Synthesis 2013; 45(18): 2583-2592
DOI: 10.1055/s-0033-1338507
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Functionalized Indanes via Palladium-Catalyzed Carboannulation of Diazabicyclic Olefins with o-Iodostyrenes

Eliyan Jijy
a   Organic Chemistry Section of Chemical Sciences and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019, India
,
Praveen Prakash
a   Organic Chemistry Section of Chemical Sciences and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019, India
,
Shreyass Saranya
a   Organic Chemistry Section of Chemical Sciences and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019, India
,
Eringathodi Suresh
b   Analytical Sciences Discipline, Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India   Fax: +91(471)2491712   Email: radhu2005@gmail.com
,
Kokkuvayil Vasu Radhakrishnan*
a   Organic Chemistry Section of Chemical Sciences and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019, India
› Author Affiliations
Further Information

Publication History

Received: 13 May 2013

Accepted after revision: 26 June 2013

Publication Date:
26 July 2013 (online)

 


Abstract

Palladium-catalyzed carboannulation of bicyclic and tricyclic hydrazines with substituted o-iodostyrenes produced functionalized indanes in good to excellent yields. The methodology provides an important carbocyclic ring system under relatively mild conditions.


#

Transition-metal-catalyzed annulation processes have proven to be a versatile route for the construction of complex cyclic systems.[1] The palladium-catalyzed annulation of alkenes,[2] alkynes[3] and arynes[4] with various substituted aryl and vinylic halides has been extensively studied by various groups. The reaction of o-iodostyrene with alkynes and norbornene was reported by Grigg and co-workers,[5] while the reactivity of o-iodostyrenes was efficiently utilized by Worlikar and Larock for the synthesis of substituted fluorenylidenes.[6] To the best of our knowledge, the reactivity of o-iodostyrenes towards diazabicyclic systems has not been investigated. Herein, we report the palladium-catalyzed reaction of o-iodostyrenes with diazanorbornene derivatives and with tricyclic olefins.

The reactivity of azabicyclic olefins with mono- and bicentered­ nucleophiles has been extensively studied.[7] [8] Desymmetrization of azabicyclic olefins utilizing monocentered nucleophiles results in the formation of either 3,4- or 3,5-disubstituted cyclopentenes. The heteroannulation and carboannulation of bicyclic hydrazines with various aromatic species having an ortho-bicentered reactive site, such as o-iodophenol, o-iodoaniline, o-iodobenzonitrile and 2-formylphenylboronic acids, enabled a novel and simple strategy for the synthesis of functionalized heterocycles and carbocycles.[9] [10] Our continued interest in the chemistry of bicyclic systems prompted us to carry out the reaction of various o-iodostyrenes with aza­bicyclic olefins. The results of our investigation are presented in this paper.

We initiated our studies with the reaction of diethyl 2,3-diazabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylate (1a) and ethyl 3-(2-iodophenyl)acrylate (2a) in the presence of Pd2(dba)3·CHCl3, triphenylphosphine and triethylamine in acetonitrile at 85 °C for 12 hours. The reaction afforded the functionalized indane as two separable isomers, 3aa and 4aa, in 40% yield (Scheme [1]). The structures of the products were established using various spectroscopic techniques.

Zoom Image
Scheme 1 Palladium-catalyzed reaction of diazabicyclic olefin 1a with o-iodostyrene 2a

We carried out detailed optimization studies in order to establish the best catalyst system for the reaction. The results are summarized in Table [1].

Of the various palladium catalysts screened, palladium(II) acetate furnished the product in highest yield (Table [1], entry 2). Triphenylphosphine was found to be most proficient among the different ligands examined (Table [1], entries 2, 4 and 5). The use of toluene as solvent delivered the indane derivatives in only 42% yield (Table [1], entry 6). From the detailed optimization studies, a 1:1 mixture of ethyl 3-(2-iodophenyl)acrylate (2a) and diethyl 2,3-diazabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylate (1a) with palladium(II) acetate (5 mol%), triphenylphosphine (10 mol%) and triethylamine (2.0 equiv) in anhydrous acetonitrile medium at 85 °C were found to be the best conditions for the reaction.

Table 1 Optimization Studiesa

Entry

Catalyst

Ligand

Base

Solvent

Yield (%)

3aa

4aa

1

Pd2(dba)3·CHCl3

Ph3P

Et3N

MeCN

30

10

2

Pd(OAc)2

Ph3P

Et3N

MeCN

65

23

3

[Pd(allyl)Cl]2

Ph3P

Et3N

MeCN

25

15

4

Pd(OAc)2

dppm

Et3N

MeCN

35

10

5

Pd(OAc)2

dppe

Et3N

MeCN

30

21

6

Pd(OAc)2

Ph3P

Et3N

toluene

25

17

a Reaction conditions: 1a (1.0 equiv), 2a (1.0 equiv), catalyst (5 mol%), ligand (10 mol%), base (2.0 equiv), solvent (2 mL), 85 °C, 12 h.

With the optimal conditions in hand, the scope of the reaction was tested with various diazabicyclic olefins; all the bicyclic hydrazines produced functionalized indanes in excellent yield. Table [2] lists the results of the palladium-catalyzed reaction of diazabicyclic olefins 1ad with ethyl 3-(2-iodophenyl)acrylate (2a).

Table 2 Reaction of Various Diazabicyclic Olefins with o-Iodostyrene 2a

Entry

Alkene

R

Product, yield

3

4

1

1a

Et

3aa 65%

4aa 23%

2

1b

i-Pr

3ba 69%

4ba 28%

3

1c

t-Bu

3ca 65%

4ca 32%

4

1d

Bn

3da 74%

4da 22%

The reactivity of various o-iodostyrenes was also tested under the optimal conditions. o-Iodostyrenes with functional groups such as ester, nitrile and ketone on the double bond were exploited to check the generality of the reaction; all these o-iodostyrenes rendered the corresponding functionalized indanes in excellent yield (Table [3]). In the case of (2-iodophenyl)acrylates (Table [3], entries 3, 6 and 11) and 3-(2-iodophenyl)-1-phenylprop-2-en-1-one (Table [3], entries 1, 4, 7 and 9), the Z-isomer 3 was generally obtained as the major product, but the selectivity was found to be reversed with 3-(2-iodophenyl)acrylonitrile. Thus, high E-selectivity was observed with this 2-iodostyrene having a nitrile functional group (Table [3], entries 2, 5, 8 and 10).

Table 3 Palladium-Catalyzed Reaction of Diazabicyclic Olefins with Various o-Iodostyrenes

Entry

Alkene

o-Iodostyrene

Product, yield

1

R1

2

R2

3

4

1

1a

Et

2b

COPh (E)

3ab 64%

4ab 33%

2

1a

Et

2c

CN (E)

3ac trace

4ac 69%

3

1a

Et

2d

CO2 t-Bu (Z/E)

3ad 61%

4ad 21%

4

1b

i-Pr

2b

COPh (E)

3bb 41%

4bb 42%

5

1b

i-Pr

2c

CN (E)

3bc trace

4bc 95%

6

1b

i-Pr

2d

CO2 t-Bu (Z/E)

3bd 63%

4bd 17%

7

1c

t-Bu

2b

COPh (E)

3cb 56%

4cb 40%

8

1c

t-Bu

2c

CN (E)

3cc trace

4cc 80%

9

1d

Bn

2b

COPh (E)

3db 75%

4db 20%

10

1d

Bn

2c

CN (E)

3dc trace

4dc 78%

11

1d

Bn

2d

CO2 t-Bu (Z/E)

3dd 40%

4dd 46%

The product 4bc was crystallized from ethyl acetate, and the structure and stereochemistry were unambiguously confirmed by single-crystal X-ray analysis (Figure [1]).[11] NOE experiments were also carried out to determine the geometry of the double bond in the products (Figure [2]). There was an NOE between the olefinic proton and the neighboring aromatic proton in the E-isomer 4ba, but no NOE was observed in the Z-isomer 3ba.

Zoom Image
Figure 1 ORTEP diagram of 4bc
Zoom Image
Figure 2 NOE experiments of compounds 4ba and 3ba

To further exploit the scope of the reaction, we extended our strategy to tricyclic and spirotricyclic olefins. The tricyclic hydrazine 1e delivered the products in lower yield than the spirotricyclic olefins 1f,g. This may be attributed to the low stability of the starting material under basic conditions.[12] The carboannulation of spirotricyclic olefins 1f,g with o-iodostyrenes having an ester functionality afforded the Z-isomer as the major product (Table [4], entries 3, 4 and 6). A reversal in the selectivity was observed when a keto functional group was present at the β-position to the aryl group (Table [4], entry 5). The same selectivity pattern was seen with the tricyclic hydrazine 1e (Table [4], entries 1 and 2).

Table 4 Palladium-Catalyzed Reaction of Tricyclic and Spirotricyclic Olefins with o-Iodostyrenes

Entry

Alkene

o-Iodostyrene

Product, yield

3

4

1

1e

3ea 40%

4ea trace

2

1e

3eb trace

4eb 53%

3

1f

3fa 73%

4fa trace

4

1g

3ga 77%

4ga trace

5

1g

3gb 40%

4gb 56%

6

1g

3gd 68%

4gd 25%

Based on the results, we propose a plausible mechanism (Scheme [2]). The first step of the catalytic cycle involves the oxidative addition of palladium(0) to the aryl iodide to generate the arylpalladium species A. In the next step, syn addition of the arylpalladium species to the C–C double bond of the bicyclic hydrazine generates the intermediate B. Then, the palladium–carbon bond in this intermediate adds across the neighboring olefin to give intermediate C.[13] β-Hydride elimination from intermediate C results in the formation of the product.

Zoom Image
Scheme 2 Proposed mechanism of the reaction

Molecules containing an indane scaffold exhibit a wide range of biological activities,[14] and possess great interest as functional materials[15] as well as precursors of metallocene complexes for catalytic polymerization processes.[16] Functionalized indanes obtained from the palladium-catalyzed reaction can be further utilized for the synthesis of cyclopentane-fused diaminoindanes by N–N bond cleavage using platinum-catalyzed hydrogenation.[17] Two bioactive molecules containing an indane core are shown in Figure [3].

Zoom Image
Figure 3 Biologically important molecules containing an indane core

In conclusion, functionalized indanes were efficiently synthesized by the palladium-catalyzed carboannulation of o-iodostyrenes with diazabicyclic olefins. The reaction also proceeds smoothly with tricyclic and spirotricyclic olefins. A variety of functional groups, such as ester, ketone and nitrile, as substituents on the iodostyrenes were well tolerated in the reaction, indicating the synthetic potential of the product indanes for further transformations. Studies toward the synthesis of cyclopentane-fused diaminoindanes are under way and will be reported in due course.

All reactions were conducted in oven-dried glassware. Solvents used for the experiments were distilled or dried as specified. Progress of the reactions was monitored by thin-layer chromatography, which was performed on Merck precoated plates (silica gel 60 F254, 0.25 mm) with visualization by fluorescence quenching under UV light or by staining with Enholm yellow. Column chromatography was done using 100–200 mesh silica gel and the appropriate mixture of hexane (60–80 °C) and EtOAc for elution. The solvents were removed using a Buchi rotary evaporator. IR spectra were recorded on a Bruker Alpha T FT-IR spectrophotometer. NMR spectra were recorded on Bruker Avance DPX 300 and AMX 500 FT-NMR spectrometers using CDCl3 or, for 13C NMR, a CDCl3–CCl4 mixture (7:3) as solvent. TMS was used as an internal standard and chemical shifts are in the δ-scale. High-resolution mass spectra were recorded under EI-HRMS conditions (at 60000 resolution) using a Thermo Scientific Exactive mass spectrometer.


#

Indanes by the Reaction of Azabicyclic Olefins with o-Iodostyrenes; General Procedure

An azabicyclic olefin (50 mg, 1 equiv), an o-iodostyrene (1 equiv), Pd(OAc)2 (5 mol%) and Ph3P (10 mol%) were weighed in a Schlenk tube and placed under vacuum for 15 min. Et3N (2 equiv) and MeCN (2 mL) were added to the tube, and the mixture was stirred at 85 °C for 12 h. The solvent was removed under reduced pressure and the residue was subjected to column chromatography (silica gel, EtOAc–hexane) to afford the functionalized indane in excellent yield.


#

Diethyl (Z)-9-(2-Ethoxy-2-oxoethylidene)-4,4a,9,9a-tetrahydro-1,4-methano-1H-indeno[1,2-d]pyridazine-2,3-dicarboxylate (3aa)

Yellow viscous liquid; yield: 56 mg (65%); Rf  = 0.23 (EtOAc–hexane, 3:7).

IR (neat): 3327, 3064, 2956, 2925, 2856, 2311, 1746, 1709, 1625, 1596, 1462, 1374, 1317, 1196, 1164, 1126, 1100, 1028, 862, 766, 646 cm–1.

1H NMR (300 MHz, CDCl3): δ = 8.92 (d, J = 7.8 Hz, 1 H), 7.39–7.32 (m, 3 H), 6.04 (s, 1 H), 4.46 (br s, 2 H), 4.27–4.20 (m, 6 H), 3.62 (s, 1 H), 3.44 (s, 1 H), 1.59 (s, 1 H), 1.51 (m, 1 H), 1.37–1.25 (m, 9 H).

13C NMR (125 MHz, CDCl3–CCl4): δ = 173.9, 165.7, 157.4, 148.3, 138.8, 132.1, 129.2, 128.5, 124.9, 113.9, 65.1, 64.9, 63.3, 62.5, 60.1, 52.1, 48.3, 30.2, 14.6, 14.5, 14.4.

MS (FAB): m/z [M+] calcd for C22H26N2O6: 414.18; found [M+ + 1]: 415.39.


#

Diethyl (E)-9-(2-Ethoxy-2-oxoethylidene)-4,4a,9,9a-tetrahydro-1,4-methano-1H-indeno[1,2-d]pyridazine-2,3-dicarboxylate (4aa)

Yellow viscous liquid; yield: 20 mg (23%); Rf  = 0.15 (EtOAc–hexane­, 3:7).

IR (neat): 3322, 2924, 2857, 2383, 2348, 2313, 1745, 1593, 1462, 1368, 1118, 1036, 860, 780, 665, 611 cm–1.

1H NMR (300 MHz, CDCl3): δ = 7.55 (d, J = 7.8 Hz, 1 H), 7.39 (m, 2 H), 7.32–7.29 (m, 1 H), 6.36 (d, J = 2.1 Hz, 1 H), 4.91 (s, 1 H), 4.54 (s, 1 H), 4.31–4.29 (m, 6 H), 3.99 (s, 1 H), 3.74 (s, 1 H), 1.63 (br s, 2 H), 1.38–1.28 (m, 9 H).

13C NMR (125 MHz, CDCl3–CCl4): δ = 173.9, 165.9, 158.0, 146.8, 141.1, 131.5, 128.1, 125.3, 121.6, 110.9, 64.9, 63.9, 63.4, 63.2, 62.4, 60.2, 50.1, 49.3, 31.7, 14.5, 14.4, 14.3.

HRMS (ESI): m/z [M+] calcd for C22H26N2O6: 414.17909; found [M+ + 1]: 415.17912.


#

Diethyl (Z)-9-(2-Oxo-2-phenylethylidene)-4,4a,9,9a-tetrahydro-1,4-methano-1H-indeno[1,2-d]pyridazine-2,3-dicarboxylate (3ab)

Yellow viscous liquid; yield: 59 mg (64%); Rf  = 0.19 (EtOAc–hexane, 3:7).

IR (neat): 3294, 3060, 2957, 2925, 2855, 2381, 2310, 1743, 1700, 1655, 1594, 1455, 1400, 1373, 1316, 1252, 1228, 1165, 1124, 1100, 1018, 907, 857, 786, 751, 697, 645 cm–1.

1H NMR (500 MHz, CDCl3): δ = 8.59 (s, 1 H), 8.02 (d, J = 8 Hz, 2 H), 7.59–7.56 (m, 1 H), 7.51–7.48 (m, 2 H), 7.41 (m, 2 H), 7.30–7.26 (m, 1 H), 7.06–7.02 (s, 1 H), 4.69–4.52 (m, 2 H), 4.29 (m, 4 H), 3.66–3.55 (m, 2 H), 1.55–1.49 (m, 2 H), 1.35 (m, 6 H).

13C NMR (75 MHz, CDCl3–CCl4): δ = 190.5, 156.3, 148.5, 138.8, 132.8, 131.9, 128.6, 128.3, 128.1, 62.5, 52.1, 49.0, 31.7, 14.6.

HRMS (ESI): m/z [M+] calcd for C26H26N2O5: 446.18417; found [M+ + 1]: 447.18432.


#

Diethyl (E)-9-(2-Oxo-2-phenylethylidene)-4,4a,9,9a-tetrahydro-1,4-methano-1H-indeno[1,2-d]pyridazine-2,3-dicarboxylate (4ab)

Yellow viscous liquid; yield: 31 mg (33%); Rf  = 0.13 (EtOAc–hexane, 3:7).

IR (neat): 3291, 3049, 2959, 2855, 2381, 2310, 1746, 1705, 1655, 1592, 1455, 1407, 1373, 1252, 1226, 1165, 1129, 1100, 1015, 907, 859, 761, 694, 645 cm–1.

1H NMR (500 MHz, CDCl3): δ = 8.05 (d, J = 7.5 Hz, 2 H), 7.73 (d, J = 7.5 Hz, 1 H), 7.58–7.43 (m, 6 H), 7.36–7.33 (m, 1 H), 5.00–4.58 (m, 2 H), 4.27–4.16 (m, 5 H), 3.77 (br s, 1 H), 1.46–1.43 (m, 2 H), 1.34–1.26 (m, 6 H).

13C NMR (75 MHz, CDCl3–CCl4): δ = 189.0, 147.9, 141.8, 139.3, 132.4, 132.0, 128.6, 128.1, 125.7, 121.6, 113.6, 62.5, 62.4, 50.5, 48.1, 31.9, 14.6, 14.5.

MS (FAB): m/z [M+] calcd for C26H26N2O5: 446.18; found: 446.71.


#

Diethyl (E)-9-(Cyanomethylene)-4,4a,9,9a-tetrahydro-1,4-methano-1H-indeno[1,2-d]pyridazine-2,3-dicarboxylate (4ac)

Off-white solid; yield: 53 mg (69%); mp 136–139 °C; Rf  = 0.08 (EtOAc–hexane, 3:7).

IR (neat): 3311, 3048, 2955, 2922, 2854, 2211, 1714, 1597, 1460, 1375, 1251, 1125, 1101, 854, 787, 699, 645 cm–1.

1H NMR (300 MHz, CDCl3): δ = 7.51–7.46 (m, 3 H), 7.36–7.30 (m, 1 H), 5.77 (d, J = 1.8 Hz, 1 H), 4.91 (s, 1 H), 4.67 (s, 1 H), 4.32–4.25 (m, 4 H), 3.78–3.69 (m, 2 H), 1.57–1.54 (m, 2 H), 1.40–1.25 (m, 6 H).

13C NMR (75 MHz, CDCl3–CCl4): δ = 163.6, 147.2, 139.4, 132.6, 128.6, 125.9, 121.7, 116.5, 88.8, 62.8, 62.1, 50.0, 31.9, 14.5.

HRMS (ESI): m/z [M+] calcd for C20H21N3O4: 367.15352; found: 367.15321.


#

Diethyl (Z)-9-(2-tert-Butoxy-2-oxoethylidene)-4,4a,9,9a-tetrahydro-1,4-methano-1H-indeno[1,2-d]pyridazine-2,3-dicarboxylate (3ad)

Yellow viscous liquid; yield: 56 mg (61%); Rf  = 0.31 (EtOAc–hexane, 3:7).

IR (neat): 3313, 2977, 2927, 2855, 1747, 1706, 1624, 1595, 1464, 1371, 1251, 1218, 1101, 1044, 1015, 985, 863, 798, 748, 698 cm–1.

1H NMR (300 MHz, CDCl3): δ = 8.86 (d, J = 7.8 Hz, 1 H), 7.36–7.26 (m, 3 H), 5.96 (s, 1 H), 4.43 (m, 2 H), 4.26 (m, 4 H), 3.56 (s, 1 H), 3.39 (s, 1 H), 1.53–1.24 (m, 17 H).

13C NMR (125 MHz, CDCl3–CCl4): δ = 173.8, 165.2, 157.6, 155.8, 148.1, 139.0, 131.3, 129.2, 128.0, 124.9, 116.1, 80.2, 65.1, 64.9, 63.4, 62.5, 52.0, 48.2, 31.6, 28.2, 14.6, 14.5.

HRMS (ESI): m/z [M+] calcd for C24H30N2O6: 442.21039; found [M+ + 1]: 443.21052.


#

Diethyl (E)-9-(2-tert-Butoxy-2-oxoethylidene)-4,4a,9,9a-tetrahydro-1,4-methano-1H-indeno[1,2-d]pyridazine-2,3-dicarboxylate (4ad)

Yellow viscous liquid; yield: 19 mg (21%); Rf  = 0.22 (EtOAc–hexane, 3:7).

IR (neat): 3305, 2955, 2923, 2854, 2312, 1742, 1704, 1628, 1597, 1459, 1371, 1254, 1146, 968, 853, 769, 645 cm–1.

1H NMR (300 MHz, CDCl3): δ = 7.52 (d, J = 7.8 Hz, 1 H), 7.37 (m, 2 H), 7.30–7.24 (m, 1 H), 6.28 (d, J = 2.1 Hz, 1 H), 4.84 (s, 1 H), 4.52 (s, 1 H), 4.25 (m, 4 H), 4.01 (s, 1 H), 3.74 (br s, 1 H), 1.65 (m, 1 H), 1.56 (m, 10 H), 1.46–1.22 (m, 6 H).

13C NMR (75 MHz, CDCl3–CCl4): δ = 172.8, 165.5, 157.5, 146.7, 141.4, 131.4, 128.1, 125.3, 122.2, 116.0, 112.7, 80.6, 65.2, 63.3, 62.5, 62.3, 50.4, 49.2, 31.9, 28.2, 14.6, 14.4.

MS (FAB): m/z [M + Na]+ calcd for C24H30N2NaO6: 465.20; found: 465.31.


#

Diisopropyl (Z)-9-(2-Ethoxy-2-oxoethylidene)-4,4a,9,9a-tetrahydro-1,4-methano-1H-indeno[1,2-d]pyridazine-2,3-dicarboxylate (3ba)

Yellow viscous liquid; yield: 57 mg (69%); Rf  = 0.3 (EtOAc–hexane, 3:7).

IR (neat): 2980, 2930, 1706, 1625, 1595, 1462, 1375, 1309, 1254, 1165, 1103, 1036, 972, 916, 856, 770, 665 cm–1.

1H NMR (300 MHz, CDCl3): δ = 8.91 (d, J = 7.8 Hz, 1 H), 7.38–7.12 (m, 3 H), 6.03 (s, 1 H), 5.01 (s, 2 H), 4.41 (m, 2 H), 4.23 (q, J = 9.3 Hz, 2 H), 3.59 (s, 1 H), 3.42 (s, 1 H), 1.71 (s, 1 H), 1.42–1.25 (m, 16 H).

13C NMR (125 MHz, CDCl3–CCl4): δ = 174.1, 165.8, 157.5, 148.5, 138.9, 131.6, 129.2, 128.1, 125.0, 113.8, 70.4, 70.2, 65.1, 64.7, 60.1, 52.0, 48.2, 31.5, 22.6, 22.0, 14.3.

HRMS (ESI): m/z [M+] calcd for C24H30N2O6: 442.21039; found [M+ + 1]: 443.21027.


#

Diisopropyl (E)-9-(2-Ethoxy-2-oxoethylidene)-4,4a,9,9a-tetrahydro-1,4-methano-1H-indeno[1,2-d]pyridazine-2,3-dicarboxylate (4ba)

Yellow viscous liquid; yield: 23 mg (28%); Rf  = 0.2 (EtOAc–hexane, 3:7).

IR (neat): 3325, 2979, 2929, 1706, 1631, 1599, 1462, 1373, 1306, 1258, 1166, 1103, 1043, 973, 914, 862, 769, 643 cm–1.

1H NMR (300 MHz, CDCl3): δ = 7.55 (d, J = 7.8 Hz, 1 H), 7.39 (s, 2 H), 7.31–7.27 (m, 1 H), 6.36 (d, J = 2.1 Hz, 1 H), 5.01–4.95 (m, 2 H), 4.91 (s, 1 H), 4.51 (s, 1 H), 4.30–4.28 (m, 2 H), 3.99 (s, 1 H), 3.71 (s, 1 H), 1.65 (s, 2 H), 1.42–1.26 (s, 15 H).

13C NMR (125 MHz, CDCl3–CCl4): δ = 173.9, 166.0, 157.9, 156.2, 146.9, 141.2, 131.5, 128.1, 125.3, 121.6, 110.8, 70.2, 69.8, 64.0, 63.3, 60.2, 50.3, 49.3, 31.9, 22.6, 21.9, 14.3.

MS (FAB): m/z [M+] calcd for C24H30N2O6: 442.21; found: 442.75.


#

Diisopropyl (Z)-9-(2-Oxo-2-phenylethylidene)-4,4a,9,9a-tetrahydro-1,4-methano-1H-indeno[1,2-d]pyridazine-2,3-dicarboxylate (3bb)

Yellow viscous liquid; yield: 36 mg (41%); Rf  = 0.29 (EtOAc–hexane, 3:7).

IR (neat): 3305, 3106, 3061, 2956, 2925, 2854, 2377, 2311, 1742, 1699, 1658, 1602, 1583, 1462, 1374, 1309, 1252, 1228, 1170, 1103, 1017, 973, 851, 786, 694, 646 cm–1.

1H NMR (300 MHz, CDCl3): δ = 8.59 (s, 1 H), 8.02 (d, J = 7.2 Hz, 2 H), 7.59–7.46 (m, 5 H), 7.30–7.27 (m, 1 H), 7.00 (s, 1 H), 5.04 (s, 2 H), 4.66–4.50 (m, 2 H), 3.64 (m, 2 H), 1.70 (s, 1 H), 1.46–1.33 (m, 13 H).

13C NMR (125 MHz, CDCl3–CCl4): δ = 190.4, 157.3, 156.6, 148.7, 139.1, 138.6, 132.7, 132.3, 131.8, 128.5, 128.0, 125.1, 121.5, 119.0, 70.1, 64.7, 63.3, 52.2, 50.2, 29.6, 22.6, 22.0, 21.7.

HRMS (ESI): m/z [M+] calcd for C28H30N2O5: 474.21547; found [M+ + 1]: 475.21577.


#

Diisopropyl (E)-9-(2-Oxo-2-phenylethylidene)-4,4a,9,9a-tetrahydro-1,4-methano-1H-indeno[1,2-d]pyridazine-2,3-dicarboxylate (4bb)

Yellow viscous liquid; yield: 37 mg (42%); Rf  = 0.2 (EtOAc–hexane, 3:7).

IR (neat): 3308, 2959, 2918, 2854, 2319, 1740, 1693, 1656, 1600, 1585, 1464, 1374, 1253, 1227, 1160, 1108, 972, 857, 786, 645 cm–1.

1H NMR (300 MHz, CDCl3): δ = 8.05 (d, J = 7.2 Hz, 2 H), 7.72 (d, J = 7.8 Hz, 1 H), 7.56–7.43 (m, 5 H), 7.36–7.33 (m, 1 H), 7.22–7.16 (m, 1 H), 5.02 (m, 3 H), 4.57 (s, 1 H), 4.15 (s, 1 H), 3.77 (m, 1 H), 1.44–1.25 (m, 14 H).

13C NMR (125 MHz, CDCl3–CCl4): δ = 187.4, 155.1, 146.5, 140.4, 137.9, 137.3, 131.8, 131.4, 131.0, 127.2, 126.7, 126.5, 126.3, 124.2, 120.2, 112.3, 68.9, 63.8, 62.1, 49.0, 45.2, 30.6, 21.3, 20.6.

MS (FAB): m/z [M+] calcd for C28H30N2O5: 474.22; found: 474.53.


#

Diisopropyl (E)-9-(Cyanomethylene)-4,4a,9,9a-tetrahydro-1,4-methano-1H-indeno[1,2-d]pyridazine-2,3-dicarboxylate (4bc)

Yellow solid; yield: 70 mg (95%); mp 114–118 °C; Rf  = 0.14 (EtOAc­–hexane, 3:7).

IR (neat): 3308, 3045, 2980, 2931, 2210, 1742, 1619, 1464, 1372, 1311, 1255, 1165, 1102, 1006, 915, 830, 762, 698, 646 cm–1.

1H NMR (300 MHz, CDCl3): δ = 7.50–7.45 (m, 3 H), 7.35–7.26 (m, 1 H), 5.77 (s, 1 H), 5.04–4.98 (m, 2 H), 4.91 (s, 1 H), 4.64 (s, 1 H), 3.76–3.69 (m, 2 H), 1.53–1.50 (m, 1 H), 1.37–1.23 (m, 13 H).

13C NMR (125 MHz, CDCl3–CCl4): δ = 172.9, 163.3, 147.2, 139.4, 132.6, 128.5, 125.9, 121.6, 116.5, 88.7, 70.7, 70.2, 63.4, 61.6, 53.3, 49.9, 31.8, 22.7, 22.0, 21.9.

HRMS (ESI): m/z [M+] calcd for C22H25N3O4: 395.18451; found [M+ + 1]: 396.18486.


#

Diisopropyl (Z)-9-(2-tert-Butoxy-2-oxoethylidene)-4,4a,9,9a-tetrahydro-1,4-methano-1H-indeno[1,2-d]pyridazine-2,3-dicarboxylate (3bd)

Yellow viscous liquid; yield: 55 mg (63%); Rf  = 0.38 (EtOAc–hexane, 3:7).

IR (neat): 2975, 2925, 2858, 2366, 2334, 1746, 1592, 1473, 1403, 1371, 1313, 1262, 1120, 1039, 855, 777, 718, 664 cm–1.

1H NMR (300 MHz, CDCl3): δ = 8.85 (d, J = 7.8 Hz, 1 H), 7.36–7.14 (m, 3 H), 5.97 (s, 1 H), 5.02 (s, 2 H), 4.41 (m, 2 H), 3.57–3.39 (m, 2 H), 1.61–1.54 (m, 8 H), 1.41–1.31 (m, 15 H).

13C NMR (125 MHz, CDCl3–CCl4): δ = 173.8, 165.3, 155.9, 148.2, 139.0, 132.1, 131.3, 129.2, 128.2, 128.0, 125.3, 116.5, 80.3, 70.1, 65.0, 58.5, 51.9, 48.2, 31.6, 28.3, 26.9, 22.0.

MS (FAB): m/z [M + Na]+ calcd for C26H34N2NaO6: 493.23; found: 493.52.


#

Diisopropyl (E)-9-(2-tert-Butoxy-2-oxoethylidene)-4,4a,9,9a-tetrahydro-1,4-methano-1H-indeno[1,2-d]pyridazine-2,3-dicarboxylate (4bd)

Yellow viscous liquid; yield: 15 mg (17%); Rf  = 0.29 (EtOAc–hexane, 3:7).

IR (neat): 2957, 2924, 2855, 1739, 1698, 1594, 1460, 1371, 1257, 1118, 1040, 977, 853, 771, 699, 645 cm–1.

1H NMR (300 MHz, CDCl3): δ = 7.52 (d, J = 7.5 Hz, 1 H), 7.37 (s, 2 H), 7.29–7.24 (s, 1 H), 6.28 (d, J = 2.1 Hz, 1 H), 5.01 (m, 2 H), 4.84 (s, 1 H), 4.49 (br s, 1 H), 4.00 (s, 1 H), 3.73 (br s, 1 H), 1.57 (m, 11 H), 1.42–1.26 (m, 12 H).

13C NMR (125 MHz, CDCl3–CCl4): δ = 173.0, 166.0, 161.7, 157.6, 146.8, 140.8, 131.6, 126.8, 126.2, 125.3, 117.0, 80.4, 70.3, 64.2, 61.7, 50.1, 48.7, 31.8, 28.3, 28.2, 22.7, 22.0.

HRMS (ESI): m/z [M+] calcd for C26H34N2O6: 470.24169; found [M+ + 1]: 471.24168.


#

Di-tert-butyl (Z)-9-(2-Ethoxy-2-oxoethylidene)-4,4a,9,9a-tetrahydro-1,4-methano-1H-indeno[1,2-d]pyridazine-2,3-dicarboxylate (3ca)

Yellow viscous liquid; yield: 50 mg (65%); Rf  = 0.48 (EtOAc–hexane­, 3:7).

IR (neat): 3478, 3065, 2960, 2927, 2858, 1741, 1709, 1627, 1597, 1461, 1367, 1254, 1194, 1162, 1131, 1101, 1036, 965, 897, 859, 770, 645 cm–1.

1H NMR (300 MHz, CDCl3): δ = 8.91 (d, J = 7.5 Hz, 1 H), 7.39–7.19 (m, 3 H), 6.05 (s, 1 H), 4.58–4.33 (m, 2 H), 4.26–4.19 (m, 2 H), 3.58–3.39 (m, 2 H), 1.71 (s, 1 H), 1.51–1.42 (m, 19 H), 1.36–1.25 (m, 3 H).

13C NMR (125 MHz, CDCl3–CCl4): δ = 173.5, 165.7, 157.7, 148.7, 138.9, 137.6, 131.5, 128.9, 128.1, 125.2, 113.8, 81.6, 81.3, 64.6, 63.6, 60.0, 51.9, 48.2, 31.5, 28.2, 14.3.

HRMS (ESI): m/z [M+] calcd for C26H34N2O6: 470.24169; found [M+ + 1]: 471.24829.


#

Di-tert-butyl (E)-9-(2-Ethoxy-2-oxoethylidene)-4,4a,9,9a-tetrahydro-1,4-methano-1H-indeno[1,2-d]pyridazine-2,3-dicarboxylate (4ca)

Yellow solid; yield: 24 mg (32%); mp 119–121 °C; Rf  = 0.39 (EtOAc­–hexane, 3:7).

IR (neat): 2976, 2929, 2381, 2311, 1706, 1630, 1598, 1457, 1366, 1338, 1257, 1161, 1101, 1042, 859, 770, 664, 611, 557 cm–1.

1H NMR (300 MHz, CDCl3): δ = 7.54 (d, J = 7.5 Hz, 1 H), 7.39 (s, 2 H), 7.31–7.21 (m, 1 H), 6.35 (s, 1 H), 4.87 (s, 1 H), 4.69–4.26 (m, 3 H), 3.98 (s, 1 H), 3.81–3.69 (m, 1 H), 1.65–1.34 (m, 23 H).

13C NMR (125 MHz, CDCl3–CCl4): δ = 173.6, 165.8, 156.4, 146.8, 140.8, 131.1, 127.6, 125.0, 121.2, 113.5, 80.9, 63.7, 62.9, 59.8, 49.8, 49.1, 31.5, 27.9, 27.7, 13.9.

MS (FAB): m/z [M + Na]+ calcd for C26H34N2NaO6: 493.23; found: 493.29.


#

Di-tert-butyl (Z)-9-(2-Oxo-2-phenylethylidene)-4,4a,9,9a-tetrahydro-1,4-methano-1H-indeno[1,2-d]pyridazine-2,3-dicarboxylate (3cb)

Yellow viscous liquid; yield: 48 mg (56%); Rf  = 0.45 (EtOAc–hexane­, 3:7).

IR (neat): 3553, 2924, 2856, 2385, 2347, 2310, 1737, 1593, 1461, 1421, 1367, 1317, 1258, 1123, 1040, 858, 779, 719 cm–1.

1H NMR (300 MHz, CDCl3): δ = 8.63 (s, 1 H), 8.04 (d, J = 6.9 Hz, 2 H), 7.59–7.41 (m, 5 H), 7.28–7.26 (m, 1 H), 7.03 (s, 1 H), 4.63–4.45 (m, 2 H), 3.66–3.53 (m, 2 H), 1.54–1.42 (m, 20 H).

13C NMR (125 MHz,CDCl3–CCl4): δ = 190.3, 156.8, 148.9, 139.1, 138.7, 132.7, 132.3, 131.8, 128.5, 128.0, 127.9, 125.5, 125.2, 125.0, 121.4, 119.6, 118.8, 113.5, 81.7, 81.4, 65.4, 64.3, 52.1, 48.3, 31.6, 28.2, 28.1.

MS (FAB): m/z [M + Na]+ calcd for C30H34N2NaO5: 525.24; found: 525.39.


#

Di-tert-butyl (E)-9-(2-Oxo-2-phenylethylidene)-4,4a,9,9a-tetrahydro-1,4-methano-1H-indeno[1,2-d]pyridazine-2,3-dicarboxylate (4cb)

Yellow solid; yield: 34 mg (40%); mp 95–99 °C; Rf  = 0.38 (EtOAc–hexane, 3:7).

IR (neat): 3305, 2924, 2853, 2310, 1736, 1694, 1658, 1592, 1454, 1365, 1338, 1251, 1136, 1083, 1016, 855, 754, 695, 645 cm–1.

1H NMR (300 MHz, CDCl3): δ = 8.05–8.03 (m, J = 6.9 Hz, 3 H), 7.72 (d, J = 7.8 Hz, 1 H), 7.56–7.44 (m, 5 H), 7.17 (m, 1 H), 4.50 (m, 2 H), 4.14 (s, 1 H), 3.76–3.52 (m, 1 H), 1.56–1.43 (m, 20 H).

13C NMR (125 MHz, CDCl3–CCl4): δ = 190.3, 156.8, 149.2, 148.1, 147.9, 146.3, 142.8, 142.1, 141.7, 133.1, 132.7, 132.3, 128.5, 128.0, 127.7, 127.6, 121.4, 113.5, 81.3, 64.5, 63.7, 52.0, 46.6, 31.5, 29.0, 28.1.

HRMS (ESI): m/z [M+] calcd for C30H34N2O5: 502.24677; found [M+ + 1]: 503.24696.


#

Di-tert-butyl (E)-9-(Cyanomethylene)-4,4a,9,9a-tetrahydro-1,4-methano-1H-indeno[1,2-d]pyridazine-2,3-dicarboxylate (4cc)

White solid; yield: 57 mg (80%); mp 178–181 °C; Rf  = 0.25 (EtOAc­–hexane, 3:7).

IR (neat): 3330, 3046, 2976, 2929, 2211, 1740, 1704, 1619, 1458, 1366, 1326, 1254, 1215, 1135, 1102, 1039, 1003, 968, 919, 887, 853, 760, 701, 645 cm–1.

1H NMR (300 MHz, CDCl3): δ = 7.50–7.43 (m, 3 H), 7.33–7.31 (m, 1 H), 5.78 (s, 1 H), 4.84–4.48 (m, 2 H), 3.75–3.65 (m, 2 H), 1.57–1.41 (m, 20 H).

13C NMR (75 MHz, CDCl3–CCl4): δ = 163.6, 160.6, 155.2, 147.4, 139.5, 132.5, 128.5, 125.8, 121.6, 116.6, 88.5, 81.8, 71.0, 63.2, 63.0, 61.7, 50.8, 50.2, 31.8, 28.3, 28.2.

HRMS (ESI): m/z [M + Na]+ calcd for C24H29N3NaO4: 446.20558; found: 446.20547.


#

Dibenzyl (Z)-9-(2-Ethoxy-2-oxoethylidene)-4,4a,9,9a-tetrahydro-1,4-methano-1H-indeno[1,2-d]pyridazine-2,3-dicarboxylate (3da)

Yellow viscous liquid; yield: 53 mg (74%); Rf  = 0.35 (EtOAc–hexane­, 3:7).

IR (neat): 3403, 3064, 3033, 2955, 2929, 1744, 1708, 1626, 1595, 1497, 1459, 1387, 1317, 1253, 1198, 1165, 1125, 1100, 1027, 911, 861, 743, 698, 648 cm–1.

1H NMR (300 MHz, CDCl3): δ = 8.90 (d, J = 7.8 Hz, 1 H), 7.33–7.14 (m, 13 H), 6.02 (s, 1 H), 5.22 (s, 4 H), 4.62–4.46 (m, 2 H), 4.23 (q, J = 7.2 Hz, 2 H), 3.56–3.36 (m, 2 H), 1.59 (s, 1 H), 1.50–1.46 (m, 1 H), 1.37–1.33 (m, 3 H).

13C NMR (75 MHz, CDCl3–CCl4): δ = 173.0, 165.7, 157.2, 148.3, 138.9, 136.0, 131.6, 129.3, 128.6, 128.3, 128.2, 128.0, 124.9, 114.2, 68.2, 60.1, 53.9, 49.2, 31.7, 14.4.

HRMS (ESI): m/z [M+] calcd for C32H30N2O6: 538.21039; found [M+ + 1]: 539.21051.


#

Dibenzyl (E)-9-(2-Ethoxy-2-oxoethylidene)-4,4a,9,9a-tetrahydro-1,4-methano-1H-indeno[1,2-d]pyridazine-2,3-dicarboxylate (4da)

Yellow viscous liquid; yield: 15 mg (22%); Rf  = 0.25 (EtOAc–hexane­, 3:7).

IR (neat): 3063, 3031, 2925, 2857, 2377, 2311, 1954, 1877, 1705, 1628, 1596, 1456, 1387, 1298, 1254, 1198, 1161, 1125, 1032, 862, 742, 697, 665, 609, 557 cm–1.

1H NMR (300 MHz, CDCl3): δ = 7.53 (d, J = 7.5 Hz, 1 H), 7.36–7.29 (m, 13 H), 6.35 (d, J = 2.1 Hz, 1 H), 5.23 (s, 4 H), 4.98 (s, 1 H), 4.55 (br s, 1 H), 4.24 (m, 2 H), 4.00 (s, 1 H), 3.67 (br s, 1 H), 1.60–1.43 (m, 2 H), 1.37–1.26 (m, 3 H).

13C NMR (125 MHz, CDCl3–CCl4): δ = 173.9, 165.6, 157.1, 148.2, 141.1, 138.8, 135.8, 131.6, 128.8, 128.5, 128.3, 128.1, 127.9, 125.3, 121.6, 113.9, 68.0, 65.1, 63.3, 60.1, 50.2, 49.4, 30.2, 14.3.

MS (FAB): m/z [M+] calcd for C32H30N2O6: 538.21; found [M+ + 1]: 539.98.


#

Dibenzyl (Z)-9-(2-Oxo-2-phenylethylidene)-4,4a,9,9a-tetrahydro-1,4-methano-1H-indeno[1,2-d]pyridazine-2,3-dicarboxylate (3db)

Brown viscous liquid; yield: 58 mg (75%); Rf  = 0.38 (EtOAc–hexane­, 3:7).

IR (neat): 3303, 3062, 3031, 2953, 2856, 2315, 1744, 1707, 1658, 1602, 1583, 1496, 1452, 1389, 1252, 1229, 1163, 1126, 1101, 940, 855, 751, 697, 648 cm–1.

1H NMR (500 MHz, CDCl3): δ = 8.62 (s, 1 H), 7.99 (s, 2 H), 7.71–7.69 (m, 1 H), 7.59 (t, J = 7 Hz, 1 H), 7.50 (t, J = 8 Hz, 2 H), 7.47–7.29 (m, 11 H), 7.19–7.16 (m, 1 H), 7.01 (m, 1 H), 5.24 (m, 4 H), 4.71–4.50 (m, 2 H), 3.66–3.52 (m, 2 H), 1.58–1.45 (m, 2 H).

13C NMR (125 MHz, CDCl3–CCl4): δ = 190.4, 168.4, 156.2, 148.5, 136.2, 136.0, 135.9, 133.2, 132.0, 128.6, 128.5, 128.3, 128.2, 128.1, 127.7, 125.1, 68.3, 68.0, 65.0, 63.2, 52.3, 46.5, 32.0.

HRMS (ESI): m/z [M+] calcd for C36H30N2O5: 570.21547; found [M+ + 1]: 571.21562.


#

Dibenzyl (E)-9-(2-Oxo-2-phenylethylidene)-4,4a,9,9a-tetrahydro-1,4-methano-1H-indeno[1,2-d]pyridazine-2,3-dicarboxylate (4db)

Brown viscous liquid; yield: 16 mg (20%); Rf  = 0.27 (EtOAc–hexane­, 3:7).

IR (neat): 3301, 3052, 3024, 2974, 2841, 2326, 1741, 1719, 1642, 1601, 1573, 1474, 1461, 1369, 1258, 1238, 1151, 1113, 1103, 956, 842, 768, 698, 664 cm–1.

1H NMR (500 MHz, CDCl3): δ = 8.03 (s, 2 H), 7.57–7.26 (m, 18 H), 5.23 (m, 4 H), 5.09 (br s, 1 H), 4.69–4.59 (m, 1 H), 4.19–4.14 (m, 1 H), 3.90–3.60 (m, 1 H), 1.54–1.44 (m, 2 H).

13C NMR (125 MHz, CDCl3–CCl4): δ = 190.9, 157.4, 156.6, 141.6, 139.2, 136.1, 135.7, 135.0, 132.7, 132.4, 131.9, 128.5, 128.4, 128.3, 128.1, 127.8, 121.1, 69.2, 67.9, 50.6, 46.4, 31.9.

HRMS (ESI): m/z [M+] calcd for C36H30N2O5: 570.21547; found [M+ + 1]: 571.21487.


#

Dibenzyl (E)-9-(Cyanomethylene)-4,4a,9,9a-tetrahydro-1,4-methano-1H-indeno[1,2-d]pyridazine-2,3-dicarboxylate (4dc)

Yellow solid; yield: 52 mg (78%); mp 156–158 °C; Rf  = 0.13 (EtOAc–hexane, 3:7).

IR (neat): 3581, 3288, 2924, 2855, 2379, 2210, 1744, 1597, 1459, 1418, 1384, 1256, 1119, 1020, 859, 751, 699, 646 cm–1.

1H NMR (300 MHz, CDCl3): δ = 7.49–7.26 (m, 14 H), 5.75 (s, 1 H), 5.27–5.16 (m, 4 H), 4.97 (s, 1 H), 4.66 (s, 1 H), 3.70 (m, 2 H), 1.64 (s, 1 H), 1.55–1.51 (m, 1 H).

13C NMR (75 MHz, CDCl3–CCl4): δ = 163.5, 157.5, 147.0, 139.3, 135.9, 135.8, 132.6, 130.8, 128.5, 128.4, 128.2, 127.9, 125.8, 121.7, 116.5, 88.9, 68.2, 63.6, 62.0, 50.1, 32.1.

HRMS (ESI): m/z [M+] calcd for C30H25N3O4: 491.18451; found [M+ + 1]: 492.18470.


#

Dibenzyl (Z)-9-(2-tert-Butoxy-2-oxoethylidene)-4,4a,9,9a-tetrahydro-1,4-methano-1H-indeno[1,2-d]pyridazine-2,3-dicarboxylate (3dd)

Yellow viscous liquid; yield: 31 mg (40%); Rf  = 0.38 (EtOAc–hexane­, 3:7).

IR (neat): 3056, 2956, 2925, 2854, 2313, 1739, 1706, 1624, 1456, 1388, 1251, 1146, 1022, 980, 860, 745, 695, 646 cm–1.

1H NMR (300 MHz, CDCl3): δ = 8.86 (d, J = 7.5 Hz, 1 H), 7.48–7.20 (m, 13 H), 6.39 (m, 1 H), 5.22 (s, 4 H), 4.45 (m, 2 H), 3.55 (m, 2 H), 1.54 (m, 11 H).

13C NMR (125 MHz, CDCl3–CCl4): δ = 174.0, 166.2, 165.2, 147.9, 134.6, 134.5, 132.1, 132.0, 131.8, 129.8, 128.5, 128.4, 128.3, 128.2, 128.0, 127.8, 127.6, 80.2, 70.2, 68.1, 65.1, 63.3, 52.8, 48.7, 31.9, 28.2.

MS (FAB): m/z [M + Na]+ calcd for C34H34N2NaO6: 589.23; found: 589.83.


#

Dibenzyl (E)-9-(2-tert-Butoxy-2-oxoethylidene)-4,4a,9,9a-tetrahydro-1,4-methano-1H-indeno[1,2-d]pyridazine-2,3-dicarboxylate (4dd)

Yellow viscous liquid; yield: 36 mg (46%); Rf  = 0.29 (EtOAc–hexane­, 3:7).

IR (neat): 3322, 2925, 2857, 1958, 1882, 1700, 1629, 1597, 1456, 1388, 1300, 1253, 1141, 1035, 911, 861, 761, 696, 609, 560 cm–1.

1H NMR (300 MHz, CDCl3): δ = 7.51 (d, J = 7.8 Hz, 1 H), 7.36–7.26 (m, 13 H), 6.27 (d, J = 2.1 Hz, 1 H), 5.22 (m, 4 H), 4.92 (s, 1 H), 4.53 (s, 1 H), 4.00 (s, 1 H), 3.65 (br s, 1 H), 1.58–1.50 (m, 11 H).

13C NMR (125 MHz, CDCl3–CCl4): δ = 173.0, 165.4, 157.3, 146.4, 141.2, 136.1, 135.8, 131.3, 128.3, 128.0, 127.9, 125.2, 121.5, 113.1, 80.6, 68.1, 67.8, 64.6, 63.0, 50.1, 48.9, 31.9, 28.1.

MS (FAB): m/z [M + Na]+ calcd for C34H34N2NaO6: 589.23; found: 589.33.


#

Ethyl (Z)-[2-(4-Methoxybenzyl)-1,3-dioxo-2,3,5,5a,10a,11-hexahydro-5,11-methanoindeno[1,2-d][1,2,4]triazolo[1,2-a]pyridazin-10(1H)-ylidene]acetate (3ea)

Brown viscous liquid; yield: 32 mg (40%); Rf  = 0.15 (EtOAc–hexane­, 3:7).

IR (neat): 3095, 2874, 2310, 1751, 1717, 1593, 1414, 1362, 1296, 1261, 1201, 1159, 1119, 1073, 1029, 958, 862, 816, 779, 723, 662 cm–1.

1H NMR (300 MHz, CDCl3): δ = 8.92 (d, J = 8.1 Hz, 1 H), 7.42–7.28 (m, 4 H), 7.21–7.13 (m, 2 H), 6.85 (d, J = 8.4 Hz, 1 H), 6.09 (s, 1 H), 4.56 (m, 3 H), 4.47 (s, 1 H), 4.23 (q, J = 6.9 Hz, 2 H), 3.87 (s, 3 H), 3.63 (d, J = 6.6 Hz, 1 H), 3.42 (d, J = 6.6 Hz, 1 H), 1.36–1.26 (m, 5 H).

13C NMR (125 MHz, CDCl3–CCl4): δ = 165.5, 157.8, 157.6, 156.0, 155.0, 147.1, 138.7, 131.9, 130.5, 129.4, 128.5, 128.1, 124.9, 122.8, 114.9, 112.0, 64.5, 63.1, 60.2, 56.0, 52.0, 48.8, 42.4, 32.8, 29.7, 14.3.

MS (FAB): m/z [M+] calcd for C26H25N3O5: 459.18; found [M+ + 1]: 460.19.


#

(E)-2-(4-Methoxybenzyl)-10-(2-oxo-2-phenylethylidene)-5,5a,10a,11-tetrahydro-5,11-methanoindeno[1,2-d][1,2,4]triazolo[1,2-a]pyridazine-1,3(2H,10H)-dione (4eb)

Brown viscous liquid; yield: 46 mg (53%); Rf  = 0.08 (EtOAc–hexane­, 3:7).

IR (neat): 3060, 2922, 2850, 2385, 2348, 2312, 1770, 1710, 1656, 1596, 1501, 1437, 1407, 1351, 1258, 1176, 1118, 1065, 1019, 956, 825, 753, 694, 611, 558 cm–1.

1H NMR (300 MHz, CDCl3): δ = 8.58 (d, J = 8.1 Hz, 1 H), 8.07–7.95 (m, 2 H), 7.58–7.40 (m, 6 H), 7.32–7.16 (m, 3 H), 7.04 (s, 1 H), 6.88–6.80 (m, 1 H), 4.58–4.54 (m, 4 H), 3.87 (s, 3 H), 3.68 (d, J = 6.9 Hz, 1 H), 3.54 (d, J = 6.6 Hz, 1 H), 1.64–1.61 (m, 2 H).

13C NMR (125 MHz, CDCl3–CCl4): δ = 190.5, 158.0, 157.8, 155.0, 154.8, 147.2, 139.0, 136.7, 133.3, 132.7, 132.2, 130.5, 128.3, 128.1, 128.0, 125.0, 122.7, 121.8, 120.2, 113.8, 112.1, 64.7, 63.2, 56.1, 52.4, 49.0, 42.5, 32.9, 29.7.

MS (FAB): m/z [M+] calcd for C30H25N3O4: 491.18; found [M+ + 1]: 492.19.


#

Diethyl (Z)-9-(2-Ethoxy-2-oxoethylidene)-4,4a,9,9a-tetrahydro-1H-spiro[1,4-methanoindeno[1,2-d]pyridazine-10,1′-cyclopropane]-2,3-dicarboxylate (3fa)

Yellow viscous liquid; yield: 61 mg (73%); Rf  = 0.19 (EtOAc–hexane­, 3:7).

IR (neat): 3328, 2925, 2857, 2404, 2310, 1744, 1705, 1597, 1461, 1374, 1311, 1227, 1192, 1117, 1024, 857, 787, 700, 646 cm–1.

1H NMR (500 MHz, CDCl3): δ = 9.01 (d, J = 6.5 Hz, 1 H), 7.47–7.37 (m, 3 H), 6.04–6.00 (m, 1 H), 4.43–4.29 (m, 6 H), 4.23–4.18 (m, 1 H), 3.93–3.65 (m, 3 H), 1.46–1.35 (m, 10 H), 0.66–0.49 (m, 3 H).

13C NMR (125 MHz, CDCl3–CCl4): δ = 173.0, 166.1, 158.7, 149.2, 139.7, 131.7, 129.4, 128.3, 125.2, 114.3, 113.3, 68.3, 63.5, 63.2, 62.7, 60.4, 53.3, 49.7, 30.8, 15.0, 14.7, 6.8.

HRMS (ESI): m/z [M+] calcd for C24H28N2O6: 440.19474; found [M+ + 1]: 441.19493.


#

Diisopropyl (Z)-9-(2-Ethoxy-2-oxoethylidene)-4,4a,9,9a-tetrahydro-1H-spiro[1,4-methanoindeno[1,2-d]pyridazine-10,1′-cyclopropane]-2,3-dicarboxylate (3ga)

Yellow viscous liquid; yield: 62 mg (77%); Rf  = 0.29 (EtOAc–hexane­, 3:7).

IR (neat): 3066, 2980, 2933, 2875, 2372, 2344, 1743, 1709, 1697, 1467, 1375, 1305, 1195, 1178, 1141, 1030, 957, 916, 859, 834, 772, 721, 667, 608, 554 cm–1.

1H NMR (500 MHz, CDCl3): δ = 9.01 (s, 1 H), 7.47–7.38 (m, 3 H), 6.17 (m, 1 H), 5.13 (s, 2 H), 4.34–4.33 (m, 2 H), 4.22–4.19 (m, 1 H), 3.99–3.64 (m, 3 H), 1.46–1.40 (m, 15 H), 1.00–0.94 (m, 1 H), 0.67–0.52 (m, 3 H).

13C NMR (125 MHz, CDCl3–CCl4): δ = 173.0, 166.2, 146.4, 140.0, 131.6, 130.1, 129.4, 128.2, 126.7, 126.4, 125.9, 125.3, 120.2, 70.8, 70.3, 69.3, 60.4, 45.6, 30.1, 20.0, 19.6, 14.7, 6.8.

HRMS (ESI): m/z [M+] calcd for C26H32N2O6: 468.22604; found [M+ + 1]: 469.22609.


#

Diisopropyl (Z)-9-(2-Oxo-2-phenylethylidene)-4,4a,9,9a-tetrahydro-1H-spiro[1,4-methanoindeno[1,2-d]pyridazine-10,1′-cyclopropane]-2,3-dicarboxylate (3gb)

Brown viscous liquid; yield: 34 mg (40%); Rf  = 0.26 (EtOAc–hexane­, 3:7).

IR (neat): 2979, 2929, 2382, 1741, 1694, 1655, 1592, 1462, 1372, 1177, 1107, 919, 856, 775, 702, 665, 611, 557 cm–1.

1H NMR (500 MHz, CDCl3): δ = 8.67–8.61 (m, 1 H), 8.01 (d, J = 7 Hz, 2 H), 7.58–7.55 (m, 1 H), 7.50–7.47 (m, 3 H), 7.39 (m, 2 H), 7.28 (m, 1 H), 5.05 (m, 2 H), 4.17 (s, 1 H), 3.99–3.67 (m, 3 H), 1.32–1.25 (m, 12 H), 0.98–0.96 (m, 1 H), 0.64–0.40 (m, 3 H).

13C NMR (125 MHz, CDCl3–CCl4): δ = 189.0, 156.4, 148.1, 137.7, 134.0, 131.6, 131.3, 130.5, 127.5, 127.4, 127.0, 126.8, 123.9, 69.3, 68.9, 67.2, 52.8, 52.0, 48.3, 30.8, 21.6, 20.8, 5.5.

MS (FAB): m/z [M + Na]+ calcd for C30H32N2NaO5: 523.22; found: 523.19.


#

Diisopropyl (E)-9-(2-Oxo-2-phenylethylidene)-4,4a,9,9a-tetrahydro-1H-spiro[1,4-methanoindeno[1,2-d]pyridazine-10,1′-cyclopropane]-2,3-dicarboxylate (4gb)

Brown viscous liquid; yield: 48 mg (56%); Rf  = 0.18 (EtOAc–hexane­, 3:7).

IR (neat): 3064, 2978, 2928, 2856, 1740, 1692, 1657, 1591, 1464, 1370, 1305, 1226, 1176, 1106, 1016, 956, 856, 831, 755, 696, 644 cm–1.

1H NMR (500 MHz, CDCl3): δ = 8.09 (m, 1 H), 7.96 (d, J = 7.5 Hz, 1 H), 7.72 (d, J = 7.5 Hz, 1 H), 7.56–7.41 (m, 5 H), 7.35–7.32 (m, 1 H), 7.22–7.15 (m, 1 H), 5.02 (m, 2 H), 4.14–3.75 (m, 3 H), 3.39–3.27 (m, 1 H), 1.33–1.24 (m, 12 H), 0.90–0.86 (m, 1 H), 0.48–0.28 (m, 3 H).

13C NMR (125 MHz, CDCl3–CCl4): δ = 188.4, 173.3, 165.4, 146.2, 141.1, 132.1, 131.3, 130.5, 127.5, 127.4, 127.0, 126.8, 126.6, 126.3, 120.3, 69.1, 68.4, 67.6, 52.2, 45.8, 30.9, 20.9, 20.8, 5.5.

HRMS (ESI): m/z [M+] calcd for C30H32N2O5: 500.23112; found [M+ + 1]: 501.23124.


#

Diisopropyl (Z)-9-(2-tert-Butoxy-2-oxoethylidene)-4,4a,9,9a-tetrahydro-1H-spiro[1,4-methanoindeno[1,2-d]pyridazine-10,1′-cyclopropane]-2,3-dicarboxylate (3gd)

Brown viscous liquid; yield: 57 mg (68%); Rf  = 0.33 (EtOAc–hexane­, 3:7).

IR (neat): 3272, 2977, 2928, 1736, 1694, 1593, 1463, 1376, 1310, 1229, 1120, 1027, 924, 858, 776, 719, 667, 613, 560 cm–1.

1H NMR (500 MHz, CDCl3): δ = 8.83 (s, 1 H), 7.35–7.29 (m, 3 H), 6.00 (m, 1 H), 5.04 (s, 2 H), 4.12–4.09 (br s, 1 H), 3.84–3.51 (m, 3 H), 1.54 (s, 9 H), 1.43–1.30 (m, 12 H), 0.98–0.96 (m, 1 H), 0.59–0.37 (m, 3 H).

13C NMR (125 MHz, CDCl3–CCl4): δ = 173.8, 164.3, 155.6, 147.6, 138.5, 129.9, 127.9, 126.8, 123.8, 79.1, 69.3, 68.9, 67.2, 52.4, 48.2, 29.7, 27.3, 21.1, 6.0.

MS (FAB): m/z [M + Na]+ calcd for C28H36N2NaO6: 519.25; found: 519.77.


#

Diisopropyl (E)-9-(2-tert-Butoxy-2-oxoethylidene)-4,4a,9,9a-tetrahydro-1H-spiro[1,4-methanoindeno[1,2-d]pyridazine-10,1′-cyclopropane]-2,3-dicarboxylate (4gd)

Brown viscous liquid; yield: 21 mg (25%); Rf  = 0.28 (EtOAc–hexane­, 3:7).

IR (neat): 3307, 2978, 2926, 2855, 1713, 1626, 1594, 1513, 1463, 1377, 1233, 1175, 1108, 1040, 930, 853, 765 cm–1.

1H NMR (500 MHz, CDCl3): δ = 7.52 (d, J = 7.5 Hz, 1 H), 7.35–7.34 (m, 2 H), 7.28–7.27 (m, 1 H), 6.26 (s, 1 H), 5.05 (m, 2 H), 4.29 (s, 1 H), 4.14 (s, 1 H), 3.98–3.87 (m, 2 H), 1.55 (s, 9 H), 1.33–1.28 (m, 12 H), 0.91–0.86 (m, 1 H), 0.51–0.33 (m, 3 H).

13C NMR (125 MHz, CDCl3–CCl4): δ = 171.7, 164.7, 157.5, 146.0, 140.9, 134.1, 130.1, 130.0, 127.2, 127.1, 126.8, 124.0, 120.3, 111.2, 79.6, 69.0, 68.6, 68.1, 66.7, 50.5, 49.1, 29.4, 27.1, 20.9, 5.5.

HRMS (ESI): m/z [M+] calcd for C28H36N2O6: 496.25734; found [M+ + 1]: 497.25746.


#
#

Acknowledgment

J.E. and P.P. thank CSIR for research fellowships. Financial assistance from the Department of Science and Technology (DST No: SR/S1/OC-78/2009, INT/FINLAND/P-01/1) and Council of Scientific and Industrial Research (12th FYP, ORIGIN-CSC-0108), New Delhi is greatly acknowledged. We also thank Mr B. Adarsh, Ms Saumini Mathew, Mr Saran P. Raveendran, Mr Preethanuj Preethalayam­ and Ms S. Viji for recording the NMR and mass spectra.

Supporting Information



Zoom Image
Scheme 1 Palladium-catalyzed reaction of diazabicyclic olefin 1a with o-iodostyrene 2a
Zoom Image
Figure 1 ORTEP diagram of 4bc
Zoom Image
Figure 2 NOE experiments of compounds 4ba and 3ba
Zoom Image
Scheme 2 Proposed mechanism of the reaction
Zoom Image
Figure 3 Biologically important molecules containing an indane core