Subscribe to RSS
DOI: 10.1055/s-0031-1290344
Efficient and General Synthesis of 3-Aryl Coumarins Using Cyanuric Chloride [¹]
Publication History
Publication Date:
10 February 2012 (online)
Abstract
An efficient and general protocol for a rapid synthesis of different substituted 3-aryl coumarins is reported. A series of different substituted phenyl acetic acids have been successfully reacted with different substituted 2-hydroxy benzaldehydes in the presence of cyanuric chloride (2,4,6-trichloro-1,3,5-triazine) and N-methyl morpholine to afford 3-aryl coumarins in good to excellent yields.
Key words
synthesis - 3-aryl coumarins - cyanuric chloride - 2-hydroxy benzaldehyde
Coumarins are an important class of compounds, which occupy a special role in nature. [²] [³] The diverse biological and pharmaceutical properties of natural and synthetic coumarins as anti-HIV, [4] anticoagulant, [5] antibacterial, [6] antioxidant, [7] and anticancer agents [8] are well known. In the last few years our research group has been engaged in the synthesis of new biologically active coumarins. [9] In particular, the 3-phenylcoumarin scaffold has been the focus of our most recent studies with some compounds exhibiting significant antidepressant activity [¹0] and coumestrol (3-phenylcoumarin) being one of the most important known phytoestrogens. Furthermore, some 3-phenylcoumarins have been demonstrated to play an important role in monoamino oxidase inhibition. [¹¹]

Scheme 1 Reaction between 2-hydroxy benzaldehyde (1a) and 4-methoxy phenyl acetic acid (1b) promoted by TCT
Different synthetic strategies are known in the literature for the synthesis of substituted 3-aryl coumarins derivatives. The well-known Knoevenagel condensation, [¹²] [¹³] Wittig, [¹4] Pechmann, [¹5] [¹6] and Perkin reactions, [¹7-²¹] are some of the synthetic routes commonly used to synthesize 3-aryl coumarins derivatives. Besides these routes, 3-aryl coumarins were also prepared using DCC, DDQ, NaOH, POCl3, and the Mukaiyama reagent (2-chloro-1-methylpyridinium iodide). [¹6] [²²] Very recently, Matos et al. have developed a Pd-catalyzed cross-coupling reaction for the synthesis of substituted 3-aryl coumarins. [²³]
Most of the methods for the synthesis of the 3-aryl coumarins suffer from low yields and/or long reaction times. Therefore, in spite of the present methodologies, there is still a need to explore a versatile synthetic methodology for the construction of a chemical library of 3-substituted coumarin derivatives.
Entry | Base (mmol) | Solvent | Time (min) | Temp (˚C) | Yield (%)a | ||||||||||||||
1 | pyridine (3.0) | DMF | 180 | 110 | 30 | ||||||||||||||
2 | piperidine (3.0) | DMF | 180 | 110 | 45 | ||||||||||||||
3 | Et3N (3.0) | DMF | 180 | 110 | 40 | ||||||||||||||
4 | K2CO3 (3.0) | DMF | 180 | 110 | 30 | ||||||||||||||
5 | NMM (3.0) | DMF | 180 | 110 | 95 | ||||||||||||||
6 | NMM (1.5) | DMF | 180 | 110 | 95 | ||||||||||||||
7 | NMM (1.0) | DMF | 180 | 110 | 83 | ||||||||||||||
8 | NMM (1.5) | DMF | 30 | 110 | 95 | ||||||||||||||
9 | NMM (1.5) | DMF | 45 | r.t. | 0 | ||||||||||||||
10 | NMM (1.5) | DMF | 45 | 60 | 25 | ||||||||||||||
11 | NMM (1.5) | DMF | 45 | 90 | 75 | ||||||||||||||
12 | NMM (1.5) | MeCN | 60 | 100 | 46 | ||||||||||||||
| |||||||||||||||||||
a Yields after
purification by column chromatography. |
Cyanuric chloride (2,4,6-trichloro-1,3,5-triazine or TCT) has received considerable attention for the preparation of alkyl chlorides, [²4] Beckmann rearrangement products, [²5] isonitriles, [²6] bis(indolyl)methanes, [²7] thiiranes, [²8] dihydropyridines, [²9] 14-aryl and alkyl-14-H-dibenzo[a,j]xanthenes, [³0] alcohols, [³¹] diazocarbonyl, [³²] acyl azides, [³³] hydroxamic acids, [³4] and acyl chlorides. [³5] Recently, cyanuric chloride has also been used in the Friedel-Craft acylation for the formation of carbonyl compounds in excellent yield. [³6] In this paper, we wish to report a very simple and highly efficient method for the synthesis of 3-aryl coumarin derivatives, using 2-hydroxy benzaldehydes and phenylacetic acid derivatives in the presence of cyanuric chloride. To the best our knowledge, this is the first example of a cyanuric chloride mediated synthesis of substituted 3-aryl coumarins.
Thus, we demonstrated that 3-aryl coumarin derivative 1c can be easily synthesized from 2-hydroxy benzaldehyde (1a) and 4-methoxy phenyl acetic acid (1b), by employing TCT (use of 1.0 mmol molar ratio gave best results, Scheme [¹] ). Different sets of conditions (reaction times, temperatures, base molar ratios, and solvents) were tried to investigate the efficacy and selectivity of cyanuric chloride (Table [¹] ).
From Table [¹] , it is clear that N-methylmorpholine at 1.5 mmol promotes the reaction to produce the desired product 3-aryl coumarin 1c in 95% yield (Table [¹] , entry 8) in 30 minutes. In a brief solvent screen, DMF gave best yields at a temperature of 110 ˚C.
With the optimized reaction conditions in hand, we explored the generality and scope of the reaction by using diverse 2-hydroxybenzaldehydes and a variety of phenylacetic acids, and representative examples are summarized in Table [²] . 2-Hydroxybenzaldehydes bearing either electron-withdrawing or electron-donating groups were converted into the corresponding 3-aryl coumarins in very short reaction times and in excellent yields (90-99%, Table [²] , entries 1-14). To generalize our reagent system to more complex systems, we examined several chalcone-substituted 2-hydroxybenzaldehydes 15a-20a (derived from the reaction of 4a with appropriate acetophenones), [9d] which readily underwent smooth conversion under the optimized conditions to afford a wide range of 3-aryl coumarins 15c-22c, Table [²] , entries 15-22) in good to excellent yields, indicating that this reaction is quite general and has very broad substrate scopes.
As shown in Table [²] , all the substrates participated very efficiently in the reaction to afford the desired products in very short times (30-90 min only) and better yields than those reported by earlier methods. [²¹] All compounds were characterized through ¹H, ¹³C NMR, MS, and IR spectroscopic studies. [³7]
A plausible mechanism for the formation of 3-aryl coumarin derivatives is given in Scheme [²] . It is postulated that an initial reaction of cyanuric chloride [³³] [³6] with N-methylmorpholine generates adduct (I), which upon the nucleophilic attack of the carboxyl group of phenyl acetic acid (2b), leads to the formation of ester (II), that subsequently reacts with 2-hydroxybenzaldehyde (1a) to form ester (III), which, on consequent intramolecular cyclization-dehydration, furnishes the 3-aryl coumarin 7c.

Scheme 2 Plausible mechanism of cyanuric chloride mediated reaction of 2-hydroxy benzaldehydes and phenyl acetic acid
In summary, we have developed a simple and efficient method for the synthesis of substituted 3-aryl coumarins in good to excellent yields using cyanuric chloride. The important features of this methodology are shorter reaction times and higher yields compared to previously known methods and simple experimental procedure.
Supporting Information for this article is available online at http://www.thieme-connect.com.accesdistant.sorbonne-universite.fr/ejournals/toc/synlett. They include spectral data of all the compounds associated with this article.
- Supporting Information for this article is available online:
- Supporting Information
Acknowledgment
The authors thank the SAIF Division for providing the spectroscopic and analytical data. The authors are grateful to Dr Tushar K. Chakraborty (Director, CDRI) for his constant support and encouragement. G.R.P, A.S.R and A.K are thankful to CSIR, New Delhi, India for financial support. This is CDRI communication number 8169.
- 2
Kennedy RO.Thornes RD. Coumarins: Biology, Applications and Mode of Action Wiley; New York.: 1997. - 3
Hoult JRS.Paya M. Gen. Pharmacol. 1996, 27: 713 - 4
Ma T.Liu L.Xue H.Li L.Han C.Wang L.Chen Z.Liu G. J. Med. Chem. 2008, 51: 1432 - 5
Kidane AG.Salacinski HA.Tiwari KR.Bruckdorfer AM. Biomacromolecules 2004, 5: 798 - 6
Appendino G.Mercalli E.Fuzzati N.Arnoldi L.Stavri M.Gibbons S.Ballero M.Maxia A. J. Nat. Prod. 2004, 67: 2108 - 7
Kontogiorgis CA.Hadjipavlou LD. Bioorg. Med. Chem. Lett. 2004, 14: 611 - 8
Go ML.Wu X.Liu XL. Curr. Med. Chem. 2005, 12: 483 - 9a
Sashidhara KV.Kumar A.Kumar M.Sonkar R.Bhatia G.Khanna AK. Bioorg. Med. Chem. Lett. 2010, 20: 4248 - 9b
Sashidhara KV.Rosaiah JN.Kumar A.Bhatia G.Khanna AK. Bioorg. Med. Chem. Lett. 2010, 20: 3065 - 9c
Sashidhara KV.Kumar A.Kumar M.Srivastava A.Puri A. Bioorg. Med. Chem. Lett. 2010, 20: 6504 - 9d
Sashidhara KV.Kumar A.Kumar M.Sarkar J.Sinha S. Bioorg. Med. Chem. Lett. 2010, 20: 7205 - 9e
Sashidhara KV.Rosaiah JN.Kumar M.Gara RK.Nayak LV.Srivastava K.Bid HK.Konwar R. Bioorg. Med. Chem. Lett. 2010, 20: 7127 - 9f
Sashidhara KV.Rosaiah JN.Bhatia G.Saxena JK. Eur. J. Med. Chem. 2008, 2592 - 10
Sashidhara KV.Kumar A.Chatterjee M.Rao KB.Singh S.Verma AK.Palit G. Bioorg. Med. Chem. Lett. 2011, 21: 1937 - 11a
Santana L.González-Díaz H.Quezada E.Uriarte E.Yáñez M.Viña D.Orallo F. J. Med. Chem. 2008, 51: 6740 - 11b
Matos MJ.Viña D.Quezada E.Picciau C.Delogu G.Orallo F.Santana L.Uriarte E. Bioorg. Med. Chem. Lett. 2009, 19: 3268 - 11c
Matos MJ.Viña D.Picciau C.Orallo F.Santana L.Uriarte E. Bioorg. Med. Chem. Lett. 2009, 19: 5053 - 12
Bogdal D. J. Chem. Res. Synop. 1998, 468 - 13
Mali RS.Tilve SG. Synth. Commun. 1990, 20: 1781 - 14
Mali RS.Joshi PP. Synth. Commun. 2001, 31: 2753 - 15a
Ming Y.Boykin DW. Heterocycles 1987, 26: 3229 - 15b
Vilar S.Quezada E.Santana L.Uriarte E.Yanez M.Fraiz N.Alcaide C.Cano E.Orallo F. Bioorg. Med. Chem. Lett. 2006, 16: 257 - 16a
Hans N.Singhi M.Sharma V.Grover SK. Indian J. Chem., Sect B: Org. Chem. Incl. Med. Chem. 1996, 11: 1159 - 16b
Santana L.González-Díaz H.Quezada E.Uriarte E.Yáñez M.Viña D.Orallo F. J. Med. Chem. 2008, 51: 6740 - 17
Khiri C.Ladhar F.El Gharbi R.Le Bigot Y. Synth. Commun. 1999, 29: 1451 - 18
Mohanty S.Makrandi JK.Grove SK. Indian J. Chem., Sect B: Org. Chem. Incl. Med. Chem. 1989, 28: 766 - 19
Langmuir ME.Yang JR.Moussa AM.Laura R.Lecompte KA. Tetrahedron Lett. 1995, 36: 3989 - 20
Mashraqui S.Vashi D.Mistry HD. Synth. Commun. 2004, 34: 3129 - 21
Kabeya LM.de Marchi AA.Kanashiro A.Lopes NP.da Silva CH. Bioorg. Med. Chem. 2007, 15: 1516 - 22a
Kadnikov DV.Larock RC. J. Organomet. Chem. 2003, 687: 425 - 22b
Bäuerle P, andSchiedel MS. inventors; WO 2001068635. - 23
Matos MJ.Vazquez-Rodriguez S.Borges F.Santana L.Uriarte E. Tetrahedron Lett. 2011, 52: 1225 - 24
Luca LD.Giacomelli G.Porcheddu A. Org. Lett. 2002, 4: 553 - 25
Luca LD.Giacomelli G.Porcheddu A. J. Org. Chem. 2002, 67: 6272 - 26
Porcheddu A.Giacomelli G.Salaris M. J. Org. Chem. 2005, 70: 2361 - 27
Sharma GVM.Reddy JJ.Lakshmi PS.Krishna PR. Tetrahedron Lett. 2004, 45: 7729 - 28
Bandgar BP.Joshi NS.Kamble VT. Tetrahedron Lett. 2006, 47: 4775 - 29
Sharma GVM.Reddy KL.Lakshmi PS.Krishna PR. Synthesis 2006, 55 - 30
Bigdeli MA.Heravi MM.Mahdavinia GH. Catal. Commun. 2007, 8: 1595 - 31
Falorni M.Porcheddu A.Tadei M. Tetrahedron Lett. 1999, 40: 4395 - 32
Forbes DC.Barrett EJ.Lewis DL.Smith MC. Tetrahedron Lett. 2000, 41: 9943 - 33
Bandgar BP.Pandit SS. Tetrahedron Lett. 2002, 43: 3413 - 34
Giacomelli G.Porcheddu A.Salaris M. Org. Lett. 2003, 5: 2715 - 35a
Luo G.Xu L.Poindexter GS. Tetrahedron Lett. 2002, 43: 8909 - 35b
Venkataraman K.Wagle DR. Tetrahedron Lett. 1979, 20: 3037 - 36a
Kangani CO.Day BW. Org. Lett. 2008, 10: 2645 - 36b
Mahdi J.Ankati H.Gregory J.Tenner B.Biehl ER. Tetrahedron Lett. 2011, 52: 2594
References and Notes
Part VIII in the series ‘Studies on Novel Synthetic Methodologies’.
37
Representative
Experimental Procedure for the Synthesis of 3-(4′-Methoxy
Phenyl) Coumarin (1c)
A mixture of cyanuric chloride
(377 mg, 1.0 mmol), NMM (331 mg, 1.5 mmol), and 4-methoxyphenylacetic
acid (1b, 340 mg, 1 mmol) in DMF (5 mL)
was stirred at r.t. for 10 min. After this time 2-hydroxybenzaldehyde
(1a, 250 mg, 1 mmol) was added. Subsequently,
the resulting reaction mixture was refluxed for 45 min. Completion
of the reaction was monitored by TLC. The reaction mixture was diluted with
H2O (10 mL) and extracted 3 times with EtOAc (15 mL).
The combined organic layers were dried over Na2SO4, filtered,
and concentrated to dryness under reduced pressure. The residue
was purified by column chromatography (Al2O3,
70-230 mesh, neutral, hexane-CH2Cl2)
to provide pure 1c [3-(4′-methoxyphenyl)coumarin] as
a colorless crystalline solid; yield 95%; mp 146-148 ˚C.
IR (KBr): 3033, 1705, 1633, 1020 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 7.75 (s,
1 H), 7.68 (d, J = 8.8
Hz, 2 H), 7.53-7.47 (m, 2 H), 7.36-7.28 (m, 2
H), 6.97 (d, J = 8.8
Hz, 2 H), 3.85 (s, 3 H). ¹³C NMR (75
MHz, CDCl3): δ = 160.8, 160.2, 153.3, 138.5,
131.0, 129.9, 127.9, 127.8, 127.1, 124.5, 119.9, 116.4, 113.9, 55.4.
ESI-MS: m/z = 252 [M + H]+.
- 2
Kennedy RO.Thornes RD. Coumarins: Biology, Applications and Mode of Action Wiley; New York.: 1997. - 3
Hoult JRS.Paya M. Gen. Pharmacol. 1996, 27: 713 - 4
Ma T.Liu L.Xue H.Li L.Han C.Wang L.Chen Z.Liu G. J. Med. Chem. 2008, 51: 1432 - 5
Kidane AG.Salacinski HA.Tiwari KR.Bruckdorfer AM. Biomacromolecules 2004, 5: 798 - 6
Appendino G.Mercalli E.Fuzzati N.Arnoldi L.Stavri M.Gibbons S.Ballero M.Maxia A. J. Nat. Prod. 2004, 67: 2108 - 7
Kontogiorgis CA.Hadjipavlou LD. Bioorg. Med. Chem. Lett. 2004, 14: 611 - 8
Go ML.Wu X.Liu XL. Curr. Med. Chem. 2005, 12: 483 - 9a
Sashidhara KV.Kumar A.Kumar M.Sonkar R.Bhatia G.Khanna AK. Bioorg. Med. Chem. Lett. 2010, 20: 4248 - 9b
Sashidhara KV.Rosaiah JN.Kumar A.Bhatia G.Khanna AK. Bioorg. Med. Chem. Lett. 2010, 20: 3065 - 9c
Sashidhara KV.Kumar A.Kumar M.Srivastava A.Puri A. Bioorg. Med. Chem. Lett. 2010, 20: 6504 - 9d
Sashidhara KV.Kumar A.Kumar M.Sarkar J.Sinha S. Bioorg. Med. Chem. Lett. 2010, 20: 7205 - 9e
Sashidhara KV.Rosaiah JN.Kumar M.Gara RK.Nayak LV.Srivastava K.Bid HK.Konwar R. Bioorg. Med. Chem. Lett. 2010, 20: 7127 - 9f
Sashidhara KV.Rosaiah JN.Bhatia G.Saxena JK. Eur. J. Med. Chem. 2008, 2592 - 10
Sashidhara KV.Kumar A.Chatterjee M.Rao KB.Singh S.Verma AK.Palit G. Bioorg. Med. Chem. Lett. 2011, 21: 1937 - 11a
Santana L.González-Díaz H.Quezada E.Uriarte E.Yáñez M.Viña D.Orallo F. J. Med. Chem. 2008, 51: 6740 - 11b
Matos MJ.Viña D.Quezada E.Picciau C.Delogu G.Orallo F.Santana L.Uriarte E. Bioorg. Med. Chem. Lett. 2009, 19: 3268 - 11c
Matos MJ.Viña D.Picciau C.Orallo F.Santana L.Uriarte E. Bioorg. Med. Chem. Lett. 2009, 19: 5053 - 12
Bogdal D. J. Chem. Res. Synop. 1998, 468 - 13
Mali RS.Tilve SG. Synth. Commun. 1990, 20: 1781 - 14
Mali RS.Joshi PP. Synth. Commun. 2001, 31: 2753 - 15a
Ming Y.Boykin DW. Heterocycles 1987, 26: 3229 - 15b
Vilar S.Quezada E.Santana L.Uriarte E.Yanez M.Fraiz N.Alcaide C.Cano E.Orallo F. Bioorg. Med. Chem. Lett. 2006, 16: 257 - 16a
Hans N.Singhi M.Sharma V.Grover SK. Indian J. Chem., Sect B: Org. Chem. Incl. Med. Chem. 1996, 11: 1159 - 16b
Santana L.González-Díaz H.Quezada E.Uriarte E.Yáñez M.Viña D.Orallo F. J. Med. Chem. 2008, 51: 6740 - 17
Khiri C.Ladhar F.El Gharbi R.Le Bigot Y. Synth. Commun. 1999, 29: 1451 - 18
Mohanty S.Makrandi JK.Grove SK. Indian J. Chem., Sect B: Org. Chem. Incl. Med. Chem. 1989, 28: 766 - 19
Langmuir ME.Yang JR.Moussa AM.Laura R.Lecompte KA. Tetrahedron Lett. 1995, 36: 3989 - 20
Mashraqui S.Vashi D.Mistry HD. Synth. Commun. 2004, 34: 3129 - 21
Kabeya LM.de Marchi AA.Kanashiro A.Lopes NP.da Silva CH. Bioorg. Med. Chem. 2007, 15: 1516 - 22a
Kadnikov DV.Larock RC. J. Organomet. Chem. 2003, 687: 425 - 22b
Bäuerle P, andSchiedel MS. inventors; WO 2001068635. - 23
Matos MJ.Vazquez-Rodriguez S.Borges F.Santana L.Uriarte E. Tetrahedron Lett. 2011, 52: 1225 - 24
Luca LD.Giacomelli G.Porcheddu A. Org. Lett. 2002, 4: 553 - 25
Luca LD.Giacomelli G.Porcheddu A. J. Org. Chem. 2002, 67: 6272 - 26
Porcheddu A.Giacomelli G.Salaris M. J. Org. Chem. 2005, 70: 2361 - 27
Sharma GVM.Reddy JJ.Lakshmi PS.Krishna PR. Tetrahedron Lett. 2004, 45: 7729 - 28
Bandgar BP.Joshi NS.Kamble VT. Tetrahedron Lett. 2006, 47: 4775 - 29
Sharma GVM.Reddy KL.Lakshmi PS.Krishna PR. Synthesis 2006, 55 - 30
Bigdeli MA.Heravi MM.Mahdavinia GH. Catal. Commun. 2007, 8: 1595 - 31
Falorni M.Porcheddu A.Tadei M. Tetrahedron Lett. 1999, 40: 4395 - 32
Forbes DC.Barrett EJ.Lewis DL.Smith MC. Tetrahedron Lett. 2000, 41: 9943 - 33
Bandgar BP.Pandit SS. Tetrahedron Lett. 2002, 43: 3413 - 34
Giacomelli G.Porcheddu A.Salaris M. Org. Lett. 2003, 5: 2715 - 35a
Luo G.Xu L.Poindexter GS. Tetrahedron Lett. 2002, 43: 8909 - 35b
Venkataraman K.Wagle DR. Tetrahedron Lett. 1979, 20: 3037 - 36a
Kangani CO.Day BW. Org. Lett. 2008, 10: 2645 - 36b
Mahdi J.Ankati H.Gregory J.Tenner B.Biehl ER. Tetrahedron Lett. 2011, 52: 2594
References and Notes
Part VIII in the series ‘Studies on Novel Synthetic Methodologies’.
37
Representative
Experimental Procedure for the Synthesis of 3-(4′-Methoxy
Phenyl) Coumarin (1c)
A mixture of cyanuric chloride
(377 mg, 1.0 mmol), NMM (331 mg, 1.5 mmol), and 4-methoxyphenylacetic
acid (1b, 340 mg, 1 mmol) in DMF (5 mL)
was stirred at r.t. for 10 min. After this time 2-hydroxybenzaldehyde
(1a, 250 mg, 1 mmol) was added. Subsequently,
the resulting reaction mixture was refluxed for 45 min. Completion
of the reaction was monitored by TLC. The reaction mixture was diluted with
H2O (10 mL) and extracted 3 times with EtOAc (15 mL).
The combined organic layers were dried over Na2SO4, filtered,
and concentrated to dryness under reduced pressure. The residue
was purified by column chromatography (Al2O3,
70-230 mesh, neutral, hexane-CH2Cl2)
to provide pure 1c [3-(4′-methoxyphenyl)coumarin] as
a colorless crystalline solid; yield 95%; mp 146-148 ˚C.
IR (KBr): 3033, 1705, 1633, 1020 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 7.75 (s,
1 H), 7.68 (d, J = 8.8
Hz, 2 H), 7.53-7.47 (m, 2 H), 7.36-7.28 (m, 2
H), 6.97 (d, J = 8.8
Hz, 2 H), 3.85 (s, 3 H). ¹³C NMR (75
MHz, CDCl3): δ = 160.8, 160.2, 153.3, 138.5,
131.0, 129.9, 127.9, 127.8, 127.1, 124.5, 119.9, 116.4, 113.9, 55.4.
ESI-MS: m/z = 252 [M + H]+.

Scheme 1 Reaction between 2-hydroxy benzaldehyde (1a) and 4-methoxy phenyl acetic acid (1b) promoted by TCT




































































Scheme 2 Plausible mechanism of cyanuric chloride mediated reaction of 2-hydroxy benzaldehydes and phenyl acetic acid