Synlett 2012(2): 208-214  
DOI: 10.1055/s-0031-1290118
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Remarkable Switch in the Regiochemistry of the Iodination of Anilines by N-Iodosuccinimide: Synthesis of 1,2-Dichloro-3,4-diiodobenzene

Hao Shen, K. Peter C. Vollhardt*
Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720-1460, USA
Fax: +1(510)6435208; e-Mail: kpcv@berkeley.edu;

Further Information

Publication History

Received 2 November 2011
Publication Date:
22 December 2011 (online)

Abstract

Direct iodination of anilines by NIS in polar solvents (such as DMSO) affords p-iodinated products with up to >99% ­regioselectivity. Switching to less polar solvents (such as benzene) in the presence of AcOH inverts this outcome toward dramatically increased or preferential generation of the o-isomers, also with up to >99% regioselectivity. This finding was exploited in the synthesis of 1,2-dichloro-3,4-diiodobenzene.

The electrophilic iodination of anilines has a long history, featuring a myriad of reagents. [¹] Typically, para-substitution dominates, [²] and attempts to change this selectivity have been based primarily on N-directed ortho-metallation strategies. [¹d-g] [³] However, ortho-iodination can be quite competitive, even in the case of aniline itself (see, e.g. ref. 2j), raising the question whether regiocontrol might be attained by simple alteration of reaction conditions. [4] Herein, we report a convenient, regioswitchable method for the iodination of anilines by N-iodosuccinimide (NIS).

Our work was inspired by the need to synthesize angularly (1,2- versus 3,4-) differentiated 1,2,3,4-tetrahalobenzene derivatives as building blocks for the construction of angular phenylenes. [5] With the exception of 1,2-dichloro-3,4-difluorobenzene, [6] such compounds are unknown. We therefore embarked on a synthesis of 1,2-dichloro-3,4-diiodobenzene (5), which we deemed more suitable for our purposes. An attractive route to 5 appeared to be via iodination of commercial 2,3-dichloroaniline (1a), if selective attack at the 6-position to give 2a (Scheme  [¹] ) could be attained, and subsequent diazotization-iodination.

Accordingly, 1a was exposed to a variety of iodinating conditions, such as I(py)2BF4, TfOH, CH2Cl2, [²v] I2, Ag2SO4, EtOH; [²w] py, ICl, MeOH; [7] I2, KI, H2O; and NIS, AcOH, [4a] always furnishing almost exclusively the para product 3a, with the exception of the last variant, for which ¹H NMR product analysis indicated clean conversion into 2a, 3a, and 4a in the ratio 13:81:6 (isolated yields on a 2-mmol scale 6%, 59%, and 6%, respectively; Scheme  [¹] ). [8]

Scheme 1 Iodination of 2,3-dichloroaniline (1a) by NIS (1.05 equiv) in AcOH

Scheme 2 Structural confirmations of 2a and 3a by their respective conversion into 5 and 6

Since the spectral data did not permit a rigorous assignment of the position of the iodine substituent in 2a and 3a, chemical structural proof was provided by conversion into the corresponding diiodides 5 and 6, in 90% and 51% yields, respectively (Scheme  [²] ). Thus, the ¹H NMR spectrum of 5 shows two aromatic doublets at δ = 7.73 and 7.19 ppm, its ¹³C NMR counterpart six peaks at δ = 137.6, 137.5, 131.7, 131.0, 114.1, and 107.0 ppm. On the other hand, the symmetry of 6 is apparent by a corresponding singlet proton signal at δ = 7.44 ppm and three carbon ­resonances at δ = 139.0, 136.9, and 98.8 ppm.

Encouraged by the relatively sizeable quantities of 2a observed in Scheme  [¹] , a number of solvents were screened to further improve this outcome (Table  [¹] ). [4b] It is evident that the 2a to 3a ratio increases with decreasing solvent dielectric constant, ranging from 2:98 in DMSO to 42:58 in benzene. The only outlier is CH2Cl2 (entry 12), which performed unexpectedly well, possibly due to contamination of commercial material by acid (vide infra). Ether solvents (entries 9 and 10) failed to show measurable conversions. Interestingly, a solvent-less run (entry 1), while unsuccessful at r.t., reproduced approximately the outcome of entry 7 at 95 ºC (AcOH).

Table 1 Iodination of 1a by NIS in Various Solventsa
Entry Solventb Dielectric constant (ε) Conversion (%)c 2a:3a:4a c
 1 noned -  89 13:87:0
 2 DMSO 46.7  92  2:98:0
 3 DMF 38  94  4:96:0
 4 EtOH 24.6 100  4:96:0
 5 acetone 21  82  5:95:0
 6 MeCN 37.5  70  7:93:0
 7 AcOH  6.2 100 10:89:1
 8 EtOAc  6.0  60 20:80:0
 9 THF  7.5 trace -
10 dioxane  2.3 trace -
11 toluene  2.4  33 23:77:0
12 CH2Cl2  9.1  78 40:60:0
13 benzene  2.3  49 42:58:0

a Reaction conditions: In a 10 mL round bottom flask, 1a (0.25 mmol) was dissolved in the solvent (5 mL), the mixture was stirred for 5 min, and then NIS (0.25 mmol) was added. The flask was capped and stirring was continued at r.t. for 72 h. b The solvents were used as received from vendors.
c Determined by ¹H NMR analysis of the crude mixture.
d The solid starting materials were ground to a fine powdered mixture. After 20 h at r.t., there was no appreciable conversion, hence the mixture was heated to 95 ˚C for 1 h. For solvent-free halogenations, see ref. 1b.

To probe the influence of added acid on the experiments in Table  [¹] , a similar screen was executed using various amounts of AcOH as co-solvent (Table  [²] ). Notably, the added acid improved the efficiency of the reaction and allowed it to occur even in ether solvents. When AcOH was employed in large excess (1.5 mL, 26 mmol, ca. 100 equiv; entries 1-10), the ortho/para iodination ratios stayed unchanged from those in Table  [¹] . Remarkably, however, a dramatic increase in the proportion of ortho-iodination, up to 89:11, occurred on gradual reduction of the quantity of AcOH (entries 11-14).

Table 2 Iodination of 1a by NIS in Various Solvents Containing AcOHa
Entry AcOH amount Solvent
(mL)b
Conversion (%) 2a:3a c
 1 1.5 mL DMSO (3.0) 96  2:98
 2 1.5 mL DMF (3.0) 98  2:98
 3 1.5 mL EtOH (3.0) 99  4:96
 4 1.5 mL MeCN (3.0) 98  7:93
 5 1.5 mL THF (3.0) 96 15:85
 6 1.5 mL EtOAc (3.0) 94 19:81
 7 1.5 mL Et2O (3.0) 94 22:78
 8 1.5 mL dioxane (3.0) 94 29:71
 9 1.5 mL CH2Cl2 (3.0) 96 38:62
10 1.5 mL benzene (3.0) 89 45:55
11 20 equivd,e benzene (5.0)e 96 76:24
12 10 equivd,e benzene (5.0)e 96 80:20
13 5 equivd,e benzene (5.0)e 84 85:15
14 1 equivd,e benzene (5.0)e 66f 89:11

a Reaction conditions: In a 10 mL round-bottom flask, 1a (0.25 mmol) and AcOH (various amounts, see column 2) were dissolved in the solvent (various amounts, see column 3). The reaction mixture was stirred for 5 min and then NIS (0.25 mmol) was added. The flask was capped and stirring was continued at r.t. for 72 h. b The solvents were used as received from vendors unless otherwise stated.
c Determined by ¹H NMR analysis of the crude mixture.
d Relative to 1a.
e Distilled from CaH2. The use of undried benzene reduced the ortho-selectivity by ca. 10%.
f Prolonged reaction times or use of 1.3 equiv of NIS increased the conversion to >90%.

With optimized conditions for the regioselective generation of 2a and 3a, respectively, from 1a in hand, the question arose to which extent this chemistry could be generalized to other anilines, especially those without sterically compensating meta-substituents, including aniline itself. Gratifyingly, the answer was largely in the affirmative (Table  [³] ). Thus, aniline (1b) and NIS in DMSO gave high yields of iodoaniline with the normal para-selectivity (95%, entry b-1), a result that is repeated for the remainder of the substrates 1 under these conditions. [²] In sharp contrast, when 1b was treated with NIS in benzene-AcOH (1.05 equiv), the regiochemistry inverted to reflect preferential ortho-attack (73%, entry b-2). A similar trend is noted for the other aniline derivatives, in most cases furnishing substantial (c-2, k-2, l-2 and, o-2-q-2), if not dominant (entries e-2-i-2, m-2, and n-2), quantities of ortho-iodination products. Most remarkable is the selectivity observed for 1-naphthalenamine, which occurs in the absence of favorable statistical factors and overrides the normal preference for α attack by electrophiles (n-2). Impressive is also the regioswitch in the case of strongly deactivated 3-nitroaniline (1h; entries h-1 and h-2), although excess AcOH (20 equiv) was necessary to achieve reasonable conversion (72%) in benzene. The data indicate that encumbering the amino group appears to be detrimental to the ortho/para ratio (entries c-2-f-2, k-2, l-2, compared to entry b-2). The sensitivity of the amino function to NIS is evident in some cases, which either failed (entry j-2) or were marred by side reactions, including overiodination (entries i-2, n-2-q-2). No attempts were made to improve on these results, but in light of the data reported in Tables  [¹] -  [³] , such optimization should be possible and may require the development of a unique protocol for each compound of interest.

Some exploratory experiments indicate that this chemistry may be applicable to other halogenations. Thus, bromination of parent aniline (1b) with NBS under the same conditions as those employed for entry b-1 engendered the two bromoanilines with ortho/para ratio of 10:90 (>90% conversion). Switching to the conditions of entry b-2 changed this ratio to 51:49 (>90% conversion). Changing the reagent to NCS in DMSO essentially failed to convert 1b, but with AcOH in benzene provided the two chloro­anilines (ortho/para = 70:30; >90% conversion). Finally, applying the respective recipes to 1j with NBS resulted in a switch of the ratios of the two tribromoanilines from ortho/para <1:>99 to 23:77, with >90% conversion in each case.

Table 3 Regioselectivity in the Iodination of Anilines by NIS (continued)
Solvent = DMSOa
Solvent = AcOH (1.05 equiv) in benzeneb
Aniline (1) Entry Conversion (%)c 2:3 (ortho/para) (%)c Entry Conversion (%)c 2:3 (ortho/para) (%)c

(1a)
a-1 >90  2:98 a-2  66 89:11

(1b)
b-1 >90  5:95 b-2 >90 73:27

(1c)
c-1 >90  6:94 c-2 >90 43:57

(1d)
d-1 >90 <1:>99 d-2 >90 <1:>99

(1e)
e-1 >90 <1:>99 e-2  74 62:38

(1f)
f-1 >90  1:99 f-2 >90 59:41

(1g)
g-1 >90  7:93d g-2 >90  89:11d

(1h)
h-1  78 17:83e h-2  72 >99:<1f

(1i)
i-1 >90 14:86g i-2  90  69:31h

(1j)
j-1 >90 <1:>99 j-2  <5 -i

(1k)
k-1 >90 <1:>99 k-2  30  37:63

(1l)
l-1 >90 <1:>99 l-2 >90  25:75

(1m)
m-1 >90 14:86 m-2 >90  98:2j

(1n)
n-1  88 17:83k n-2  60  90:10l

(1o)
o-1 >90 <1:>99 o-2 >90  15:85m

(1p)
p-1 >90 <1:>99 p-2 >90  22:78n

(1q)
q-1 >90 <1:>99 q-2 >90 25:75o

a Reaction conditions: In a 25 mL round-bottom flask, 1 (0.5 mmol) in DMSO (10 mL) was stirred for 5 min, and then NIS (0.5 mmol) was added. The flask was capped, and stirring was continued at r.t. for 72 h. b Reaction conditions: In a 25 mL round-bottom flask, 1 (0.5 mmol) in a solution of AcOH (0.525 mmol) in benzene (distilled from CaH2; 10 mL) was stirred for 5 min, and then NIS (0.5 mmol) was added. The flask was capped, and stirring was continued at r.t. for 72 h. c Determined by ¹H NMR analysis of the crude mixture. The known structures were confirmed by comparison of their ¹H NMR spectra with those rigorously assigned in the literature, whereas new compounds were isolated and fully characterized (see the Supporting Information for details).
d The ortho-iodo products were comprised of 5-chloro-2-iodoaniline and 3-chloro-2-iodoaniline (see Scheme  [³] ).
e Products consisted of 2-iodo-5-nitroaniline (10%), 2-iodo-3-nitroaniline (3%), 4-iodo-3-nitroaniline (65%), and 2,4-diiodo-3-nitroaniline (1%).
f To achieve substantial conversion, 20 equiv of AcOH were necessary. Products consisted of 2-iodo-5-nitroaniline (48%), 2-iodo-3-nitroaniline (15%), and an unidentified species (9%). 4-Iodo-3-nitroaniline was not detected.
g The only ortho-iodo product was 2-iodo-5-methoxyaniline. The product mixture also contained 2,4-diiodo-5-methoxyaniline (2%).
h The only ortho-iodo product was 2-iodo-5-methoxyaniline. The product mixture also contained 2,4-diiodo-5-methoxyaniline (5%).
i The ¹H NMR spectrum showed traces of 2,5-dibromo-4-iodoaniline and unidentified material exhibiting signals in the δ = 7.0-7.9 ppm range.
j A higher amount (1.3 equiv) of NIS was employed.
k The product mixture contained 2,4-diiodonaphthalen-1-amine (20%).
l The product mixture contained 2,4-diiodonaphthalen-1-amine (8%). m The ¹H NMR spectrum showed the presence of 3-iodopyridin-2-amine (5%), 5-iodopyridin-2-amine (29%), and an unknown product (66%).
n The mixture contained ortho- (13%), para- (46%), and an unidentified product (41%).
o The mixture contained ortho- (24%), para- (70%), and a minor unidentified product (6%).

In contemplation of a possible mechanistic rationale for these observations, it is interesting that the experimental and computed heats of formation of ortho- and para-­iodoaniline are practically identical, [9] accenting considerations other than sterics, possibly frontier orbital, [¹0] electronic, [¹h] and H-bonding effects.

Many species have been proposed as protagonists in the electrophilic iodination of aromatics with a variety of reagents, [¹] [¹¹] most pertinently those involving acids (usually) as solvents. [²h] [i] [l] [r] [4a] [¹¹a] [c-f] [i] [j] [l] [n] To explain our increased ortho-selectivity in nonpolar solvents in the presence of equivalent amounts of AcOH, we suggest the intervention of A in Figure  [¹] as a possible simplest transition state. Another option might be B, should acetic hypoiodous anhydride (AcOI) function as the attacking species. [¹¹] In polar solvents, solvation of the amino group through dipolar and H-bonding processes would then direct the electrophile to the para position. [¹²]

Figure 1 Suggested transition state for the ortho-iodination of aniline (1b) in benzene-AcOH (1 equiv)

In view of the ready switch of the regioselectivity of these iodinations with reaction conditions, it is clear that a special onus is on researchers introducing new reagents to effect such transformations to rigorously ascertain the structures of their products. This is particularly important in cases in which ¹H NMR peak multiplicity is not diagnostic, such as in the iodination of 3-mono- (e.g., 1g- 1i), 2,3-di (e.g., 1a, 1n, 1q), and 2,3,5-trisubstituted anilines. Here chemical derivatization (as, e.g., shown in Scheme  [²] ) or X-ray confirmation may be required. In an attempt to reconcile the data for the known compounds listed in Table  [³] with the literature (SciFinder), we encountered numerous instances of either insufficient, ambiguous, incongruous, or simply incorrect assignments (see Supporting Information).

Scheme 3 Iodination of 3-chloroaniline (1g) in AcOH, [¹6a] DMSO (Table 3, entry g-1), and benzene-AcOH (Table 3, entry g-2)

An illustrative case in point is the conversion of 3-chloroaniline (1g) into the three monoiodo derivatives 2g, 2g′, and 3g (Table  [³] , entries g-1/g-2). Isomers 2g and 2g′ have been constructed unambiguously by reduction of their respective nitro derivatives, fully described, and their structures confirmed by subsequent chemistry. [¹³] [¹4] The para-iodo relative 3g was made by the iodination of 1g with ­benzyltrimethylammonium dichloroiodate and also ­fully ­described, in particular by its ¹H NMR spectrum. [¹5] Valgeirsson et al. purport to arrive at 2g by treatment of 1g with NIS in AcOH (70%), [¹6a] a procedure subsequently employed by Raffa et al. [¹6b] Since this result appeared at odds with ours, we repeated this preparation under the ­reported conditions to furnish 2g/2g′/3g/4g = 12%:0%:79%:9% (Scheme  [³] ). Thus, the assignments of 2g and all compounds derived from it in these papers appear to be in error. Badri et al. use I2 and 1,4-bis(triphenylphosphonium)-2-butene peroxodisulfate to convert 1g into alleged 3g (89%), but describe spectral data that do not match any of the possible products. [¹¹b] The group of Vibhute executed this reaction with I2-HIO3, claiming the obtention of 3g (80%), [¹7] or with PyICl, suggesting the generation of 2g (89%), [¹8] or again with I2-HIO3, [¹9] but now in conjunction with microwave irradiation and alleging 2g (85%) as the product, providing ¹H NMR descriptions that are not only wrong, but incomprehensible. Bachki et al. employ I2-HgCl2 in this process and suggest para-iodination (45%), but their spectral data show 2g as the outcome. [¹¹g] A number of papers that explore new iodinating agents for arenes include 1g in their roster of test cases and propose (with two exceptions) [²i] [²0a] sole para-­iodination, but do not supply retrievable spectral or chemical proof for it. [²i] [²0]

In summary, we have shown that a simple switch of the reaction medium dramatically affects the regiochemistry of the electrophilic iodination of anilines by NIS. Reactions carried out in DMSO give para-iodoanilines as the major products, but changing the conditions to anhydrous benzene in the presence of a small quantity of AcOH enhances the production of ortho-iodo products from moderately to almost quantitatively. Considering the value of both types of isomers in organic synthesis, [¹] [²¹] the reported methodology should be very useful to the practitioner in the field.

Supporting Information for this article is available online at http://www.thieme-connect.com.accesdistant.sorbonne-universite.fr/ejournals/toc/synlett.

Acknowledgment

This study benefited from financial aid by the NSF (CHE-0907800).

    References and Notes

  • For reviews, see:
  • 1a Podgoršek A. Zupan M. Iskra J. Angew. Chem. Int. Ed.  2009,  48:  8424 
  • 1b Pravst I. Zupan M. Stavber S. Curr. Org. Chem.  2009,  13:  47 
  • 1c Stavber S. Jereb M. Zupan M. Synthesis  2008,  1487 
  • 1d Hanson JR. J. Chem. Res.  2006,  277 
  • 1e Smith K. El-Hiti GA. Curr. Org. Synth.  2004,  1:  253 
  • 1f Merkushev EB. Synthesis  1988,  923 
  • 1g Merkushev EB. Russ. Chem. Rev.  1984,  53:  343 
  • 1h For a monograph, see: Taylor R. Electrophilic Aromatic Substitution   Wiley; Chichester: 1990. 
  • See, inter alia:
  • 2a Pierre F. Chua PC. O’Brien SE. Siddiqui-Jain A. Bourbon P. Haddach M. Michaux J. Nagasawa J. Schwaebe MK. Stefan E. Vialettes A. Whitten JP. Chen TK. Darjania L. Stansfield R. Anderes K. Bliesath J. Drygin D. Ho C. Omori M. Proffitt C. Streiner N. Trent K. Rice WG. Ryckman DM. J. Med. Chem.  2011,  54:  635 
  • 2b Tajik H. Parsa F. Asian J. Chem.  2011,  23:  465 
  • 2c Sathiyapriya R. Asian J. Chem.  2011,  23:  41 
  • 2d Mbatia HW. Ulloa OA. Kennedy DP. Incarvito CD. Burdette SC. Org. Biomol. Chem.  2011,  9:  2987 
  • 2e Zhou C.-Y. Li J. Peddibhotla S. Romo D. Org. Lett.  2010,  12:  2104 
  • 2f Ganguly NC. Barik SK. Dutta S. Synthesis  2010,  1467 
  • 2g Firouzabadi H. Iranpoor N. Kazemi S. Ghaderi A. Garzan A. Adv. Synth. Catal.  2009,  353:  1925 
  • 2h Reddy KSK. Narender N. Rohitha CN. Kulkarni SJ. Synth. Commun.  2008,  38:  3894 
  • 2i Narender N. Reddy KSK. Mohan KVVK. Kulkarni SJ. Tetrahedron Lett.  2007,  48:  6124 
  • 2j Das B. Krishnaiah M. Venkateswarlu K. Reddy VS. Tetrahedron Lett.  2007,  48:  81 
  • 2k Sathiyapriya R. Karunakaran RJ.
    J. Chem. Res.  2006,  575 
  • 2l Emmanuvel L. Shukla RK. Sudalai A. Gurunath S. Sivaram S. Tetrahedron Lett.  2006,  47:  4793 
  • 2m Zhang Y. Shibatomi K. Yamamoto H. Synlett  2005,  2837 
  • 2n Johnsson R. Meijer A. Ellervik U. Tetrahedron  2005,  61:  11657 
  • 2o Chrétien J.-M. Zammattio F. Le Grognec E. Paris M. Cahingt B. Montavon G. Quintard J.-P. J. Org. Chem.  2005,  70:  2870 
  • 2p Monnereau C. Blart E. Odobel F. Tetrahedron Lett.  2005,  46:  5421 
  • 2q Iskra J. Stavber S. Zupan M. Synthesis  2004,  1869 
  • 2r Lulinski P. Kryska A. Sosnowski M. Skulski L. Synthesis  2004,  441 
  • 2s Tajik H. Mohammadpoor-Baltork I. Rasht-Abadi HR. Synth. Commun.  2004,  34:  3579 
  • 2t Yang SG. Kim YH. Tetrahedron Lett.  1999,  40:  6051 
  • 2u Brunel Y. Rousseau G. Tetrahedron Lett.  1995,  45:  8217 
  • 2v Barluenga J. González JM. García-Martín MA. Campos PJ. Asensio G. J. Org. Chem.  1993,  58:  2058 
  • 2w Sy W.-W. Synth. Commun.  1992,  22:  3215 
  • See, inter alia:
  • 3a Schmid M. Waldner B. Schnürch M. Mihovilovic MD. Stanetty P. Tetrahedron  2011,  67:  2895 
  • 3b Yoshimura M. Muraoka T. Nakatsuka H. Huang H. Kitamura M. J. Org. Chem.  2010,  75:  4315 
  • 3c Ganta A. Snowden TS. Synlett  2007,  2227 
  • 3d Kalyani D. Dick AR. Anani WQ. Sanford MS. Tetrahedron  2006,  62:  11483 
  • 3e Burke BL. Overman LE. J. Am. Chem. Soc.  2004,  126:  16820 
  • 4a For a pertinent report of the effect of added AcOH on the ortho-/para-iodination ratios in carbazoles, see: Bonesi SM. Erra-Balsells R. J. Heterocycl. Chem.  2001,  38:  77 
  • 4b For solvent effects on related brominations, see: Bartoli S. Cipollone A. Squarcia A. Madami A. Fattori D. Synthesis  2009,  1305 
  • For a review, see:
  • 5a Miljanić ŠO. Vollhardt KPC. In Carbon-Rich Compounds: From Molecules to Materials   Haley MM. Tykwinski RR. Wiley-VCH; Weinheim: 2006.  p.140 
  • See also:
  • 5b Dosa PI. Gu Z. Hager D. Karney WL. Vollhardt KPC. Chem. Commun.  2009,  1967 
  • 5c Mohler DL. Kumaraswamy S. Stanger A. Vollhardt KPC. Synlett  2006,  2981 
  • 5d Miljanić O. Holmes D. Vollhardt KPC. Org. Lett.  2005,  7:  4001 
  • 5e Bong DT.-Y. Chan EWL. Diercks R. Dosa PI. Haley MM. Matzger AJ. Miljanić OŠ. Vollhardt KPC. Bond AD. Teat SJ. Stanger A. Org. Lett.  2004,  6:  2249 
  • 5f Kumaraswamy S. Jalisatgi SS. Matzger AJ. Miljanić OŠ. Vollhardt KPC. Angew. Chem. Int. Ed.  2004,  43:  3711 
  • 5g Bruns D. Miura H. Vollhardt KPC. Stanger A. Org. Lett.  2003,  5:  549 
  • 5h Han S. Anderson DR. Bond AD. Chu HV. Disch RL. Holmes D. Schulman JM. Teat SJ. Vollhardt KPC. Whitener GD. Angew. Chem. Int. Ed.  2002,  41:  3227 
  • 5i Han S. Bond AD. Disch RL. Holmes D. Schulman JM. Teat SJ. Vollhardt KPC. Whitener GD. Angew. Chem. Int. Ed.  2002,  41:  3223 
  • 5j Dosa PI. Whitener GD. Vollhardt KPC. Bond AD. Teat SJ. Org. Lett.  2002,  4:  2075 
  • 5k Bong DT.-Y. Gentric L. Holmes D. Matzger AJ. Scherhag F. Vollhardt KPC. Chem. Commun.  2002,  278 
  • 6 Finger GC. Dickerson DR. Shiley RH. J. Fluorine Chem.  1971/72,  1:  415 
  • 7 González Gómez JA. Green J. Vollhardt KPC. Synlett  2011,  805 
  • 9 Ribeiro da Silva MAV. Ferreira AIMCL. Gomes JRB. Chem. Phys. Lett.  2006,  422:  565 
  • The HOMO coefficients in aniline are larger at the para- than at the ortho-position, see:
  • 10a Eberhardt MK. Chuchani G. J. Org. Chem.  1972,  37:  3649 
  • 10b For DFT calculations, see: Filimonov VD. Krasnokutskaya EA. Poleshchuk OK. Lesina YA. Chaikovskii VK. Russ. Chem. Bull.  2006,  55:  1328 
  • See, inter alia:
  • 11a Yamamoto T. Toyota K. Morita N. Tetrahedron Lett.  2010,  51:  1364 
  • 11b Badri R. Gorjizadeh M. Chin. Chem. Lett.  2009,  20:  1439 
  • 11c Chaikovskii VK. Filimonov VD. Funk AA. Skorokhodov VI. Ogorodnikov VD. Russ. J. Org. Chem.  2007,  43:  1291 
  • 11d Chaikovskii VK. Filimonov VD. Skorokhodov VI. Ogorodnikov VD. Russ. J. Org. Chem.  2007,  43:  1278 
  • 11e Prakash GKS. Mathew T. Hoole D. Esteves PM. Wang Q. Rasul G. Olah GA. J. Am. Chem. Soc.  2004,  126:  15770 
  • 11f Castanet AS. Colobert F. Broutin P.-E. Tetrahedron Lett.  2002,  43:  5047 
  • 11g Bachki A. Foubelo F. Yus M. Tetrahedron  1994,  50:  5139 
  • 11h Hubig SM. Jung W. Kochi JK. J. Org. Chem.  1994,  59:  6233 
  • 11i Shashidhar GVS. Satyanarayana N. Sundaram EV. Indian J. Chem., Sect. A  1987,  26:  333 
  • 11j Radhakrishnamurthi PS. Janardhana C. Indian J. Chem., Sect. A  1980,  19:  333 
  • 11k Radhakrishnamurthi PS. Janardhana C. Indian J. Chem., Sect. A  1978,  16:  881 
  • 11l Goosen A. Taljaard B. J. S. African Chem. Inst.  1975,  28:  196 
  • 11m Glover SA. Goosen A. Laue HAH. J. S. African Chem. Inst.  1973,  26:  127 
  • 11n Ogata Y. Nakajima K. Tetrahedron  1964,  20:  43 
  • 12a Liljenberg M. Brinck T. Herschend B. Rein T. Rockwell G. Svensson M. J. Org. Chem.  2010,  75:  4696 ; and references therein
  • See also:
  • 12b Kustov AV. Bekeneva AV. Antonova OA. Korolev BP. Russ. J. Gen. Chem.  2002,  72:  918 
  • 12c Batov DV. Antonova OA. Korolev VP. Russ. J. Gen. Chem.  2001,  71:  689 
  • 12d Biswas R. Bagchi B. J. Phys. Chem.  1996,  100:  4261 
  • 12e Nagata I. Thermochim. Acta  1994,  232:  19 
  • 12f Yokoyama T. Komaki T. Sato H. Taft RW. Anvia F. J. Org. Chem.  1989,  54:  3938 
  • 12g Yokoyama T. Taft RW. Kamlet MJ. Aust. J. Chem.  1983,  36:  701 
  • 2g:
  • 13a Di Fabio R. Alvaro G. Bertani B. Giacobbe S. Can. J. Chem.  2000,  78:  809 
  • 13b Gabriele B. Salerno G. Veltri L. Costa M. Massera C. Eur. J. Org. Chem.  2001,  4607 
  • 14 2g′: Xu Z. Li Q. Zhang L. Jia Y. J. Org. Chem.  2009,  74:  6859 
  • 3g:
  • 15a Blaszykowski C. Aktoudianakis E. Bressy C. Alberico D. Lautens M. Org. Lett.  2006,  8:  2043 
  • 15b Kosynkin DV. Tour JM. Org. Lett.  2001,  3:  991 
  • 16a Valgeirsson J. Nielsen E. Peters D. Mathiesen C. Kristensen AS. Madsen U. J. Med. Chem.  2004,  47:  6948 
  • 16b Raffa D. Maggio B. Cascioferro S. Raimondi MV. Daidone G. Plescia S. Schillaci D. Cusimano MG. Titone L. Colomba C. Tolomeo M. Arch. Pharm.  2009,  342:  265 
  • 17 Shinde AT. Zangade SB. Chavan SB. Vibhute AY. Nalwar YS. Vibhute YB. Synth. Commun.  2010,  40:  3506 
  • 18 Khansole SV. Junne SB. Sayyed MA. Vibhute YB. Synth. Commun.  2008,  38:  1792 
  • 19 Junne SB. Vibhute AY. Vibhute YB. Gurav VM. Int. J. Chem. Tech. Res.  2009,  1:  1005 
  • See, for example:
  • 20a Sosnowski M. Skulski L. Wolowik K. Molecules  2004,  9:  617 
  • 20b Hajipour A. Ruoho AE. Org. Prep. Proced. Int.  2002,  34:  647 
  • 20c Hajipour A. Arbabian M. Ruoho AE. J. Org. Chem.  2002,  67:  8622 
  • 20d Sosnowski M. Skulski L. Molecules  2002,  7:  867 
  • 20e Mitra SS. Sreekumar K. React. Funct. Polym.  1997,  32:  281 
  • For recent examples, see, inter alia:
  • 21a Cacchi S. Fabrizi G. Chem. Rev.  2011,  111:  PR215 ; DOI: 10.1021/cr100403z
  • 21b Mustapha M. Thorat BR. Sawant S. Atram RG. Yamgar R. J. Chem. Pharm. Res.  2011,  3:  5 
  • 21c Balalaie S. Bararjanian M. Hosseinzadeh S. Rominger F. Bijanzadeh HR. Wolf E. Tetrahedron  2011,  67:  7294 
  • 21d Medeiros MR. Schaus SE. Porco JA. Org. Lett.  2011,  13:  4012 
  • 21e Xue L. Shi L. Han Y. Xia C. Huynh HV. Li F. Dalton Trans.  2011,  40:  7632 
  • 21f Mohamed YAM. Inagaki F. Takahashi R. Mukai C. Tetrahedron  2011,  67:  5133 
  • 21g Sun Y.-L. Zhang Y. Cui X.-H. Wang W. Adv. Synth. Catal.  2011,  353:  1174 
  • 21h Shi L. Liu X. Zhang H. Jiang Y. Ma D. J. Org. Chem.  2011,  76:  4200 
  • 21i Yang F. Zhang J. Wu Y. Tetrahedron  2011,  67:  2969 
  • 21j Wang R.-P. Mo S. Lu Y.-Z. Shen Z.-M. Adv. Synth. Catal.  2011,  353:  713 
  • 21k Xu Z. Zhang F. Zhang L. Jia Y. Org. Biomol. Chem.  2011,  9:  2512 
  • 21l Kamisaki H. Nanjo T. Tsukano C. Takemoto Y. Chem. Eur. J.  2011,  17:  626 
  • 21m Kaname M. Minoura M. Sashida H. Tetrahedron Lett.  2011,  52:  505 
8

The structures of all new compounds (Scifinder) were in accord with their analytical and/or spectroscopic properties; see Supporting Information.

    References and Notes

  • For reviews, see:
  • 1a Podgoršek A. Zupan M. Iskra J. Angew. Chem. Int. Ed.  2009,  48:  8424 
  • 1b Pravst I. Zupan M. Stavber S. Curr. Org. Chem.  2009,  13:  47 
  • 1c Stavber S. Jereb M. Zupan M. Synthesis  2008,  1487 
  • 1d Hanson JR. J. Chem. Res.  2006,  277 
  • 1e Smith K. El-Hiti GA. Curr. Org. Synth.  2004,  1:  253 
  • 1f Merkushev EB. Synthesis  1988,  923 
  • 1g Merkushev EB. Russ. Chem. Rev.  1984,  53:  343 
  • 1h For a monograph, see: Taylor R. Electrophilic Aromatic Substitution   Wiley; Chichester: 1990. 
  • See, inter alia:
  • 2a Pierre F. Chua PC. O’Brien SE. Siddiqui-Jain A. Bourbon P. Haddach M. Michaux J. Nagasawa J. Schwaebe MK. Stefan E. Vialettes A. Whitten JP. Chen TK. Darjania L. Stansfield R. Anderes K. Bliesath J. Drygin D. Ho C. Omori M. Proffitt C. Streiner N. Trent K. Rice WG. Ryckman DM. J. Med. Chem.  2011,  54:  635 
  • 2b Tajik H. Parsa F. Asian J. Chem.  2011,  23:  465 
  • 2c Sathiyapriya R. Asian J. Chem.  2011,  23:  41 
  • 2d Mbatia HW. Ulloa OA. Kennedy DP. Incarvito CD. Burdette SC. Org. Biomol. Chem.  2011,  9:  2987 
  • 2e Zhou C.-Y. Li J. Peddibhotla S. Romo D. Org. Lett.  2010,  12:  2104 
  • 2f Ganguly NC. Barik SK. Dutta S. Synthesis  2010,  1467 
  • 2g Firouzabadi H. Iranpoor N. Kazemi S. Ghaderi A. Garzan A. Adv. Synth. Catal.  2009,  353:  1925 
  • 2h Reddy KSK. Narender N. Rohitha CN. Kulkarni SJ. Synth. Commun.  2008,  38:  3894 
  • 2i Narender N. Reddy KSK. Mohan KVVK. Kulkarni SJ. Tetrahedron Lett.  2007,  48:  6124 
  • 2j Das B. Krishnaiah M. Venkateswarlu K. Reddy VS. Tetrahedron Lett.  2007,  48:  81 
  • 2k Sathiyapriya R. Karunakaran RJ.
    J. Chem. Res.  2006,  575 
  • 2l Emmanuvel L. Shukla RK. Sudalai A. Gurunath S. Sivaram S. Tetrahedron Lett.  2006,  47:  4793 
  • 2m Zhang Y. Shibatomi K. Yamamoto H. Synlett  2005,  2837 
  • 2n Johnsson R. Meijer A. Ellervik U. Tetrahedron  2005,  61:  11657 
  • 2o Chrétien J.-M. Zammattio F. Le Grognec E. Paris M. Cahingt B. Montavon G. Quintard J.-P. J. Org. Chem.  2005,  70:  2870 
  • 2p Monnereau C. Blart E. Odobel F. Tetrahedron Lett.  2005,  46:  5421 
  • 2q Iskra J. Stavber S. Zupan M. Synthesis  2004,  1869 
  • 2r Lulinski P. Kryska A. Sosnowski M. Skulski L. Synthesis  2004,  441 
  • 2s Tajik H. Mohammadpoor-Baltork I. Rasht-Abadi HR. Synth. Commun.  2004,  34:  3579 
  • 2t Yang SG. Kim YH. Tetrahedron Lett.  1999,  40:  6051 
  • 2u Brunel Y. Rousseau G. Tetrahedron Lett.  1995,  45:  8217 
  • 2v Barluenga J. González JM. García-Martín MA. Campos PJ. Asensio G. J. Org. Chem.  1993,  58:  2058 
  • 2w Sy W.-W. Synth. Commun.  1992,  22:  3215 
  • See, inter alia:
  • 3a Schmid M. Waldner B. Schnürch M. Mihovilovic MD. Stanetty P. Tetrahedron  2011,  67:  2895 
  • 3b Yoshimura M. Muraoka T. Nakatsuka H. Huang H. Kitamura M. J. Org. Chem.  2010,  75:  4315 
  • 3c Ganta A. Snowden TS. Synlett  2007,  2227 
  • 3d Kalyani D. Dick AR. Anani WQ. Sanford MS. Tetrahedron  2006,  62:  11483 
  • 3e Burke BL. Overman LE. J. Am. Chem. Soc.  2004,  126:  16820 
  • 4a For a pertinent report of the effect of added AcOH on the ortho-/para-iodination ratios in carbazoles, see: Bonesi SM. Erra-Balsells R. J. Heterocycl. Chem.  2001,  38:  77 
  • 4b For solvent effects on related brominations, see: Bartoli S. Cipollone A. Squarcia A. Madami A. Fattori D. Synthesis  2009,  1305 
  • For a review, see:
  • 5a Miljanić ŠO. Vollhardt KPC. In Carbon-Rich Compounds: From Molecules to Materials   Haley MM. Tykwinski RR. Wiley-VCH; Weinheim: 2006.  p.140 
  • See also:
  • 5b Dosa PI. Gu Z. Hager D. Karney WL. Vollhardt KPC. Chem. Commun.  2009,  1967 
  • 5c Mohler DL. Kumaraswamy S. Stanger A. Vollhardt KPC. Synlett  2006,  2981 
  • 5d Miljanić O. Holmes D. Vollhardt KPC. Org. Lett.  2005,  7:  4001 
  • 5e Bong DT.-Y. Chan EWL. Diercks R. Dosa PI. Haley MM. Matzger AJ. Miljanić OŠ. Vollhardt KPC. Bond AD. Teat SJ. Stanger A. Org. Lett.  2004,  6:  2249 
  • 5f Kumaraswamy S. Jalisatgi SS. Matzger AJ. Miljanić OŠ. Vollhardt KPC. Angew. Chem. Int. Ed.  2004,  43:  3711 
  • 5g Bruns D. Miura H. Vollhardt KPC. Stanger A. Org. Lett.  2003,  5:  549 
  • 5h Han S. Anderson DR. Bond AD. Chu HV. Disch RL. Holmes D. Schulman JM. Teat SJ. Vollhardt KPC. Whitener GD. Angew. Chem. Int. Ed.  2002,  41:  3227 
  • 5i Han S. Bond AD. Disch RL. Holmes D. Schulman JM. Teat SJ. Vollhardt KPC. Whitener GD. Angew. Chem. Int. Ed.  2002,  41:  3223 
  • 5j Dosa PI. Whitener GD. Vollhardt KPC. Bond AD. Teat SJ. Org. Lett.  2002,  4:  2075 
  • 5k Bong DT.-Y. Gentric L. Holmes D. Matzger AJ. Scherhag F. Vollhardt KPC. Chem. Commun.  2002,  278 
  • 6 Finger GC. Dickerson DR. Shiley RH. J. Fluorine Chem.  1971/72,  1:  415 
  • 7 González Gómez JA. Green J. Vollhardt KPC. Synlett  2011,  805 
  • 9 Ribeiro da Silva MAV. Ferreira AIMCL. Gomes JRB. Chem. Phys. Lett.  2006,  422:  565 
  • The HOMO coefficients in aniline are larger at the para- than at the ortho-position, see:
  • 10a Eberhardt MK. Chuchani G. J. Org. Chem.  1972,  37:  3649 
  • 10b For DFT calculations, see: Filimonov VD. Krasnokutskaya EA. Poleshchuk OK. Lesina YA. Chaikovskii VK. Russ. Chem. Bull.  2006,  55:  1328 
  • See, inter alia:
  • 11a Yamamoto T. Toyota K. Morita N. Tetrahedron Lett.  2010,  51:  1364 
  • 11b Badri R. Gorjizadeh M. Chin. Chem. Lett.  2009,  20:  1439 
  • 11c Chaikovskii VK. Filimonov VD. Funk AA. Skorokhodov VI. Ogorodnikov VD. Russ. J. Org. Chem.  2007,  43:  1291 
  • 11d Chaikovskii VK. Filimonov VD. Skorokhodov VI. Ogorodnikov VD. Russ. J. Org. Chem.  2007,  43:  1278 
  • 11e Prakash GKS. Mathew T. Hoole D. Esteves PM. Wang Q. Rasul G. Olah GA. J. Am. Chem. Soc.  2004,  126:  15770 
  • 11f Castanet AS. Colobert F. Broutin P.-E. Tetrahedron Lett.  2002,  43:  5047 
  • 11g Bachki A. Foubelo F. Yus M. Tetrahedron  1994,  50:  5139 
  • 11h Hubig SM. Jung W. Kochi JK. J. Org. Chem.  1994,  59:  6233 
  • 11i Shashidhar GVS. Satyanarayana N. Sundaram EV. Indian J. Chem., Sect. A  1987,  26:  333 
  • 11j Radhakrishnamurthi PS. Janardhana C. Indian J. Chem., Sect. A  1980,  19:  333 
  • 11k Radhakrishnamurthi PS. Janardhana C. Indian J. Chem., Sect. A  1978,  16:  881 
  • 11l Goosen A. Taljaard B. J. S. African Chem. Inst.  1975,  28:  196 
  • 11m Glover SA. Goosen A. Laue HAH. J. S. African Chem. Inst.  1973,  26:  127 
  • 11n Ogata Y. Nakajima K. Tetrahedron  1964,  20:  43 
  • 12a Liljenberg M. Brinck T. Herschend B. Rein T. Rockwell G. Svensson M. J. Org. Chem.  2010,  75:  4696 ; and references therein
  • See also:
  • 12b Kustov AV. Bekeneva AV. Antonova OA. Korolev BP. Russ. J. Gen. Chem.  2002,  72:  918 
  • 12c Batov DV. Antonova OA. Korolev VP. Russ. J. Gen. Chem.  2001,  71:  689 
  • 12d Biswas R. Bagchi B. J. Phys. Chem.  1996,  100:  4261 
  • 12e Nagata I. Thermochim. Acta  1994,  232:  19 
  • 12f Yokoyama T. Komaki T. Sato H. Taft RW. Anvia F. J. Org. Chem.  1989,  54:  3938 
  • 12g Yokoyama T. Taft RW. Kamlet MJ. Aust. J. Chem.  1983,  36:  701 
  • 2g:
  • 13a Di Fabio R. Alvaro G. Bertani B. Giacobbe S. Can. J. Chem.  2000,  78:  809 
  • 13b Gabriele B. Salerno G. Veltri L. Costa M. Massera C. Eur. J. Org. Chem.  2001,  4607 
  • 14 2g′: Xu Z. Li Q. Zhang L. Jia Y. J. Org. Chem.  2009,  74:  6859 
  • 3g:
  • 15a Blaszykowski C. Aktoudianakis E. Bressy C. Alberico D. Lautens M. Org. Lett.  2006,  8:  2043 
  • 15b Kosynkin DV. Tour JM. Org. Lett.  2001,  3:  991 
  • 16a Valgeirsson J. Nielsen E. Peters D. Mathiesen C. Kristensen AS. Madsen U. J. Med. Chem.  2004,  47:  6948 
  • 16b Raffa D. Maggio B. Cascioferro S. Raimondi MV. Daidone G. Plescia S. Schillaci D. Cusimano MG. Titone L. Colomba C. Tolomeo M. Arch. Pharm.  2009,  342:  265 
  • 17 Shinde AT. Zangade SB. Chavan SB. Vibhute AY. Nalwar YS. Vibhute YB. Synth. Commun.  2010,  40:  3506 
  • 18 Khansole SV. Junne SB. Sayyed MA. Vibhute YB. Synth. Commun.  2008,  38:  1792 
  • 19 Junne SB. Vibhute AY. Vibhute YB. Gurav VM. Int. J. Chem. Tech. Res.  2009,  1:  1005 
  • See, for example:
  • 20a Sosnowski M. Skulski L. Wolowik K. Molecules  2004,  9:  617 
  • 20b Hajipour A. Ruoho AE. Org. Prep. Proced. Int.  2002,  34:  647 
  • 20c Hajipour A. Arbabian M. Ruoho AE. J. Org. Chem.  2002,  67:  8622 
  • 20d Sosnowski M. Skulski L. Molecules  2002,  7:  867 
  • 20e Mitra SS. Sreekumar K. React. Funct. Polym.  1997,  32:  281 
  • For recent examples, see, inter alia:
  • 21a Cacchi S. Fabrizi G. Chem. Rev.  2011,  111:  PR215 ; DOI: 10.1021/cr100403z
  • 21b Mustapha M. Thorat BR. Sawant S. Atram RG. Yamgar R. J. Chem. Pharm. Res.  2011,  3:  5 
  • 21c Balalaie S. Bararjanian M. Hosseinzadeh S. Rominger F. Bijanzadeh HR. Wolf E. Tetrahedron  2011,  67:  7294 
  • 21d Medeiros MR. Schaus SE. Porco JA. Org. Lett.  2011,  13:  4012 
  • 21e Xue L. Shi L. Han Y. Xia C. Huynh HV. Li F. Dalton Trans.  2011,  40:  7632 
  • 21f Mohamed YAM. Inagaki F. Takahashi R. Mukai C. Tetrahedron  2011,  67:  5133 
  • 21g Sun Y.-L. Zhang Y. Cui X.-H. Wang W. Adv. Synth. Catal.  2011,  353:  1174 
  • 21h Shi L. Liu X. Zhang H. Jiang Y. Ma D. J. Org. Chem.  2011,  76:  4200 
  • 21i Yang F. Zhang J. Wu Y. Tetrahedron  2011,  67:  2969 
  • 21j Wang R.-P. Mo S. Lu Y.-Z. Shen Z.-M. Adv. Synth. Catal.  2011,  353:  713 
  • 21k Xu Z. Zhang F. Zhang L. Jia Y. Org. Biomol. Chem.  2011,  9:  2512 
  • 21l Kamisaki H. Nanjo T. Tsukano C. Takemoto Y. Chem. Eur. J.  2011,  17:  626 
  • 21m Kaname M. Minoura M. Sashida H. Tetrahedron Lett.  2011,  52:  505 
8

The structures of all new compounds (Scifinder) were in accord with their analytical and/or spectroscopic properties; see Supporting Information.

Scheme 1 Iodination of 2,3-dichloroaniline (1a) by NIS (1.05 equiv) in AcOH

Scheme 2 Structural confirmations of 2a and 3a by their respective conversion into 5 and 6

Figure 1 Suggested transition state for the ortho-iodination of aniline (1b) in benzene-AcOH (1 equiv)

Scheme 3 Iodination of 3-chloroaniline (1g) in AcOH, [¹6a] DMSO (Table 3, entry g-1), and benzene-AcOH (Table 3, entry g-2)