2.88 (m, 1 H), 2.74–2.69 (m, 1 H), 2.57–2.51 (m, 2 H), 2.33–2.28 (m, 1 H), 1.00–0.97 (t, J = 7.1 Hz, 3 H).
13C NMR (100 MHz, CDCl3): δ = 158.6, 147.4, 147.0, 130.5, 126.8, 113.4, 111.7, 110.8, 99.9, 66.6, 55.8, 55.2, 47.9, 46.2, 28.1, 11.6.
#
2-Benzyl-1-phenyl-1,2,3,4-tetrahydroisoquinoline (3p)[33]
White solid; yield: 136 mg (51%); mp 118–120 °C.
1H NMR (400 MHz, CDCl3): δ = 7.30–7.28 (m, 2 H), 7.24–7.10 (m, 8 H), 7.03–7.00 (m, 2 H), 6.92 (t, J = 7.8 Hz, 1 H), 6.65 (d, J = 7.5 Hz, 1 H), 4.52 (s, 1 H), 3.74 (d, J = 13.5 Hz, 1 H), 3.18 (d, J = 13.5 Hz, 1 H), 3.04–2.94 (m, 2 H), 2.71–2.65 (m, 1 H), 2.43–2.39 (m, 1 H).
13C NMR (100 MHz, CDCl3): δ = 144.4, 139.6, 138.5, 134.8, 129.7, 128.9, 128.8, 128.5, 128.3, 128.2, 127.3, 126.8, 125.9, 125.7, 68.9, 58.8, 47.3, 29.2.
#
2-Benzyl-1-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline (3q)[33]
White solid; yield: 117 mg (40%); mp 148–150 °C.
1H NMR (400 MHz, CDCl3): δ = 7.22–7.13 (m, 7 H), 7.04–6.99 (m, 2 H), 6.95–6.87 (m, 1 H), 6.80–6.76 (m, 2 H), 6.66 (d, J = 7.8 Hz, 1 H), 4.50 (s, 1 H), 3.76 (s, 1 H), 3.71 (s, 3 H), 3.18–3.15 (m, 1 H), 3.00 (br s, 2 H), 2.71–2.67 (m, 1 H), 2.44 (br s, 1 H).
13C NMR (100 MHz, CDCl3): δ = 158.9, 130.8, 128.9, 128.5, 128.2, 126.9, 125.7, 113.7, 67.9, 59.5, 55.2, 47.2, 29.7.
#
1-(3,4-Dimethoxyphenyl)-6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydroisoquinoline (3r)[34]
Yellow oil; yield: 181 mg (58%).
1H NMR (400 MHz, CDCl3): δ = 6.78–6.69 (m, 3 H), 6.53 (s, 1 H), 6.06 (s, 1 H), 4.07 (br s, 1 H), 3.82 (s, 3 H), 3.78 (s, 3 H), 3.75 (s, 3 H), 3.51 (s, 3 H), 3.12–3.06 (m, 2 H), 2.69–2.55 (m, 2 H), 2.18 (s, 3 H).
13C NMR (100 MHz, CDCl3): δ = 149.1, 148.5, 147.1, 126.1, 122.3, 111.9, 111.3, 110.6, 110.3, 70.9, 56.2, 56.0, 55.8, 52.3, 44.1, 28.7.
#
6,7-Dimethoxy-2-methyl-1-(3,4,5-trimethoxyphenyl)-1,2,3,4-tetrahydroisoquinoline (3s)
White solid; yield: 193 mg (54%); mp 139–141 °C (Lit.[35] 140–141 °C).
1H NMR (400 MHz, CDCl3): δ = 6.53–6.45 (m, 3 H), 6.09 (s, 1 H), 4.11 (br s, 1 H), 3.78 (s, 6 H), 3.74 (s, 6 H), 3.54 (s, 3 H), 3.11 (br s, 2 H), 2.69–2.58 (m, 2 H), 2.22 (s, 3 H).
13C NMR (100 MHz, CDCl3): δ = 153.0, 147.4, 146.9, 139.3, 137.1, 129.9, 126.3, 111.2, 110.6, 106.3, 71.6, 60.8, 56.1, 55.9, 55.7, 52.5, 44.4, 28.7.
#
#
Acknowledgement
We acknowledge financial support through scheme no 02(0131)/13/EMR-II sponsored by CSIR, New Delhi. A. Batra thanks UGC for a research fellowship. NMR and Mass facilities from SAIF, Panjab University are gratefully acknowledged.
Supporting Information
- for this article is available online at http://www.thieme-connect.com.accesdistant.sorbonne-universite.fr/products/ejournals/journal/
10.1055/s-00000084.
- Supporting Information
-
References
- 1a Wang S, Onaran MB, Seto CT. Org. Lett. 2010; 12: 2690
- 1b Bentley KW. Nat. Prod. Rep. 2005; 22: 249
- 1c Scott JD, Williams RM. Chem. Rev. 2002; 102: 1669
- 1d Ozturk T. The Alkaloids . Vol. 53. Cordell GA. Academic Press; New York: 2000: 120
- 1e Charifson PS. Drugs Future 1989; 14: 1179
- 1f Menarchery MD, Lavanier GL, Wetherly ML, Guinaudeau H, Shamma M. J. Nat. Prod. 1986; 49: 745
- 1g Wu W, Beal JL, Fairchild EH, Doskotch RW. J. Org. Chem. 1978; 43: 580
- 2a Chen K.-X, Xie H.-Y, Li Z.-G. Bioorg. Med. Chem. Lett. 2008; 18: 5381
- 2b Cheng P, Huang N, Zhang Q, Zheng Y.-T. Bioorg. Med. Chem. Lett. 2008; 18: 2475
- 2c Kuo C.-Y, Wu MJ, Kuo Y.-H. Eur. J. Med. Chem. 2006; 41: 940
- 2d Kim SA, Kwon Y, Kim JH, Muller MT, Chung IK. Biochemistry 1998; 37: 16316
- 2e Tiwari RK, Singh D, Singh J, Chhiller AK. Eur. J. Med. Chem. 2006; 41: 40
- 3a Minor DL, Wyrick SD, Charifson PS, Watts VJ, Nichols DE, Mailman RB. J. Med. Chem. 1994; 37: 4317
- 3b Charifson PS, Wyrick SD, Ademe Simmons RM, McDougald DL, Mailman RB, Hoffman AJ, Bowen JP. J. Med. Chem. 1988; 31: 1941
- 3c Gao M, Kong D, Clearfield A, Zheng Q.-H. Bioorg. Med. Chem. Lett. 2006; 16: 2229
- 3d Ludwig M, Hoesl CE, HÖfner G, Wanner KT. Eur. J. Med. Chem. 2006; 41: 1003
- 4a Naito R, Yonetoku Y, Okamoto Y, Toyoshima A, Ikeda K, Takeuchi M. J. Med. Chem. 2005; 48: 6597
- 4b Ohtake A, Ukai M, Hatanaka T, Kobayashi S, Ikeda K, Sato S, Miyata K, Sasamata M. Eur. J. Pharmacol. 2004; 492: 243
- 5 Kurihara K, Yamamoto Y, Miyaura N. Adv. Synth. Catal. 2009; 351: 260
- 6a Seayad J, Seayad AM, List B. J. Am. Chem. Soc. 2006; 128: 1086
- 6b Taylor MS, Jacobsen EN. J. Am. Chem. Soc. 2004; 126: 10558
- 6c Gitto R, Barreca ML, Luca LD, Sarro GD, Ferrerri G. J. Med. Chem. 2003; 46: 197
- 6d Ruchirawat S, Bhavakul V, Chaisupakitsin M. Synth. Commun. 2003; 33: 621
- 6e Yamada H, Kawate T, Matsumizu M, Nishida A, Yamaguchi K, Nakagawa M. J. Org. Chem. 1998; 63: 6348
- 6f Cox ED, Cook JM. Chem. Rev. 1995; 95: 1797
- 7a Berenguer I, Aouad NE, Andujar S, Romero V, Suvire F, Freret T. Bioorg. Med. Chem. 2009; 17: 4968
- 7b Doi S, Shirai N, Sato Y. J. Chem. Soc., Perkin Trans. 1 1997; 2217
- 7c Suzuki H, Aoyagi S, Kibayashi C. Tetrahedron Lett. 1995; 36: 6709
- 7d Landais Y, Robin J.-P. Tetrahedron 1992; 48: 7185
- 7e Gray NM, Cheng BK, Mick SJ, Lair CM, Contreras PC. J. Med. Chem. 1989; 32: 1242
- 7f Leander K, Luning B. Tetrahedron Lett. 1968; 9: 1393
- 7g Ishiwata S, Itakura K. Chem. Pharm. Bull. 1968; 16: 778
- 7h Reeve W, Eareckson WM. J. Am. Chem. Soc. 1950; 72: 5195
- 8 Abe K, Saitoh T, Horiguchi Y, Utsunomiya I, Taguchi K. Biol. Pharm. Bull. 2005; 28: 1355
- 9a Bender C, Liebscher J. ARKIVOC 2009; (vi): 111
- 9b Costa BR, Radesca L. Synthesis 1992; 887
- 9c Takano S, Suzuki M, Kijima A, Ogasawara K. Chem. Lett. 1990; 315
- 10a Nobuta T, Fujiya A, Yamaguchi T, Tada N, Miura T, Itoh A. RSC Adv. 2013; 3: 10189
- 10b Hari DP, Konig B. Org. Lett. 2011; 13: 3852 ; and references therein
- 10c Murahashi S.-I, Nakae T, Terai H, Komiya N. J. Am. Chem. Soc. 2008; 130: 11005
- 10d Li Z, Yu R, Li H. Angew. Chem. Int. Ed. 2008; 47: 7497
- 10e Li Z, MacLeod PD, Li C.-J. Tetrahedron: Asymmetry 2006; 17: 590
- 10f Li Z, Li C.-J. J. Am. Chem. Soc. 2005; 127: 3672
- 10g Li Z, Li C.-J. Eur. J. Org. Chem. 2005; 3173
- 10h Li Z, Li C.-J. J. Am. Chem. Soc. 2004; 126: 11810
- 11a Park SJ, Price JR, Todd MH. J. Org. Chem. 2012; 77: 949
- 11b Dhineshkumar J, Lamani M, Alagiri K, Prabhu KR. Org. Lett. 2013; 15: 1092
- 11c Alagiri K, Devadig P, Prabhu KR. Chem. Eur. J. 2012; 18: 5160
- 11d Ghobrial M, Schnürch M, Mihovilovic MD. J. Org. Chem. 2011; 76: 8781
- 11e Tsang AS.-K, Todd MH. Tetrahedron Lett. 2009; 50: 1199
- 12a Zhong J.-J, Meng Q.-Y, Wang G.-X, Chen B, Feng K, Tung C.-H, Wu L.-Z. Chem. Eur. J. 2013; 19: 6443
- 12b Boess E, Schmitz C, Klussmann M. J. Am. Chem. Soc. 2012; 134: 5317
- 12c Ghobrial M, Harhammer K, Mihovilovic MD, Schnürch M. Chem. Commun. 2010; 46: 8836
- 12d Li Z, Li C.-J. J. Am. Chem. Soc. 2005; 127: 6968
- 12e Li Z, Bohle DS, Li C.-J. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 8928
- 12f Baslé O, Li C.-J. Org. Lett. 2008; 10: 3661
- 13 Tsang AS.-K, Ingram K, Keiser J, Hibbert DB, Todd MH. Org. Biomol. Chem. 2013; 11: 4921
- 14 Schweitzer-Chaput B, Klussmann M. Eur. J. Org. Chem. 2013; 666
- 15 Xie Z, Liu L, Chen W, Zheng H, Hu Q, Yuan H, Lou H. Angew. Chem. Int. Ed. 2014; 53: 3904
- 16a Muramatsu W, Nakano K, Li C.-J. Org. Lett. 2013; 15: 3650
- 16b Muramatsu W, Nakano K, Li C.-J. Org. Biomol. Chem. 2014; 12: 2189
- 16c Chen W, Zheng H, Pan X, Xie Z, Zan X, Sun B, Liu L, Lou H. Tetrahedron Lett. 2014; 55: 2879
- 17a Chu L, Zhang X, Qing F.-L. Org. Lett. 2009; 11: 2197
- 17b Son YW, Kwan TH, Lee JK, Pae AN, Lee JY, Cho YS, Min S.-J. Org. Lett. 2011; 13: 6500
- 17c Schrittwieser JH, Resch V, Sattler JH, Lienhart W.-D, Durchschein K, Winkler A, Gruber K, Macheroux P, Kroutil W. Angew. Chem. Int. Ed. 2011; 50: 1068
- 17d Allen JM, Lambert TH. J. Am. Chem. Soc. 2011; 133: 1260
- 17e Deb ML, Dey SS, Bento I, Barros MT, Maycock CD. Angew. Chem. Int. Ed. 2013; 52: 9791
- 18a Kessar SV, Singh P, Vohra R, Kaur NP, Singh KN. J. Chem. Soc., Chem. Commun. 1991; 568
- 18b Kessar SV, Singh P. Chem. Rev. 1997; 97: 721
- 19a Singh KN, Singh P, Singh P, Deol YS. Org. Lett. 2012; 14: 2202
- 19b Singh KN, Singh P, Sharma E, Deol YS. Synthesis 2014; 46: 1739
- 20a Singh KN, Singh P, Singh P, Maheshwary Y, Kessar SV, Batra A. Synlett 2013; 24: 1963
- 20b Singh P, Batra A, Singh P, Kaur A, Singh KN. Eur. J. Org. Chem. 2013; 7688
- 20c Singh KN, Singh P, Kaur A, Singh P. Synlett 2012; 23: 760
- 21 Xu X, Li X. Org. Lett. 2009; 11: 1027
- 22a Su W, Yu J, Li Z, Jiang Z. J. Org. Chem. 2011; 76: 9144
- 22b Cosner CC, Cabrera PJ, Byrd KM, Thomas AM. A, Helquist P. Org. Lett. 2011; 13: 2071
- 22c Damu GL. V, Selvam JP, Rao CV, Venkateswarlu Y. Tetrahedron Lett. 2009; 50: 6154
- 22d Zhang Y, Li C.-J. J. Am. Chem. Soc. 2006; 128: 4242
- 22e Walker D, Hiebert JD. Chem. Rev. 1967; 67: 153
- 22f Fu PP, Harvey RG. Chem. Rev. 1978; 78: 317
- 23 Zhang J, Zhu D, Yu C, Wan C, Wang Z. Org. Lett. 2010; 12: 2841
- 24 We are grateful to the reviewers for bringing to our notice in reference 9b the references numbered 15, 17 and 24 which are related to our work.
- 25 Xu X, Li X, Ma L, Ye N. J. Am. Chem. Soc. 2008; 130: 14048
- 26a Wilson MW, Govindachari TR. Org. React. 1951; 6: 74
- 26b Marsden R, MacLean DB. Can. J. Chem. 1984; 62: 1392
- 26c Miller RB, Tsang T. Tetrahedron Lett. 1988; 29: 6715
- 27 Kajita M, Niwa T, Fujisaki M, Ueki M, Niimura K. J. Chromatogr. B 1995; 669: 345
- 28 Li C.-J, Mcleod P, Li ZP, Feng J. WO 2007,098,608, 2007
- 29a Valpuesta M, Ariza M, Diaz A, Suau R. Eur. J. Org. Chem. 2010; 4393
- 29b Jiashou W, Jian L, Jin Z, Jingen D. Synlett 2006; 2059
- 30 Ahluwalia GS, Narang KS, Rây JN. J. Chem. Soc. 1931; 2057
- 31 Ariza M, Diaz A, Suau R, Valpuesta M. Eur. J. Org. Chem. 2011; 6507
- 32 Voskressensky LG, Listratova AV, Borisova TN, Alexandrov GG, Varlamov AV. Eur. J. Org. Chem. 2007; 6106
- 33 Ye Z.-S, Guo R.-N, Cai X.-F, Chen M.-W, Shi L, Zhou Y.-G. Angew. Chem. Int. Ed. 2013; 52: 3685
- 34 Umetsu K, Asao N. Tetrahedron Lett. 2008; 49: 2722
- 35 Samano V, Ray JA, Thompson JB, Mook RA, Jung DK, Koble CS, Martin MT, Bigham EC, Regitz CS, Feldman PL. Org. Lett. 1999; 1: 1993
-
References
- 1a Wang S, Onaran MB, Seto CT. Org. Lett. 2010; 12: 2690
- 1b Bentley KW. Nat. Prod. Rep. 2005; 22: 249
- 1c Scott JD, Williams RM. Chem. Rev. 2002; 102: 1669
- 1d Ozturk T. The Alkaloids . Vol. 53. Cordell GA. Academic Press; New York: 2000: 120
- 1e Charifson PS. Drugs Future 1989; 14: 1179
- 1f Menarchery MD, Lavanier GL, Wetherly ML, Guinaudeau H, Shamma M. J. Nat. Prod. 1986; 49: 745
- 1g Wu W, Beal JL, Fairchild EH, Doskotch RW. J. Org. Chem. 1978; 43: 580
- 2a Chen K.-X, Xie H.-Y, Li Z.-G. Bioorg. Med. Chem. Lett. 2008; 18: 5381
- 2b Cheng P, Huang N, Zhang Q, Zheng Y.-T. Bioorg. Med. Chem. Lett. 2008; 18: 2475
- 2c Kuo C.-Y, Wu MJ, Kuo Y.-H. Eur. J. Med. Chem. 2006; 41: 940
- 2d Kim SA, Kwon Y, Kim JH, Muller MT, Chung IK. Biochemistry 1998; 37: 16316
- 2e Tiwari RK, Singh D, Singh J, Chhiller AK. Eur. J. Med. Chem. 2006; 41: 40
- 3a Minor DL, Wyrick SD, Charifson PS, Watts VJ, Nichols DE, Mailman RB. J. Med. Chem. 1994; 37: 4317
- 3b Charifson PS, Wyrick SD, Ademe Simmons RM, McDougald DL, Mailman RB, Hoffman AJ, Bowen JP. J. Med. Chem. 1988; 31: 1941
- 3c Gao M, Kong D, Clearfield A, Zheng Q.-H. Bioorg. Med. Chem. Lett. 2006; 16: 2229
- 3d Ludwig M, Hoesl CE, HÖfner G, Wanner KT. Eur. J. Med. Chem. 2006; 41: 1003
- 4a Naito R, Yonetoku Y, Okamoto Y, Toyoshima A, Ikeda K, Takeuchi M. J. Med. Chem. 2005; 48: 6597
- 4b Ohtake A, Ukai M, Hatanaka T, Kobayashi S, Ikeda K, Sato S, Miyata K, Sasamata M. Eur. J. Pharmacol. 2004; 492: 243
- 5 Kurihara K, Yamamoto Y, Miyaura N. Adv. Synth. Catal. 2009; 351: 260
- 6a Seayad J, Seayad AM, List B. J. Am. Chem. Soc. 2006; 128: 1086
- 6b Taylor MS, Jacobsen EN. J. Am. Chem. Soc. 2004; 126: 10558
- 6c Gitto R, Barreca ML, Luca LD, Sarro GD, Ferrerri G. J. Med. Chem. 2003; 46: 197
- 6d Ruchirawat S, Bhavakul V, Chaisupakitsin M. Synth. Commun. 2003; 33: 621
- 6e Yamada H, Kawate T, Matsumizu M, Nishida A, Yamaguchi K, Nakagawa M. J. Org. Chem. 1998; 63: 6348
- 6f Cox ED, Cook JM. Chem. Rev. 1995; 95: 1797
- 7a Berenguer I, Aouad NE, Andujar S, Romero V, Suvire F, Freret T. Bioorg. Med. Chem. 2009; 17: 4968
- 7b Doi S, Shirai N, Sato Y. J. Chem. Soc., Perkin Trans. 1 1997; 2217
- 7c Suzuki H, Aoyagi S, Kibayashi C. Tetrahedron Lett. 1995; 36: 6709
- 7d Landais Y, Robin J.-P. Tetrahedron 1992; 48: 7185
- 7e Gray NM, Cheng BK, Mick SJ, Lair CM, Contreras PC. J. Med. Chem. 1989; 32: 1242
- 7f Leander K, Luning B. Tetrahedron Lett. 1968; 9: 1393
- 7g Ishiwata S, Itakura K. Chem. Pharm. Bull. 1968; 16: 778
- 7h Reeve W, Eareckson WM. J. Am. Chem. Soc. 1950; 72: 5195
- 8 Abe K, Saitoh T, Horiguchi Y, Utsunomiya I, Taguchi K. Biol. Pharm. Bull. 2005; 28: 1355
- 9a Bender C, Liebscher J. ARKIVOC 2009; (vi): 111
- 9b Costa BR, Radesca L. Synthesis 1992; 887
- 9c Takano S, Suzuki M, Kijima A, Ogasawara K. Chem. Lett. 1990; 315
- 10a Nobuta T, Fujiya A, Yamaguchi T, Tada N, Miura T, Itoh A. RSC Adv. 2013; 3: 10189
- 10b Hari DP, Konig B. Org. Lett. 2011; 13: 3852 ; and references therein
- 10c Murahashi S.-I, Nakae T, Terai H, Komiya N. J. Am. Chem. Soc. 2008; 130: 11005
- 10d Li Z, Yu R, Li H. Angew. Chem. Int. Ed. 2008; 47: 7497
- 10e Li Z, MacLeod PD, Li C.-J. Tetrahedron: Asymmetry 2006; 17: 590
- 10f Li Z, Li C.-J. J. Am. Chem. Soc. 2005; 127: 3672
- 10g Li Z, Li C.-J. Eur. J. Org. Chem. 2005; 3173
- 10h Li Z, Li C.-J. J. Am. Chem. Soc. 2004; 126: 11810
- 11a Park SJ, Price JR, Todd MH. J. Org. Chem. 2012; 77: 949
- 11b Dhineshkumar J, Lamani M, Alagiri K, Prabhu KR. Org. Lett. 2013; 15: 1092
- 11c Alagiri K, Devadig P, Prabhu KR. Chem. Eur. J. 2012; 18: 5160
- 11d Ghobrial M, Schnürch M, Mihovilovic MD. J. Org. Chem. 2011; 76: 8781
- 11e Tsang AS.-K, Todd MH. Tetrahedron Lett. 2009; 50: 1199
- 12a Zhong J.-J, Meng Q.-Y, Wang G.-X, Chen B, Feng K, Tung C.-H, Wu L.-Z. Chem. Eur. J. 2013; 19: 6443
- 12b Boess E, Schmitz C, Klussmann M. J. Am. Chem. Soc. 2012; 134: 5317
- 12c Ghobrial M, Harhammer K, Mihovilovic MD, Schnürch M. Chem. Commun. 2010; 46: 8836
- 12d Li Z, Li C.-J. J. Am. Chem. Soc. 2005; 127: 6968
- 12e Li Z, Bohle DS, Li C.-J. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 8928
- 12f Baslé O, Li C.-J. Org. Lett. 2008; 10: 3661
- 13 Tsang AS.-K, Ingram K, Keiser J, Hibbert DB, Todd MH. Org. Biomol. Chem. 2013; 11: 4921
- 14 Schweitzer-Chaput B, Klussmann M. Eur. J. Org. Chem. 2013; 666
- 15 Xie Z, Liu L, Chen W, Zheng H, Hu Q, Yuan H, Lou H. Angew. Chem. Int. Ed. 2014; 53: 3904
- 16a Muramatsu W, Nakano K, Li C.-J. Org. Lett. 2013; 15: 3650
- 16b Muramatsu W, Nakano K, Li C.-J. Org. Biomol. Chem. 2014; 12: 2189
- 16c Chen W, Zheng H, Pan X, Xie Z, Zan X, Sun B, Liu L, Lou H. Tetrahedron Lett. 2014; 55: 2879
- 17a Chu L, Zhang X, Qing F.-L. Org. Lett. 2009; 11: 2197
- 17b Son YW, Kwan TH, Lee JK, Pae AN, Lee JY, Cho YS, Min S.-J. Org. Lett. 2011; 13: 6500
- 17c Schrittwieser JH, Resch V, Sattler JH, Lienhart W.-D, Durchschein K, Winkler A, Gruber K, Macheroux P, Kroutil W. Angew. Chem. Int. Ed. 2011; 50: 1068
- 17d Allen JM, Lambert TH. J. Am. Chem. Soc. 2011; 133: 1260
- 17e Deb ML, Dey SS, Bento I, Barros MT, Maycock CD. Angew. Chem. Int. Ed. 2013; 52: 9791
- 18a Kessar SV, Singh P, Vohra R, Kaur NP, Singh KN. J. Chem. Soc., Chem. Commun. 1991; 568
- 18b Kessar SV, Singh P. Chem. Rev. 1997; 97: 721
- 19a Singh KN, Singh P, Singh P, Deol YS. Org. Lett. 2012; 14: 2202
- 19b Singh KN, Singh P, Sharma E, Deol YS. Synthesis 2014; 46: 1739
- 20a Singh KN, Singh P, Singh P, Maheshwary Y, Kessar SV, Batra A. Synlett 2013; 24: 1963
- 20b Singh P, Batra A, Singh P, Kaur A, Singh KN. Eur. J. Org. Chem. 2013; 7688
- 20c Singh KN, Singh P, Kaur A, Singh P. Synlett 2012; 23: 760
- 21 Xu X, Li X. Org. Lett. 2009; 11: 1027
- 22a Su W, Yu J, Li Z, Jiang Z. J. Org. Chem. 2011; 76: 9144
- 22b Cosner CC, Cabrera PJ, Byrd KM, Thomas AM. A, Helquist P. Org. Lett. 2011; 13: 2071
- 22c Damu GL. V, Selvam JP, Rao CV, Venkateswarlu Y. Tetrahedron Lett. 2009; 50: 6154
- 22d Zhang Y, Li C.-J. J. Am. Chem. Soc. 2006; 128: 4242
- 22e Walker D, Hiebert JD. Chem. Rev. 1967; 67: 153
- 22f Fu PP, Harvey RG. Chem. Rev. 1978; 78: 317
- 23 Zhang J, Zhu D, Yu C, Wan C, Wang Z. Org. Lett. 2010; 12: 2841
- 24 We are grateful to the reviewers for bringing to our notice in reference 9b the references numbered 15, 17 and 24 which are related to our work.
- 25 Xu X, Li X, Ma L, Ye N. J. Am. Chem. Soc. 2008; 130: 14048
- 26a Wilson MW, Govindachari TR. Org. React. 1951; 6: 74
- 26b Marsden R, MacLean DB. Can. J. Chem. 1984; 62: 1392
- 26c Miller RB, Tsang T. Tetrahedron Lett. 1988; 29: 6715
- 27 Kajita M, Niwa T, Fujisaki M, Ueki M, Niimura K. J. Chromatogr. B 1995; 669: 345
- 28 Li C.-J, Mcleod P, Li ZP, Feng J. WO 2007,098,608, 2007
- 29a Valpuesta M, Ariza M, Diaz A, Suau R. Eur. J. Org. Chem. 2010; 4393
- 29b Jiashou W, Jian L, Jin Z, Jingen D. Synlett 2006; 2059
- 30 Ahluwalia GS, Narang KS, Rây JN. J. Chem. Soc. 1931; 2057
- 31 Ariza M, Diaz A, Suau R, Valpuesta M. Eur. J. Org. Chem. 2011; 6507
- 32 Voskressensky LG, Listratova AV, Borisova TN, Alexandrov GG, Varlamov AV. Eur. J. Org. Chem. 2007; 6106
- 33 Ye Z.-S, Guo R.-N, Cai X.-F, Chen M.-W, Shi L, Zhou Y.-G. Angew. Chem. Int. Ed. 2013; 52: 3685
- 34 Umetsu K, Asao N. Tetrahedron Lett. 2008; 49: 2722
- 35 Samano V, Ray JA, Thompson JB, Mook RA, Jung DK, Koble CS, Martin MT, Bigham EC, Regitz CS, Feldman PL. Org. Lett. 1999; 1: 1993








