Subscribe to RSS
DOI: 10.1055/s-0031-1290101
Recent Advances in Transition-Metal-Catalyzed Esterification
Publication History
Publication Date:
09 December 2011 (online)
Biographical Sketches



Abstract
In this account, we summarized our recent progress in transition-metal-catalyzed esterification via different pathways, including lactonization, Chan-Lam reaction, oxidative esterification and C-H functionalization.
1 Introduction
2 Esterification of Aldehyde with Aryl Boron
2.1 Aromatic Esterification Reaction between Aldehydes and Arylboronic Acids
2.2 Cascade Aryl Addition-Lactonization of Phthalaldehyde with Aryl Boron
2.3 Cascade Aryl Addition-Lactonization of Phthalaldehydonitrile with Arylboronic Acids
3 Esterification of Carboxylic Acid via Chan-Lam Reaction
4 Bis-esterification of Cyclic Anhydrides with Alkoxysilanes
5 Oxidative Esterification of Aldehydes or Benzylic Alcohols with Phenols
6 Ester Formation via C-H Functionalization
6.1 Benzoxylation of C-H Bonds with Carboxylic Acids
6.2 Benzoxylation of 2-Arylpyridine sp² C-H Bonds with Anhydrides
6.3 Benzoxylation of 2-Arylpyridine sp² C-H Bonds with Acyl Chlorides
7 Conclusion
Key words
esterification - transition metals - catalysis - esters - C-H functionalization
1 Introduction
The ester functionality is ubiquitous as the structure of important natural and synthetic molecules and the need for ester compounds will never lessen. [¹] Benzoate derivatives are important building blocks in the synthesis of natural and pharmacological compounds. [²] Usually, these compounds are prepared via Fischer esterification [³] or transesterification [4] reactions, which normally involve strong acidic or basic conditions limiting the reaction scope (Scheme [¹] ). [5] The Baeyer-Villiger oxidation [6] reaction may suffer from low regioselectivity (Scheme [¹] ). In the past few years, oxidative esterification has widely received attention and has become an economical alternative to traditional ester synthesis. [7] Meanwhile the transition-metal-catalyzed esterification also has received increasing attention. [8] In this account we summarized our recent progress in transition-metal-catalyzed esterification to access benzoate derivatives via different pathways.
2 Esterification of Aldehyde with Aryl Boron
2.1 Aromatic Esterification Reaction between Aldehydes and Arylboronic Acids

Scheme 1 Traditional esterification reactions
In 2007, we reported the palladium-catalyzed addition of arylboronic acids to aldehydes to access carbinol derivatives. It enjoyed high prestige thanks to the advantages of boronic acids, such as low toxicity, stability to air and moisture, and good functional group tolerance. [9] Next, we found diaryl ketone derivatives were obtained when K2CO3 was replaced by Cs2CO3 as the base. [¹0] Our interest in the development of organoboron reactions led us to continually explore the potential reactions between organoboron reagents and aldehydes. Sequentially, we demonstrated a palladium-catalyzed aromatic esterification reaction between aldehydes and organoboronic acids under an air atmosphere (Scheme [²] , eq. 1). [¹¹] To understand the mechanism more clearly, labeling studies were conducted using ¹8O2. The result showed that dioxygen took part in the reaction and was crucial for this transformation (Scheme [²] , eq. 2). In 2010, Gois developed an efficient iron/NHC-catalyzed aerobic oxidative aromatic esterification of aldehydes with boronic acids. [8g]
2.2 Cascade Aryl Addition-Lactonization of Phthalaldehyde with Aryl Boron

Scheme 2 Palladium-catalyzed aromatic esterification reaction between aldehydes and arylboronic acids
In recent years, transition-metal-catalyzed addition of arylboronic acids to aldehydes was well developed by other groups and us. [9] [¹²] Based on the previous elegant works, we envisioned that after the addition of arylboronic acids to one carbonyl of phthalaldehyde, an intramolecular esterification could be achieved. Thus, we would develop a novel and facile strategy to obtain phthalide, which is present in a large number of natural products and biologically active compounds (Figure [¹] ). [¹³] With this in mind, we initiated our investigation by examining the reaction of phthalaldehyde and phenylboronic acid using rhodium as the catalyst. After several rounds of optimization, we found that the best results were accomplished by using [{Rh(cod)Cl}2] (5 mol%) and dppb (5 mol%) as the catalyst, and K2CO3 (2 equiv) in dry 1,2-dichloroethane at 65 ˚C. [¹4] Having identified the optimal reaction parameters, the scope of arylboronic acids was investigated and the 3-aryl and alkenyl phthalides were obtained in moderate to good yields (Scheme [³] ).

Figure 1 Selected examples of 3-substituted phthalides with reported biological activities

Scheme 3 Rhodium-catalyzed cascade aryl addition-lactonization of phthalaldehyde with arylboronic acids
Further study showed that the aryl addition to phthalaldehyde could lead to product 1, which may act as an intermediate. 2-[Hydroxy(phenyl)methyl]benzaldehyde (1) is in equilibrium with 2, [¹5] and when it is subjected to the reaction conditions, 3 was isolated in 84% yield (Scheme [4] ). This result confirmed that our initial notion was practicable.

Scheme 4 The reaction of a possible intermediate under standard conditions
Based on the rhodium-catalyzed cascade aryl addition-intramolecular esterification reaction, we successfully developed a palladium-catalyzed addition of arylboronic acids to phthalaldehyde, followed by an intramolecular lactonization to access 3-substituted phthalides (Scheme [5] ). [¹6] Very recently, Cheng reported such a transformation catalyzed by cobalt. [¹7]

Scheme 5 Palladium-catalyzed cascade aryl addition-lactonization of phthalaldehyde with arylboronic acids
It is well-known that organoboron compounds and particularly boronic acids are useful reagents for C-C bond formation with various electrophiles in the presence of transition metals. [¹8] In spite of the advantages of low toxicity and easy manipulation, boronic acids often dimerize and trimerize to form boronic acid anhydrides and boroxines (which depends on storage water content). [¹9] Recently, due to their superior features such as higher stability and ease of preparation and purification, [²0] potassium organotrifluoroborates have become attractive alternatives to boronic acid derivatives that easily undergo protodeboronation. [²¹] Over the past decade, the transition-metal-catalyzed arylation reactions of aldehydes with organoboronic acids have attracted much attention. [²²] Nevertheless, the employment of potassium organotrifluoroborates in transition-metal-catalyzed 1,2-addition of aldehydes is rare. [²³] Based on the aforementioned works, the rhodium- or palladium-catalyzed reaction of phthalaldehyde with potassium organotrifluoroborates to access 3-substituted phthalides using the transition-metal-catalyzed 1,2-addition of aldehyde as the key step was achieved (Scheme [6] ). [²4] Compared to the lactonization of phthalaldehyde with arylboronic acids, the yields were relatively higher.

Scheme 6 Rhodium- or palladium-catalyzed cascade aryl addition-lactonization of phthalaldehyde with potassium organotrifluoroborates
2.3 Cascade Aryl Addition-Lactonization of Phthalaldehydonitrile with Arylboronic Acids
Inspired by our aforementioned works, we envisioned the development of the transition-metal-catalyzed reaction of phthalaldehydonitrile with organoboronic acids to access 3-substituted phthalides. However, great challenges are remaining since the cyano group is inert to the insertion of metal species in comparison to C=O, partly due to its low polarity. Moreover, the aromatic nitriles may also have good affinity to transition metals, resulting in the deactivation of the catalyst. For example, PdCl2(RCN)2 (R = Me, Ph) are widely used as Pd catalysts. Larock [²5] and Lu [²6] reported carbopalladation of the nitrile to form an iminopalladium intermediate, which would hydrolyze to ketones, respectively. Murakami demonstrated that organorhodium species could undergo intramolecular nucleophilic addition to nitrile to give the iminorhodium species. [²7] Encouraged by their seminal and our previous work, we developed a rhodium- or palladium-catalyzed cascade aryl addition-lactonization of phthalaldehydonitrile with boronic acids to access 3-substituted phthalides in moderate to good yields (Scheme [7] ). [²8]

Scheme 7 Rhodium- or palladium-catalyzed cascade aryl addition-lactonization of phthalaldehydonitrile with arylboronic acids
3 Esterification of Carboxylic Acid via Chan-Lam Reaction
The Chan-Lam coupling reaction was widely studied in the last few years because it allows aryl carbon-heteroatom bond formation via an oxidative coupling of arylboronic acids, stannanes or siloxanes with N-H or O-H containing compounds. [²9] However, the scope of the Chan-Lam reaction in C-O bond formation was limited to phenol and aliphatic alcohol, [³0] and the reaction of carboxylic acid as heteroatom nucleophile in the Chan-Lam reaction was less reported. Thus, we conceived carboxylic acid as heteroatom nucleophile to form an ester. Meanwhile, aryl trialkoxysilane was widely used as transmetallation reagent in organic synthesis because of its low cost, easy availability, nontoxic byproducts and stability under many reaction conditions. [³¹] Thus, we realized a copper(II)-catalyzed esterification of arene carboxylic acids with aryl and vinyl trimethoxysilanes, affording aryl and vinyl benzoate derivatives in moderate to good yields (Scheme [8] ). [³²] Notably, vinyl benzoate derivatives were expediently produced. However, 3 equivalents of AgF were required in such transformation. To overcome this drawback, we developed a Cu(OTf)2-mediated Chan-Lam reaction of carboxylic acids and arylboronic acids using urea as the additive (Scheme [9] ). [³³] Almost at the same time, Liu reported Cu-catalyzed O-arylation reactions of carboxylic acids with arylboronic acids in the presence of 2 equivalents of Ag2CO3. [8f]

Scheme 8 Copper-catalyzed esterification of arene carboxylic acids with aryl and vinyl trimethoxysilanes

Scheme 9 Copper-mediated esterification of arene carboxylic acids with arylboronic acids

Scheme 10 The esterification reaction using aryl trimethoxysilane
4 Bis-esterification of Cyclic Anhydrides with Alkoxysilanes
Aryl trialkoxysilanes have been widely used as significant transmetallation reagents in organic synthesis. However, only the aryl moiety of aryl trialkoxysilane has been transferred to the organic product and the alkoxyl moiety was discarded as waste, which diminishes the atom economy for such transformations. In 2006, Lerebours and Wolf reported that the methoxy group of phenyltrimethoxysilane was transferred to the aldehyde to form methyl benzoate (Scheme [¹0] , eq. 1). [³4] However, to the best of our knowledge, examples of the transfer of both the aryl and alkoxy moieties of the aryl trialkoxysilane have never been reported. Recently, we developed a copper(II)-catalyzed aromatic esterification reaction of carboxylic acid with aryl and vinyl trialkoxysilanes (Scheme [¹0] , eq. 2). [³²] Interestingly, when the acyclic anhydride benzoic anhydride and phenyltrimethoxysilane were subjected to the procedure, methyl benzoate and phenyl benzoate were detected by GC-MS in equal amounts (Scheme [¹0] , eq. 3). In light of this, we envisioned a bis-esterification of cyclic anhydrides with aryl trialkoxysilanes and vinyl trialkoxysilanes, in which the alkoxy and aryl (or vinyl) esters of dicarboxylic acids are prepared in one pot (Scheme [¹0] , eq. 4). [³5] After several rounds of optimization, we found the best results and a series of anhydrides with alkoxysilanes were pursued (Scheme [¹¹] ).

Scheme 11 Copper-catalyzed esterification of anhydride with aryl or vinyl trimethoxysilane
5 Oxidative Esterification of Aldehydes or Benzylic Alcohols with Phenols

Scheme 12 Palladium/NHC-catalyzed oxidative esterification of aldehydes with phenols

Scheme 13 Tandem benzylic oxidation-oxidative esterification of benzylic alcohols with phenols

Scheme 14 ortho-Benzoxylation of 2-arylpyridines with carboxylic acids
Oxidative esterification has received increasing attention and has become an economical alternative to traditional ester synthesis. [7] However, to develop a facile and versatile procedure on such transformation still remains a highly desired goal for organic chemists. After many trials, we achieved a palladium/NHC-catalyzed oxidative esterification of aldehydes with phenols, which used air as the clean oxidant (Scheme [¹²] ). [³6]
Alcohols are usually readily available as bulk chemicals. Generally, alcohols could be converted into esters by multiple steps. However, the direct conversion of alcohols into esters in the presence of catalysts represents a green, economic, and sustainable process. [³7] After the elaboration of oxidative esterification of aldehydes with phenols, we developed a tandem benzylic oxidation-oxidative esterification of benzylic alcohols with phenols (Scheme [¹³] ). [³8] During this study, Lei and Beller developed palladium-catalyzed aerobic oxidative esterification of benzylic alcohols, respectively. [³9]
6 Esters Formation via C-H Functionalization
6.1 Benzoxylation of C-H Bonds with Carboxylic Acids
Selective functionalization of the C-H bonds has emerged as a powerful tool in organic synthesis because it obviates the tedious multistep prefunctionality. [40] Recently, C-O bond formation via the cleavage of a C-H bond has attracted much attention. [4¹] For example, in 2005, Yu reported a Pd-catalyzed stereoselective oxidation of methyl groups by carboxylic anhydrides. [4²] Subsequently, the same group described an elegant example of Cu(OAc)2-catalyzed oxidative acetoxylation of arene C-H bonds in HOAc/Ac2O using oxygen as a clean oxidant. [4³] However, the reports on such transformations via transition-metal-catalyzed C-H bond cleavage are almost limited to acetoxylation, and a stoichiometric oxidant is required to fulfill the catalytic cycle. In other words, transition-metal-catalyzed benzoxylation of a C-H bond is not common. [44] Inspired by our previous work of palladium-catalyzed acylations of aromatic C-H bonds using aldehydes, [45] we began an exploratory study on the ortho-benzoxylation of 2-arylpyridines with carboxylic acids. After many trials, we achieved an ortho-benzoxylation reaction of 2-aryl pyridines with carboxylic acids in the presence of [Rh(cod)Cl]2, PCy3˙HBF4, CuI and NMP. [46] The procedure tolerates carbomethoxy, formyl, bromo, chloro, and nitro groups, providing the benzoxylated products in moderate to good yields (Scheme [¹4] ).
Encouraged by the aforementioned works, we developed a palladium-catalyzed acyloxylation of the benzyl sp³ C-H bond with carboxylic acid employing PhI(OAc)2 as a stoichiometric oxidant. The procedure tolerates a series of functional groups, such as methoxy, chloro, bromo, iodo, vinyl, formyl, phenolic hydroxy, nitro, and cyano groups, providing the acyloxylation products in moderate to good yields (Scheme [¹5] ). [47]

Scheme 15 Palladium-catalyzed acyloxylation of the benzyl sp³ C-H bond

Scheme 16 Copper-catalyzed ortho-benzoxylation of the 2-arylpyridine sp² C-H bond with anhydride
6.2 Benzoxylation of 2-Arylpyridine sp ² C-H Bonds with Anhydrides
Next, we developed an efficient copper-catalyzed ortho-benzoxylation of the 2-arylpyridine sp² C-H bond with anhydride, affording mono- or diacyloxylation products in moderate to good yields (Scheme [¹6] ). [48] The employment of inexpensive copper catalysts and O2 as the terminal oxidant provides a significant practical advantage for this transformation.
6.3 Benzoxylation of 2-Arylpyridine sp ² C-H Bonds with Acyl Chlorides
During the study on acylations of aromatic C-H bonds using aldehydes, [45] we envisioned to use acyl chloride as the coupling partner via C-H bond cleavage. We began an exploratory study using 2-o-tolylpyridine and benzoyl chloride. Interestingly, benzoxylation of 2-o-tolylpyridine was found. After several rounds of optimization, the optimized reaction conditions were found as follows: Cu(OAc)2 (20 mol%), and t-BuOK (2 equiv) in toluene under O2 at 145 ˚C (Scheme [¹7] ). [49] During the reaction, carboxylic anhydride was detected by GC-MS. The acyl chloride may readily form carboxylic anhydride in the presence of a base and moisture. [50] Based on the experimental results and our previous work, [48] we reasoned carboxylic anhydride was the intermediate in this transformation.

Scheme 17 Benzoxylation of 2-arylpyridine sp² C-H Bonds with Acyl Chlorides
Interestingly, when Li2CO3 was used in the procedure instead of t-BuOK, ortho-chlorination of 2-arylpyridine occurred (Scheme [¹8] ).

Scheme 18 ortho-Chlorination of 2-arylpyridine
7 Conclusion
In this account, we described our recent work in transition-metal-catalyzed esterification of aldehyde, carboxylic acid, anhydrides, acyl chlorides and benzylic alcohols through a variety of ways such as lactonization, Chan-Lam reaction, oxidative esterification and C-H functionalization. Among those, accessing esters via C-H bond cleavage would be an attractive method. We believe that more practical, facile and mild procedures for such transformations will be developed continuously in the near future.
Acknowledgment
We thank all group members who contributed to the studies described in this review. Financial support was provided by the National Natural Science Foundation of China (No. 20972115) and the Natural Science Foundation of Zhejiang Province (Nos. Y4110109 and R4110294).
- 1a
Larock RC. Comprehensive Organic Transformations VCH; New York: 1989. p.966 ; and references therein - 1b
Otera J. Esterification: Methods Reactions and Applications Wiley; New York: 2003. - 2a
Moretto A.Nicolli A.Lotti M. Toxicol. Appl. Pharmacol. 2007, 219: 196 - 2b
Beginn U.Zipp G.Moller M. Chem.-Eur. J. 2000, 6: 2016 - 2c
Barratt MD.Basketter DA.Roberts DW. Toxicol. Vitro 1994, 8: 823 - 2d
Child JJ.Oka T.Simpson FJ.Krishnamurty HG. Can. J. Microbiol. 1971, 17: 1455 - 2e
Dong Y.Shi Q.Pai H.-C.Peng C.-Y.Pan S.-L.Teng C.-M.Nakagawa-Goto K.Yu D.Liu Y.-N.Wu P.-C.Bastow KF.Morris-Natschke SL.Brossi A.Lang J.-Y.Hsu JL.Hung M.-C.Lee EY.-HP.Lee K.-H. J. Med. Chem. 2010, 53: 2299 - 2f
Nemoto T.Yamamoto N.Watanabe A.Fujii H.Hasebe K.Nakajima M.Mochizuki H.Nagase H. Bioorg. Med. Chem. 2011, 19: 1205 - 2g
Petersen TB.Khan R.Olofsson B. Org. Lett. 2011, 13: 3462 - 2h
Thasana N.Worayuthakarn R.Kradanrat P.Hohn E.Young L.Ruchirawat S. J. Org. Chem. 2007, 72: 9379 - 2i
Zakhari JS.Kinoyama I.Struss AK.Pullanikat P.Lowery CA.Lardy M.Janda KD. J. Am. Chem. Soc. 2011, 133: 3840 - 3a
Ishihara K. Tetrahedron 2009, 65: 1085 - 3b
Iranpoor N.Firouzabadi H.Khalili D. Org. Biomol. Chem. 2010, 8: 4436 - 3c
Lee CK.Yu JS.Lee H.-J. J. Heterocycl. Chem. 2002, 39: 1207 - 3d
Eshghi H.Rafei M.Karimi MH. Synth. Commun. 2001, 31: 771 - 3e
Ueda M.Mori H. Bull. Chem. Soc. Jpn. 1992, 65: 1636 - 3f
Ueda M.Oikawa H. J. Org. Chem. 1985, 50: 760 - 3g
Keshavamurthy KS.Vankar YD.Dhar DN. Synthesis 1982, 506 - 3h
Nowrouzi N.Mehranpour AM.Rad JA. Tetrahedron 2010, 66: 9596 - 4a
Otera J. Acc. Chem. Res. 2004, 37: 288 - 4b
Grasa GA.Singh R.Nolan SP. Synthesis 2004, 971 - 4c
Shinada T.Hamada M.Miyoshi K.Higashino M.Umezawa T.Ohfune Y. Synlett 2010, 2141 - 4d
Hatano M.Furuya Y.Shimmura T.Moriyama K.Kamiya S.Maki T.Ishihara K. Org. Lett. 2011, 13: 426 - 4e
Bose DS.Satyender A.Rudra Das AP.Mereyala HB. Synthesis 2006, 2392 - 4f
Iwasaki T.Maegawa Y.Hayashi Y.Ohshima T.Mashima K. J. Org. Chem. 2008, 73: 5147 - 4g
Remme N.Koschek K.Schneider C. Synlett 2007, 491 - 5a
Fischer E. Ber. Dtsch. Chem. Ges. 1895, 28: 3254 - 5b
Butts J. J. Am. Chem. Soc. 1931, 53: 3560 - 6a
Brink G.-J.Arends IWCE.Sheldon RA. Chem. Rev. 2004, 104: 4105 - 6b
Kotsuki H.Arimura K.Araki T.Shinohara T. Synlett 1999, 462 - 6c
Yadav JS.Reddy BVS.Basak AK.Narsaiah AV. Chem. Lett. 2004, 33: 248 - 6d
Olah GA.Wang Q.Trivedi NJ.Prakash GKS. Synthesis 1991, 739 - 6e
Yoshida Y.Murakami K.Yorimitsu H.Oshima K. J. Am. Chem. Soc. 2010, 132: 9236 - 7a
Reynolds NT.Read de Alaniz J.Rovis T. J. Am. Chem. Soc. 2004, 126: 9518 - 7b
Kiyooka S.-I.Wada Y.Ueno M.Yokoyama T.Yokoyama R. Tetrahedron 2007, 63: 12695 - 7c
Gopinath R.Patel BK. Org. Lett. 2000, 2: 577 - 7d
Barkakaty B.Talukdar B.Patel BK. J. Org. Chem. 2003, 68: 2944 - 7e
Rose CA.Zeitler K. Org. Lett. 2010, 12: 4552 - 7f
Travis BR.Sivakumar M.Hollist GO.Borhan B. Org. Lett. 2003, 5: 1031 - 7g
Kiran YB.Ikeda R.Sakai N.Konakahara T. Synthesis 2010, 276 - 7h
Gopinath R.Paital AR.Patel BK. Tetrahedron Lett. 2002, 43: 5123 - 7i
Jiang H.Gschwend B.Albrecht .Jørgensen KA. Org. Lett. 2010, 12: 5052 - 7j
Gligorich KM.Sigman MS. Chem. Commun. 2009, 3854 - 7k
Reynolds NT.Rovis T. J. Am. Chem. Soc. 2005, 127: 16406 - 7l
Maki BE.Chan A.Phillips EM.Scheidt KA. Org. Lett. 2007, 9: 371 - 7m
Sarkar SD.Grimme S.Studer A. J. Am. Chem. Soc. 2010, 132: 1190 - 7n
Maji B.Vedachalan S.Ge X.Cai S.Liu X.-W. J. Org. Chem. 2011, 76: 3016 - 7o
De Sarkar S.Biswas A.Song CH.Studer A. Synthesis 2011, 1974 - 8a
Yang C.-G.He C. J. Am. Chem. Soc. 2005, 127: 6966 - 8b
Ekoue-Kovi K.Wolf C. Chem.-Eur. J. 2008, 14: 6302 - 8c
Ishihara K.Ohara S.Yamamoto H. Science 2000, 290: 1140 - 8d
Kaizuka K.Miyamura H.Kobayashi S. J. Am. Chem. Soc. 2010, 132: 15096 - 8e
Nakatani Y.Koizumi Y.Yamasaki R.Saito S. Org. Lett. 2008, 10: 2067 - 8f
Dai J.-J.Liu J.-H.Luo D.-F.Liu L. Chem. Commun. 2011, 47: 677 - 8g
Rosa JN.Reddy RS.Candeias NR.Cal PMSD.Gois PMP. Org. Lett. 2010, 12: 2686 - 8h
Guo C.Yue X.Qing F.-L. Synthesis 2010, 1837 - 8i
Kuriyama M.Ishiyama N.Shimazawa R.Shirai R.Onomura O. J. Org. Chem. 2009, 74: 9210 - 8j
Gnanaprakasam B.Ben-David Y.Milstein D. Adv. Synth. Catal. 2010, 352: 3169 - 8k
Xing C.-H.Liao Y.-X.He P.Hu Q.-S. Chem. Commun. 2010, 46: 3010 - 8l
Mihara M.Nakai T.Iwai T.Ito T.Ohno T.Mizuno T. Synlett 2010, 253 - 8m
Hoshimoto Y.Ohashi M.Ogoshi S. J. Am. Chem. Soc. 2011, 133: 4668 - 8n
Wu X.-F.Neumann H.Beller M. ChemCatChem 2010, 2: 509 - 8o
Bottalico D.Fiandanese V.Marchese G.Punzi A. Synlett 2007, 974 - 8p
Tang S.Peng P.Wang Z.-Q.Tang B.-X.Deng C.-L.Li J.-H.Zhong P.Wang N.-X. Org. Lett. 2008, 10: 1875 - 8q
Kawatsura M.Namioka J.Kajita K.Yamamoto M.Tsuji H.Itoh T. Org. Lett. 2011, 13: 3285 - 9
Qin C.Wu H.Cheng J.Chen X.Liu M.Zhang W.Su W.Ding J. J. Org. Chem. 2007, 72: 4102 - 10
Qin C.Chen J.Wu H.Cheng J.Zhang Q.Zuo B.Su W.Ding J. Tetrahedron Lett. 2008, 49: 1884 - 11
Qin C.Wu H.Chen J.Liu M.Cheng J.Su W.Ding J. Org. Lett. 2008, 10: 1537 - 12a
Sakai M.Ueda M.Miyaura N. Angew. Chem. Int. Ed. 1998, 37: 3279 - 12b
Duan H.-F.Xie J.-H.Shi W.-J.Zhang Q.Zhou Q.-L. Org. Lett. 2006, 8: 1479 - 12c
Fürstner A.Krause H. Adv. Synth. Catal. 2001, 343: 343 - 12d
Morikawa S.Michigami K.Amii H. Org. Lett. 2010, 12: 2520 - 12e
Gois PMP.Trindade AF.Veiros LF.Andre V.Duarte MT.Afonso CAM.Caddick S.Cloke FGN. Angew. Chem. Int. Ed. 2007, 46: 5750 - 12f
Chen W.Baghbanzadeh M.Kappe CO. Tetrahedron Lett. 2011, 52: 1677 - 12g
Yamamoto T.Ohta T.Ito Y. Org. Lett. 2005, 7: 4153 - 12h
Zheng H.Ding J.Chen J.Liu M.Gao W.Wu H. Synlett 2011, 1626 - 12i
Liao Y.-X.Xing C.-H.He P.Hu Q.-S. Org. Lett. 2008, 10: 2509 - 12j
Kuriyama M.Ishiyama N.Shimazawa R.Onomura O. Tetrahedron 2010, 66: 6814 - 12k
Zou T.Pi S.-S.Li J.-H. Org. Lett. 2009, 11: 453 - 12l
Trindade AF.Andre V.Duarte MT.Veiros LF.Gois PMP.Afonso CAM. Tetrahedron 2010, 66: 8494 - 12m
Karthikeyan J.Jeganmohan M.Cheng C.-H. Chem.-Eur. J. 2010, 16: 8989 - 12n
Liu G.Lu X. J. Am. Chem. Soc. 2006, 128: 16504 - 12o
Yamamoto K.Tsurumi K.Sakurai F.Kondo K.Aoyama T. Synthesis 2008, 3585 - 13a
Beck JJ.Chou S.-C. J. Nat. Prod. 2007, 70: 891 - 13b
Tianpanich K.Prachya S.Wiyakrutta S.Mahidol C.Ruchirawat S.Kittakoop P. J. Nat. Prod. 2011, 74: 79 - 13c
Lee TF.Lin YL.Huang YT. Planta Med. 2007, 73: 527 - 13d
Puder C.Zeeck A.Beil W. J. Antibiot. 2000, 53: 329 - 13e
Singh M.Argade NP. J. Org. Chem. 2010, 75: 3121 - 13f
Knepper K.Ziegert RE.Bräse ST. Tetrahedron 2004, 60: 8591 - 13g
Choi PJ.Sperry J.Brimble MA. J. Org. Chem. 2010, 75: 7388 - 13h
Xiong MJ.Li ZH. Curr. Org. Chem. 2007, 11: 833 - 13i
Shode FO.Mahomed AS.Rogers CB. Phytochemistry 2002, 61: 955 - 13j
Zhang H.Zhang S.Liu L.Luo G.Duan W.Wang W. J. Org. Chem. 2010, 75: 368 - 13k
Witulski B.Zimmermann A.Gowans ND. Chem. Commun. 2002, 2984 - 14
Ye Z.Lv G.Wang W.Zhang M.Cheng J. Angew. Chem. Int. Ed. 2010, 49: 3671 - 15
Mikami K.Ohmura H. Org. Lett. 2002, 4: 3355 - 16
Ye Z.Qian P.Lv G.Luo F.Cheng J. J. Org. Chem. 2010, 75: 6043 - 17
Karthikeyan J.Parthasarathy K.Cheng C.-H. Chem. Commun. 2011, 47: 10461 - 18a
Suzuki A. Acc. Chem. Res. 1982, 15: 178 - 18b
Miyaura N.Suzuki A. Chem. Rev. 1995, 95: 2457 - 18c
Suzuki A.
J. Organomet. Chem. 1998, 576: 147 - 19
Onak T. Organoborane Chemistry Academic Press; New York: 1975. - Reviews:
- 20a
Molander GA.Figueroa R. Aldrichimica Acta 2005, 38: 49 - 20b
Molander GA.Ellis N. Acc. Chem. Res. 2007, 40: 275 - 20c
Stefani HA.Cella R.Adriano S. Tetrahedron 2007, 63: 3623 - 20d
Darses S.Genet J.-P. Chem. Rev. 2008, 108: 288 - 21a
Molander GA.Canturk B. Angew. Chem. Int. Ed. 2009, 48: 9240 - 21b
Molander GA.Canturk B.Kennedy LE. J. Org. Chem. 2009, 74: 973 - 21c
Knapp DM.Gillis EP.Burke MD. J. Am. Chem. Soc. 2009, 131: 6961 - Reviews:
- 22a
Fagnou K.Lautens M. Chem. Rev. 2003, 103: 169 - 22b
Miyaura N. Synlett 2009, 2039 - 22c
Díez-González S.Marion N.Nolan SP. Chem. Rev. 2009, 109: 3612 - 23a
Batey RA.Thadani AN.Smil DV. Org. Lett. 1999, 1: 1683 - 23b
Pucheault M.Darses S.Genet J.-P. Chem. Commun. 2005, 4714 - 23c
Kuriyama M.Shimazawa R.Enomoto T.Shirai R. J. Org. Chem. 2008, 73: 6939 - 23d
Sakurai F.Kondo K.Aoyama T. Chem. Pharm. Bull. 2009, 57: 511 - 24
Luo F.Pan S.Pan C.Qian P.Cheng J. Adv. Synth. Catal. 2011, 353: 320 - 25a
Zhou C.Larock RC. J. Am. Chem. Soc. 2004, 126: 2302 - 25b
Zhou C.Larock RC. J. Org. Chem. 2006, 71: 3551 - 25c
Tian Q.Pletnev AA.Larock RC. J. Org. Chem. 2003, 68: 339 - 25d
Pletnev AA.Tian Q.Larock RC. J. Org. Chem. 2002, 67: 9276 - 25e
Pletnev AA.Larock RC. Tetrahedron Lett. 2002, 43: 2133 - 25f
Pletnev AA.Tian Q.Larock RC. J. Org. Chem. 2002, 67: 9428 - 26a
Zhao B.Lu X. Org. Lett. 2006, 8: 5987 - 26b
Zhao L.Lu X. Angew. Chem. Int. Ed. 2002, 41: 4343 - 26c
Zhao B.Lu X. Tetrahedron Lett. 2006, 47: 6765 - 27a
Miura T.Nakazawa H.Murakami M. Chem. Commun. 2005, 2855 - 27b
Miura T.Murakami M. Org. Lett. 2005, 7: 3339 - 27c
Shimizu H.Murakami M. Chem. Commun. 2007, 2855 - 27d
Miura T.Harumashi T.Murakami M. Org. Lett. 2007, 9: 741 - 28
Lv G.Huang G.Zhang G.Pan C.Chen F.Cheng J. Tetrahedron 2011, 67: 4879 - 29
Qiao JX.Lam PYS. Synthesis 2011, 829 - 30a
Quach TD.Batey RA. Org. Lett. 2003, 5: 1381 - 30b
Petrassi HM.Sharpless KB.Kelly JW. Org. Lett. 2001, 3: 139 - 30c
Decicco CP.Song Y.Evans DA. Org. Lett. 2001, 3: 1029 - 30d
Evans DA.Katz JL.West TR. Tetrahedron Lett. 1998, 39: 2937 - 30e
Jung ME.Lazarova TI. J. Org. Chem. 1999, 64: 2976 - 30f
Blouin M.Frenette R. J. Org. Chem. 2001, 66: 9043 - 31
Luo F.Pan C.Cheng J. Curr. Org. Chem. 2011, 15: 2816 - 32
Luo F.Pan C.Qian P.Cheng J. Synthesis 2010, 2005 - 33
Zhang L.Zhang G.Zhang M.Cheng J. J. Org. Chem. 2010, 75: 7472 - 34
Lerebours R.Wolf C. J. Am. Chem. Soc. 2006, 128: 13052 - 35
Luo F.Pan C.Qian P.Cheng J. J. Org. Chem. 2010, 75: 5379 - 36
Zhang M.Zhang S.Zhang G.Chen F.Cheng J. Tetrahedron Lett. 2011, 52: 2480 - 37a
Dobereiner GE.Crabtree RH. Chem. Rev. 2010, 110: 681 - 37b
Obora Y.Ishii Y. Synlett 2011, 30 - 37c
Zhang J.Leitus G.Ben-David Y.Milstein D. J. Am. Chem. Soc. 2005, 127: 10840 - 37d
Gunanathan C.Shimon LJW.Milstein D. J. Am. Chem. Soc. 2009, 131: 3146 - 37e
Owston NA.Parker AJ.Williams JMJ. Chem. Commun. 2008, 624 - 37f
Miyamura H.Yasukawa T.Kobayashi S. Green Chem. 2010, 12: 776 - 37g
Mori N.Togo H. Tetrahedron 2005, 61: 5915 - 37h
Coleman MG.Brown AN.Bolton BA.Guana H. Adv. Synth. Catal. 2010, 352: 967 - 37i
Maki BE.Chan A.Phillips EM.Scheidt KA. Tetrahedron 2009, 65: 3102 - 37j
Owston NA.Nixon TD.Parker AJ.Whittlesey MK.Williams JMJ. Synthesis 2009, 1578 - 37k
Yamamoto N.Obora Y.Ishii Y. J. Org. Chem. 2011, 76: 2937 - 37l
Zweifel T.Naubron J.-V.Büttner T.Ott T.Grützmacher H. Angew. Chem. Int. Ed. 2008, 47: 3245 - 37m
Arita S.Koike T.Kayaki Y.Ikariya T. Chem. Asian J. 2008, 3: 1479 - 38
Luo F.Pan C.Cheng J.Chen F. Tetrahedron 2011, 67: 5878 - 39a
Liu C.Wang J.Meng L.Deng Y.Li Y.Lei A. Angew. Chem. Int. Ed. 2011, 50: 5144 - 39b
Gowrisankar S.Neumann H.Beller M. Angew. Chem. Int. Ed. 2011, 50: 5139 - 40a
Lyons W.Sanford MS. Chem. Rev. 2010, 110: 1147 - 40b
Mkhalid IA.Barnard JH.Marder TB.Murphy JM.Hartwig JF. Chem. Rev. 2010, 110: 890 - 40c
Colby DA.Bergman RG.Ellman JA. Chem. Rev. 2010, 110: 624 - 40d
Daugulis O.Do H.-Q.Shabashov D. Acc. Chem. Res. 2009, 42: 1074 - 40e
Chen X.Engle KM.Wang D.-H.Yu J.-Q. Angew. Chem. Int. Ed. 2009, 48: 5094 - 40f
Ackermann L.Vicente R.Kapdi AR. Angew. Chem. Int. Ed. 2009, 48: 9792 - 40g
Li B.-J.Yang S.-D.Shi Z.-J. Synlett 2008, 949 - 40h
Herrerías CI.Yao X.Li Z.Li C.-J. Chem. Rev. 2007, 107: 2546 - 40i
Alberico D.Scott ME.Lautens M. Chem. Rev. 2007, 107: 174 - 40j
Liu C.Zhang H.Shi W.Lei A. Chem. Rev. 2011, 111: 1780 - 40k
Ashenhurst JA. Chem. Soc. Rev. 2010, 39: 540 - 40l
Nishikata T.Abela AR.Huang S.Lipshutz BH. Angew. Chem. Int. Ed. 2010, 49: 781 - 40m
Sun C.-L.Li B.-J.Shi Z.-J. Chem. Rev. 2011, 111: 1293 - 40n
Yeung CS.Dong VM. Chem. Rev. 2011, 111: 1215 - 41a
Dick AR.Hull KL.Sanford MS. J. Am. Chem. Soc. 2004, 126: 2300 - 41b
Kalyani D.Sanford MS. Org. Lett. 2005, 7: 4149 - 41c
Desai LV.Hull KL.Sanford MS.
J. Am. Chem. Soc. 2004, 126: 9542 - 41d
Desai LV.Malik HA.Sanford MS. Org. Lett. 2006, 8: 1141 - 41e
Reddy BVS.Reddy LR.Corey EJ. Org. Lett. 2006, 8: 3391 - 41f
Hull KL.Lanni EL.Sanford MS. J. Am. Chem. Soc. 2006, 128: 14047 - 41g
Wang G.-W.Yuan T.-T.Wu X.-L. J. Org. Chem. 2008, 73: 4717 - 41h
Fu Y.Li Z.Liang S.Guo Q.-X.Liu L. Organometallics 2008, 27: 3736 - 41i
Wang D.-H.Hao X.-S.Wu D.-F.Yu J.-Q. Org. Lett. 2006, 8: 3387 - 42
Giri R.Liang J.Lei J.-G.Li J.-J.Wang D.-H.Chen X.Naggar IC.Guo C.Foxman BM.Yu J.-Q. Angew. Chem. Int. Ed. 2005, 44: 7420 - 43
Chen X.Hao X.-S.Goodhue CE.Yu J.-Q. J. Am. Chem. Soc. 2006, 128: 6790 - For the direct benzoxylation of the arene C-H bond, other than acetoxylation, see:
- 44a
Dick AR.Kampf JW.Sanford MS. J. Am. Chem. Soc. 2005, 127: 12790 - 44b
Racowski JM.Dick AR.Sanford MS. J. Am. Chem. Soc. 2009, 131: 10974 - 44c
Sun C.-L.Liu J.Wang Y.Zhou X.Li B.-J.Shi Z.-J. Synlett 2011, 883 - 45
Jia X.Zhang S.Wang W.Luo F.Cheng J. Org. Lett. 2009, 11: 3120 - 46
Ye Z.Wang W.Luo F.Zhang S.Cheng J. Org. Lett. 2009, 11: 3974 - 47
Zhang S.Luo F.Wang W.Hu M.Jia X.Cheng J. Tetrahedron Lett. 2010, 51: 3317 - 48
Wang W.Luo F.Zhang S.Cheng J. J. Org. Chem. 2010, 75: 2415 - 49
Wang W.Pan C.Chen F.Cheng J. Chem. Commun. 2011, 47: 3978 - 50a
Dhimitruka I.SantaLucia J. Org. Lett. 2006, 8: 47 - 50b
Fife WK.Xin Y. J. Am. Chem. Soc. 1987, 109: 1278 - 50c
Kuo C.-S.Jwo J.-J. J. Org. Chem. 1992, 57: 1991 - 50d
Adkins H.Thompson QE. J. Am. Chem. Soc. 1949, 71: 2242
References
- 1a
Larock RC. Comprehensive Organic Transformations VCH; New York: 1989. p.966 ; and references therein - 1b
Otera J. Esterification: Methods Reactions and Applications Wiley; New York: 2003. - 2a
Moretto A.Nicolli A.Lotti M. Toxicol. Appl. Pharmacol. 2007, 219: 196 - 2b
Beginn U.Zipp G.Moller M. Chem.-Eur. J. 2000, 6: 2016 - 2c
Barratt MD.Basketter DA.Roberts DW. Toxicol. Vitro 1994, 8: 823 - 2d
Child JJ.Oka T.Simpson FJ.Krishnamurty HG. Can. J. Microbiol. 1971, 17: 1455 - 2e
Dong Y.Shi Q.Pai H.-C.Peng C.-Y.Pan S.-L.Teng C.-M.Nakagawa-Goto K.Yu D.Liu Y.-N.Wu P.-C.Bastow KF.Morris-Natschke SL.Brossi A.Lang J.-Y.Hsu JL.Hung M.-C.Lee EY.-HP.Lee K.-H. J. Med. Chem. 2010, 53: 2299 - 2f
Nemoto T.Yamamoto N.Watanabe A.Fujii H.Hasebe K.Nakajima M.Mochizuki H.Nagase H. Bioorg. Med. Chem. 2011, 19: 1205 - 2g
Petersen TB.Khan R.Olofsson B. Org. Lett. 2011, 13: 3462 - 2h
Thasana N.Worayuthakarn R.Kradanrat P.Hohn E.Young L.Ruchirawat S. J. Org. Chem. 2007, 72: 9379 - 2i
Zakhari JS.Kinoyama I.Struss AK.Pullanikat P.Lowery CA.Lardy M.Janda KD. J. Am. Chem. Soc. 2011, 133: 3840 - 3a
Ishihara K. Tetrahedron 2009, 65: 1085 - 3b
Iranpoor N.Firouzabadi H.Khalili D. Org. Biomol. Chem. 2010, 8: 4436 - 3c
Lee CK.Yu JS.Lee H.-J. J. Heterocycl. Chem. 2002, 39: 1207 - 3d
Eshghi H.Rafei M.Karimi MH. Synth. Commun. 2001, 31: 771 - 3e
Ueda M.Mori H. Bull. Chem. Soc. Jpn. 1992, 65: 1636 - 3f
Ueda M.Oikawa H. J. Org. Chem. 1985, 50: 760 - 3g
Keshavamurthy KS.Vankar YD.Dhar DN. Synthesis 1982, 506 - 3h
Nowrouzi N.Mehranpour AM.Rad JA. Tetrahedron 2010, 66: 9596 - 4a
Otera J. Acc. Chem. Res. 2004, 37: 288 - 4b
Grasa GA.Singh R.Nolan SP. Synthesis 2004, 971 - 4c
Shinada T.Hamada M.Miyoshi K.Higashino M.Umezawa T.Ohfune Y. Synlett 2010, 2141 - 4d
Hatano M.Furuya Y.Shimmura T.Moriyama K.Kamiya S.Maki T.Ishihara K. Org. Lett. 2011, 13: 426 - 4e
Bose DS.Satyender A.Rudra Das AP.Mereyala HB. Synthesis 2006, 2392 - 4f
Iwasaki T.Maegawa Y.Hayashi Y.Ohshima T.Mashima K. J. Org. Chem. 2008, 73: 5147 - 4g
Remme N.Koschek K.Schneider C. Synlett 2007, 491 - 5a
Fischer E. Ber. Dtsch. Chem. Ges. 1895, 28: 3254 - 5b
Butts J. J. Am. Chem. Soc. 1931, 53: 3560 - 6a
Brink G.-J.Arends IWCE.Sheldon RA. Chem. Rev. 2004, 104: 4105 - 6b
Kotsuki H.Arimura K.Araki T.Shinohara T. Synlett 1999, 462 - 6c
Yadav JS.Reddy BVS.Basak AK.Narsaiah AV. Chem. Lett. 2004, 33: 248 - 6d
Olah GA.Wang Q.Trivedi NJ.Prakash GKS. Synthesis 1991, 739 - 6e
Yoshida Y.Murakami K.Yorimitsu H.Oshima K. J. Am. Chem. Soc. 2010, 132: 9236 - 7a
Reynolds NT.Read de Alaniz J.Rovis T. J. Am. Chem. Soc. 2004, 126: 9518 - 7b
Kiyooka S.-I.Wada Y.Ueno M.Yokoyama T.Yokoyama R. Tetrahedron 2007, 63: 12695 - 7c
Gopinath R.Patel BK. Org. Lett. 2000, 2: 577 - 7d
Barkakaty B.Talukdar B.Patel BK. J. Org. Chem. 2003, 68: 2944 - 7e
Rose CA.Zeitler K. Org. Lett. 2010, 12: 4552 - 7f
Travis BR.Sivakumar M.Hollist GO.Borhan B. Org. Lett. 2003, 5: 1031 - 7g
Kiran YB.Ikeda R.Sakai N.Konakahara T. Synthesis 2010, 276 - 7h
Gopinath R.Paital AR.Patel BK. Tetrahedron Lett. 2002, 43: 5123 - 7i
Jiang H.Gschwend B.Albrecht .Jørgensen KA. Org. Lett. 2010, 12: 5052 - 7j
Gligorich KM.Sigman MS. Chem. Commun. 2009, 3854 - 7k
Reynolds NT.Rovis T. J. Am. Chem. Soc. 2005, 127: 16406 - 7l
Maki BE.Chan A.Phillips EM.Scheidt KA. Org. Lett. 2007, 9: 371 - 7m
Sarkar SD.Grimme S.Studer A. J. Am. Chem. Soc. 2010, 132: 1190 - 7n
Maji B.Vedachalan S.Ge X.Cai S.Liu X.-W. J. Org. Chem. 2011, 76: 3016 - 7o
De Sarkar S.Biswas A.Song CH.Studer A. Synthesis 2011, 1974 - 8a
Yang C.-G.He C. J. Am. Chem. Soc. 2005, 127: 6966 - 8b
Ekoue-Kovi K.Wolf C. Chem.-Eur. J. 2008, 14: 6302 - 8c
Ishihara K.Ohara S.Yamamoto H. Science 2000, 290: 1140 - 8d
Kaizuka K.Miyamura H.Kobayashi S. J. Am. Chem. Soc. 2010, 132: 15096 - 8e
Nakatani Y.Koizumi Y.Yamasaki R.Saito S. Org. Lett. 2008, 10: 2067 - 8f
Dai J.-J.Liu J.-H.Luo D.-F.Liu L. Chem. Commun. 2011, 47: 677 - 8g
Rosa JN.Reddy RS.Candeias NR.Cal PMSD.Gois PMP. Org. Lett. 2010, 12: 2686 - 8h
Guo C.Yue X.Qing F.-L. Synthesis 2010, 1837 - 8i
Kuriyama M.Ishiyama N.Shimazawa R.Shirai R.Onomura O. J. Org. Chem. 2009, 74: 9210 - 8j
Gnanaprakasam B.Ben-David Y.Milstein D. Adv. Synth. Catal. 2010, 352: 3169 - 8k
Xing C.-H.Liao Y.-X.He P.Hu Q.-S. Chem. Commun. 2010, 46: 3010 - 8l
Mihara M.Nakai T.Iwai T.Ito T.Ohno T.Mizuno T. Synlett 2010, 253 - 8m
Hoshimoto Y.Ohashi M.Ogoshi S. J. Am. Chem. Soc. 2011, 133: 4668 - 8n
Wu X.-F.Neumann H.Beller M. ChemCatChem 2010, 2: 509 - 8o
Bottalico D.Fiandanese V.Marchese G.Punzi A. Synlett 2007, 974 - 8p
Tang S.Peng P.Wang Z.-Q.Tang B.-X.Deng C.-L.Li J.-H.Zhong P.Wang N.-X. Org. Lett. 2008, 10: 1875 - 8q
Kawatsura M.Namioka J.Kajita K.Yamamoto M.Tsuji H.Itoh T. Org. Lett. 2011, 13: 3285 - 9
Qin C.Wu H.Cheng J.Chen X.Liu M.Zhang W.Su W.Ding J. J. Org. Chem. 2007, 72: 4102 - 10
Qin C.Chen J.Wu H.Cheng J.Zhang Q.Zuo B.Su W.Ding J. Tetrahedron Lett. 2008, 49: 1884 - 11
Qin C.Wu H.Chen J.Liu M.Cheng J.Su W.Ding J. Org. Lett. 2008, 10: 1537 - 12a
Sakai M.Ueda M.Miyaura N. Angew. Chem. Int. Ed. 1998, 37: 3279 - 12b
Duan H.-F.Xie J.-H.Shi W.-J.Zhang Q.Zhou Q.-L. Org. Lett. 2006, 8: 1479 - 12c
Fürstner A.Krause H. Adv. Synth. Catal. 2001, 343: 343 - 12d
Morikawa S.Michigami K.Amii H. Org. Lett. 2010, 12: 2520 - 12e
Gois PMP.Trindade AF.Veiros LF.Andre V.Duarte MT.Afonso CAM.Caddick S.Cloke FGN. Angew. Chem. Int. Ed. 2007, 46: 5750 - 12f
Chen W.Baghbanzadeh M.Kappe CO. Tetrahedron Lett. 2011, 52: 1677 - 12g
Yamamoto T.Ohta T.Ito Y. Org. Lett. 2005, 7: 4153 - 12h
Zheng H.Ding J.Chen J.Liu M.Gao W.Wu H. Synlett 2011, 1626 - 12i
Liao Y.-X.Xing C.-H.He P.Hu Q.-S. Org. Lett. 2008, 10: 2509 - 12j
Kuriyama M.Ishiyama N.Shimazawa R.Onomura O. Tetrahedron 2010, 66: 6814 - 12k
Zou T.Pi S.-S.Li J.-H. Org. Lett. 2009, 11: 453 - 12l
Trindade AF.Andre V.Duarte MT.Veiros LF.Gois PMP.Afonso CAM. Tetrahedron 2010, 66: 8494 - 12m
Karthikeyan J.Jeganmohan M.Cheng C.-H. Chem.-Eur. J. 2010, 16: 8989 - 12n
Liu G.Lu X. J. Am. Chem. Soc. 2006, 128: 16504 - 12o
Yamamoto K.Tsurumi K.Sakurai F.Kondo K.Aoyama T. Synthesis 2008, 3585 - 13a
Beck JJ.Chou S.-C. J. Nat. Prod. 2007, 70: 891 - 13b
Tianpanich K.Prachya S.Wiyakrutta S.Mahidol C.Ruchirawat S.Kittakoop P. J. Nat. Prod. 2011, 74: 79 - 13c
Lee TF.Lin YL.Huang YT. Planta Med. 2007, 73: 527 - 13d
Puder C.Zeeck A.Beil W. J. Antibiot. 2000, 53: 329 - 13e
Singh M.Argade NP. J. Org. Chem. 2010, 75: 3121 - 13f
Knepper K.Ziegert RE.Bräse ST. Tetrahedron 2004, 60: 8591 - 13g
Choi PJ.Sperry J.Brimble MA. J. Org. Chem. 2010, 75: 7388 - 13h
Xiong MJ.Li ZH. Curr. Org. Chem. 2007, 11: 833 - 13i
Shode FO.Mahomed AS.Rogers CB. Phytochemistry 2002, 61: 955 - 13j
Zhang H.Zhang S.Liu L.Luo G.Duan W.Wang W. J. Org. Chem. 2010, 75: 368 - 13k
Witulski B.Zimmermann A.Gowans ND. Chem. Commun. 2002, 2984 - 14
Ye Z.Lv G.Wang W.Zhang M.Cheng J. Angew. Chem. Int. Ed. 2010, 49: 3671 - 15
Mikami K.Ohmura H. Org. Lett. 2002, 4: 3355 - 16
Ye Z.Qian P.Lv G.Luo F.Cheng J. J. Org. Chem. 2010, 75: 6043 - 17
Karthikeyan J.Parthasarathy K.Cheng C.-H. Chem. Commun. 2011, 47: 10461 - 18a
Suzuki A. Acc. Chem. Res. 1982, 15: 178 - 18b
Miyaura N.Suzuki A. Chem. Rev. 1995, 95: 2457 - 18c
Suzuki A.
J. Organomet. Chem. 1998, 576: 147 - 19
Onak T. Organoborane Chemistry Academic Press; New York: 1975. - Reviews:
- 20a
Molander GA.Figueroa R. Aldrichimica Acta 2005, 38: 49 - 20b
Molander GA.Ellis N. Acc. Chem. Res. 2007, 40: 275 - 20c
Stefani HA.Cella R.Adriano S. Tetrahedron 2007, 63: 3623 - 20d
Darses S.Genet J.-P. Chem. Rev. 2008, 108: 288 - 21a
Molander GA.Canturk B. Angew. Chem. Int. Ed. 2009, 48: 9240 - 21b
Molander GA.Canturk B.Kennedy LE. J. Org. Chem. 2009, 74: 973 - 21c
Knapp DM.Gillis EP.Burke MD. J. Am. Chem. Soc. 2009, 131: 6961 - Reviews:
- 22a
Fagnou K.Lautens M. Chem. Rev. 2003, 103: 169 - 22b
Miyaura N. Synlett 2009, 2039 - 22c
Díez-González S.Marion N.Nolan SP. Chem. Rev. 2009, 109: 3612 - 23a
Batey RA.Thadani AN.Smil DV. Org. Lett. 1999, 1: 1683 - 23b
Pucheault M.Darses S.Genet J.-P. Chem. Commun. 2005, 4714 - 23c
Kuriyama M.Shimazawa R.Enomoto T.Shirai R. J. Org. Chem. 2008, 73: 6939 - 23d
Sakurai F.Kondo K.Aoyama T. Chem. Pharm. Bull. 2009, 57: 511 - 24
Luo F.Pan S.Pan C.Qian P.Cheng J. Adv. Synth. Catal. 2011, 353: 320 - 25a
Zhou C.Larock RC. J. Am. Chem. Soc. 2004, 126: 2302 - 25b
Zhou C.Larock RC. J. Org. Chem. 2006, 71: 3551 - 25c
Tian Q.Pletnev AA.Larock RC. J. Org. Chem. 2003, 68: 339 - 25d
Pletnev AA.Tian Q.Larock RC. J. Org. Chem. 2002, 67: 9276 - 25e
Pletnev AA.Larock RC. Tetrahedron Lett. 2002, 43: 2133 - 25f
Pletnev AA.Tian Q.Larock RC. J. Org. Chem. 2002, 67: 9428 - 26a
Zhao B.Lu X. Org. Lett. 2006, 8: 5987 - 26b
Zhao L.Lu X. Angew. Chem. Int. Ed. 2002, 41: 4343 - 26c
Zhao B.Lu X. Tetrahedron Lett. 2006, 47: 6765 - 27a
Miura T.Nakazawa H.Murakami M. Chem. Commun. 2005, 2855 - 27b
Miura T.Murakami M. Org. Lett. 2005, 7: 3339 - 27c
Shimizu H.Murakami M. Chem. Commun. 2007, 2855 - 27d
Miura T.Harumashi T.Murakami M. Org. Lett. 2007, 9: 741 - 28
Lv G.Huang G.Zhang G.Pan C.Chen F.Cheng J. Tetrahedron 2011, 67: 4879 - 29
Qiao JX.Lam PYS. Synthesis 2011, 829 - 30a
Quach TD.Batey RA. Org. Lett. 2003, 5: 1381 - 30b
Petrassi HM.Sharpless KB.Kelly JW. Org. Lett. 2001, 3: 139 - 30c
Decicco CP.Song Y.Evans DA. Org. Lett. 2001, 3: 1029 - 30d
Evans DA.Katz JL.West TR. Tetrahedron Lett. 1998, 39: 2937 - 30e
Jung ME.Lazarova TI. J. Org. Chem. 1999, 64: 2976 - 30f
Blouin M.Frenette R. J. Org. Chem. 2001, 66: 9043 - 31
Luo F.Pan C.Cheng J. Curr. Org. Chem. 2011, 15: 2816 - 32
Luo F.Pan C.Qian P.Cheng J. Synthesis 2010, 2005 - 33
Zhang L.Zhang G.Zhang M.Cheng J. J. Org. Chem. 2010, 75: 7472 - 34
Lerebours R.Wolf C. J. Am. Chem. Soc. 2006, 128: 13052 - 35
Luo F.Pan C.Qian P.Cheng J. J. Org. Chem. 2010, 75: 5379 - 36
Zhang M.Zhang S.Zhang G.Chen F.Cheng J. Tetrahedron Lett. 2011, 52: 2480 - 37a
Dobereiner GE.Crabtree RH. Chem. Rev. 2010, 110: 681 - 37b
Obora Y.Ishii Y. Synlett 2011, 30 - 37c
Zhang J.Leitus G.Ben-David Y.Milstein D. J. Am. Chem. Soc. 2005, 127: 10840 - 37d
Gunanathan C.Shimon LJW.Milstein D. J. Am. Chem. Soc. 2009, 131: 3146 - 37e
Owston NA.Parker AJ.Williams JMJ. Chem. Commun. 2008, 624 - 37f
Miyamura H.Yasukawa T.Kobayashi S. Green Chem. 2010, 12: 776 - 37g
Mori N.Togo H. Tetrahedron 2005, 61: 5915 - 37h
Coleman MG.Brown AN.Bolton BA.Guana H. Adv. Synth. Catal. 2010, 352: 967 - 37i
Maki BE.Chan A.Phillips EM.Scheidt KA. Tetrahedron 2009, 65: 3102 - 37j
Owston NA.Nixon TD.Parker AJ.Whittlesey MK.Williams JMJ. Synthesis 2009, 1578 - 37k
Yamamoto N.Obora Y.Ishii Y. J. Org. Chem. 2011, 76: 2937 - 37l
Zweifel T.Naubron J.-V.Büttner T.Ott T.Grützmacher H. Angew. Chem. Int. Ed. 2008, 47: 3245 - 37m
Arita S.Koike T.Kayaki Y.Ikariya T. Chem. Asian J. 2008, 3: 1479 - 38
Luo F.Pan C.Cheng J.Chen F. Tetrahedron 2011, 67: 5878 - 39a
Liu C.Wang J.Meng L.Deng Y.Li Y.Lei A. Angew. Chem. Int. Ed. 2011, 50: 5144 - 39b
Gowrisankar S.Neumann H.Beller M. Angew. Chem. Int. Ed. 2011, 50: 5139 - 40a
Lyons W.Sanford MS. Chem. Rev. 2010, 110: 1147 - 40b
Mkhalid IA.Barnard JH.Marder TB.Murphy JM.Hartwig JF. Chem. Rev. 2010, 110: 890 - 40c
Colby DA.Bergman RG.Ellman JA. Chem. Rev. 2010, 110: 624 - 40d
Daugulis O.Do H.-Q.Shabashov D. Acc. Chem. Res. 2009, 42: 1074 - 40e
Chen X.Engle KM.Wang D.-H.Yu J.-Q. Angew. Chem. Int. Ed. 2009, 48: 5094 - 40f
Ackermann L.Vicente R.Kapdi AR. Angew. Chem. Int. Ed. 2009, 48: 9792 - 40g
Li B.-J.Yang S.-D.Shi Z.-J. Synlett 2008, 949 - 40h
Herrerías CI.Yao X.Li Z.Li C.-J. Chem. Rev. 2007, 107: 2546 - 40i
Alberico D.Scott ME.Lautens M. Chem. Rev. 2007, 107: 174 - 40j
Liu C.Zhang H.Shi W.Lei A. Chem. Rev. 2011, 111: 1780 - 40k
Ashenhurst JA. Chem. Soc. Rev. 2010, 39: 540 - 40l
Nishikata T.Abela AR.Huang S.Lipshutz BH. Angew. Chem. Int. Ed. 2010, 49: 781 - 40m
Sun C.-L.Li B.-J.Shi Z.-J. Chem. Rev. 2011, 111: 1293 - 40n
Yeung CS.Dong VM. Chem. Rev. 2011, 111: 1215 - 41a
Dick AR.Hull KL.Sanford MS. J. Am. Chem. Soc. 2004, 126: 2300 - 41b
Kalyani D.Sanford MS. Org. Lett. 2005, 7: 4149 - 41c
Desai LV.Hull KL.Sanford MS.
J. Am. Chem. Soc. 2004, 126: 9542 - 41d
Desai LV.Malik HA.Sanford MS. Org. Lett. 2006, 8: 1141 - 41e
Reddy BVS.Reddy LR.Corey EJ. Org. Lett. 2006, 8: 3391 - 41f
Hull KL.Lanni EL.Sanford MS. J. Am. Chem. Soc. 2006, 128: 14047 - 41g
Wang G.-W.Yuan T.-T.Wu X.-L. J. Org. Chem. 2008, 73: 4717 - 41h
Fu Y.Li Z.Liang S.Guo Q.-X.Liu L. Organometallics 2008, 27: 3736 - 41i
Wang D.-H.Hao X.-S.Wu D.-F.Yu J.-Q. Org. Lett. 2006, 8: 3387 - 42
Giri R.Liang J.Lei J.-G.Li J.-J.Wang D.-H.Chen X.Naggar IC.Guo C.Foxman BM.Yu J.-Q. Angew. Chem. Int. Ed. 2005, 44: 7420 - 43
Chen X.Hao X.-S.Goodhue CE.Yu J.-Q. J. Am. Chem. Soc. 2006, 128: 6790 - For the direct benzoxylation of the arene C-H bond, other than acetoxylation, see:
- 44a
Dick AR.Kampf JW.Sanford MS. J. Am. Chem. Soc. 2005, 127: 12790 - 44b
Racowski JM.Dick AR.Sanford MS. J. Am. Chem. Soc. 2009, 131: 10974 - 44c
Sun C.-L.Liu J.Wang Y.Zhou X.Li B.-J.Shi Z.-J. Synlett 2011, 883 - 45
Jia X.Zhang S.Wang W.Luo F.Cheng J. Org. Lett. 2009, 11: 3120 - 46
Ye Z.Wang W.Luo F.Zhang S.Cheng J. Org. Lett. 2009, 11: 3974 - 47
Zhang S.Luo F.Wang W.Hu M.Jia X.Cheng J. Tetrahedron Lett. 2010, 51: 3317 - 48
Wang W.Luo F.Zhang S.Cheng J. J. Org. Chem. 2010, 75: 2415 - 49
Wang W.Pan C.Chen F.Cheng J. Chem. Commun. 2011, 47: 3978 - 50a
Dhimitruka I.SantaLucia J. Org. Lett. 2006, 8: 47 - 50b
Fife WK.Xin Y. J. Am. Chem. Soc. 1987, 109: 1278 - 50c
Kuo C.-S.Jwo J.-J. J. Org. Chem. 1992, 57: 1991 - 50d
Adkins H.Thompson QE. J. Am. Chem. Soc. 1949, 71: 2242
References

Scheme 1 Traditional esterification reactions

Scheme 2 Palladium-catalyzed aromatic esterification reaction between aldehydes and arylboronic acids

Figure 1 Selected examples of 3-substituted phthalides with reported biological activities

Scheme 3 Rhodium-catalyzed cascade aryl addition-lactonization of phthalaldehyde with arylboronic acids

Scheme 4 The reaction of a possible intermediate under standard conditions

Scheme 5 Palladium-catalyzed cascade aryl addition-lactonization of phthalaldehyde with arylboronic acids

Scheme 6 Rhodium- or palladium-catalyzed cascade aryl addition-lactonization of phthalaldehyde with potassium organotrifluoroborates

Scheme 7 Rhodium- or palladium-catalyzed cascade aryl addition-lactonization of phthalaldehydonitrile with arylboronic acids

Scheme 8 Copper-catalyzed esterification of arene carboxylic acids with aryl and vinyl trimethoxysilanes

Scheme 9 Copper-mediated esterification of arene carboxylic acids with arylboronic acids

Scheme 10 The esterification reaction using aryl trimethoxysilane

Scheme 11 Copper-catalyzed esterification of anhydride with aryl or vinyl trimethoxysilane

Scheme 12 Palladium/NHC-catalyzed oxidative esterification of aldehydes with phenols

Scheme 13 Tandem benzylic oxidation-oxidative esterification of benzylic alcohols with phenols

Scheme 14 ortho-Benzoxylation of 2-arylpyridines with carboxylic acids

Scheme 15 Palladium-catalyzed acyloxylation of the benzyl sp³ C-H bond

Scheme 16 Copper-catalyzed ortho-benzoxylation of the 2-arylpyridine sp² C-H bond with anhydride

Scheme 17 Benzoxylation of 2-arylpyridine sp² C-H Bonds with Acyl Chlorides

Scheme 18 ortho-Chlorination of 2-arylpyridine