Subscribe to RSS
DOI: 10.1055/s-0031-1289623
An Environmentally Friendly Synthesis of Michler’s Ketone Analogues in Water
Publication History
Publication Date:
24 November 2011 (online)
Abstract
An environmentally friendly method for the synthesis of a series of novel, unsymmetrical Michler’s ketone analogues, [4-(dialkylamino)phenyl](aryl)methanones, via nucleophilic aromatic substitution of (fluorophenyl)(aryl)methanones with various amines in water is described. The reaction products are formed in high yields and additional purification is not required. The aqueous solvent and unreacted amines can be recycled.
Key words
Michler’s ketone - nucleophilic substitution - environmentally friendly - secondary amines - water

Scheme 1 Synthesis of benzophenone 2f in water
Michler’s ketone, 4,4′-bis(dimethylamino)benzophenone, was originally synthesized by Michler from N,N-dimethylaniline and phosgene. [¹] This particular ketone and its analogs are used in the production of cyanine and triarylmethane dyes and pigments, [²] photochromic naphthopyrans, [³] sensitizers [4] or photoinitiators for polymerization, [5] and are widely studied for their xerographic properties. [6] Some of the dyes prepared from Michler’s ketone find application in medicine as cholinesterase inhibitors [7] and antitumor agents. [8]
Michler’s ketone and its analogues are synthesized mainly by the reaction of halobenzophenones with secondary amines. Such nucleophilic substitution reactions in aromatic compounds are usually carried out in polar aprotic solvents (DMSO or tetramethylene sulfone, [9] DMF, [¹0] MeCN [¹¹] ) or in the amine itself. [¹²] The reaction gives the expected arylamines in higher yields when carried out at high pressure. [¹³] There is also a catalytic variant of the reaction. [¹4] All these methods utilize rather hazardous and toxic solvents and/or catalysts that are incompatible with regards to green chemistry. [¹5] [¹6]
In continuation of our studies [¹7] on the synthesis of new dyes including photochromic compounds, we have developed an environmentally friendly method for the formation of diarylketones bearing dialkylamino groups which can serve as starting materials for the preparation of various dyes including photochromic naphthopyrans. The method involves the reaction of fluorobenzophenones with secondary amines in water (Scheme [¹] , Table [¹] ).
It is known that this type of reaction occurs via an SNAr (addition-elimination) mechanism [¹8] [¹9] (Scheme [²] ).

Scheme 2 The SNAr (addition-elimination) mechanism for nucleophilic substitution in aromatic compounds
In most cases of such nucleophilic substitution reactions, sodium or potassium carbonate, triethylamine or 1,4-diazabicyclo[2.2.2]octane are utilized as bases. [¹9] We found that in this reaction the amine plays the role of both nucleophile and base. A four-fold excess of the amine leads to a significant increase in the reaction rate and target product yields. Another advantage of using the amine as the base in this process is the ability to recover any unreacted amine thereby reducing waste. Thus, after work-up of the reaction mixture and removal of the product by filtration, the mother liquor can be treated with aqueous sodium bicarbonate solution and the resulting suspension of amine in water can be reused.
The use of water as a solvent not only makes these reaction conditions more environmentally friendly, but in many cases, shows significant beneficial effects in terms of the reaction rates and selectivity. [²0] An important role is played by ‘on water’ processes where the reactants are not soluble in water. [²0a] There are several examples of using water as the solvent in nucleophilic substitution in aromatics, [²¹] and in these cases, the reaction rate increased compared to those in other polar solvents.
In conclusion, we have developed an environmentally friendly method for the preparation of Michler’s ketone and its analogues in excellent yields and high purities under mild reaction conditions.
Commercially available reagents (Acros or Merck) were used. Melting points were measured on a Boetius hot stage apparatus and are uncorrected. Benzophenones 1 were prepared by acylation of the appropriate arene with 2- or 4-fluorobenzoyl chloride according to literature procedures. [²²] [4-(2,3-Dihydroindol-1-yl)phenyl](4-fluorophenyl)methanone was synthesized by reaction of 4,4′-difluorobenzophenone with indoline and NaH in DMSO. [²³] ¹H NMR spectra were recorded on a Bruker AM-300 spectrometer. Mass spectra were obtained on a Kratos mass spectrometer (70 eV) with direct sample injection into the ion source. Microanalyses were obtained using a PerkinElmer 2400 Series II CHNS/O Elemental Analyzer. Petroleum ether (PE) refers to the fraction boiling in the 40-70 ˚C range.
Michler’s Ketone Analogues; General Procedure
A mixture of 2- or 4-fluorobenzophenone 1 (5 mmol), secondary amine [20 mmol (40 mmol in the case of morpholine)] and H2O (5 mL) was heated at reflux temperature for 30 h and then poured into cold H2O (250 mL). The progress of the reaction was monitored by TLC (eluent: PE-EtOAc, 3:1). The resulting solid precipitate was isolated by filtration, washed with H2O (50 mL) and PE (50 mL), and dried.
Bis[4-(piperidin-1-yl)phenyl]methanone (2a)
Yellowish powder; yield: 1.7 g (96%); mp 151.5-152.5 ˚C (PE) (Lit. [9a] 152 ˚C).
¹H NMR (300 MHz, CDCl3): δ = 1.60-1.76 (m, 12 H, 6 × CH2), 3.35 (t, J = 5.1 Hz, 8 H, 4 × CH2), 6.89 (d, J = 8.8 Hz, 4 H, ArH), 7.75 (d, J = 8.8 Hz, 4 H, ArH).
(4-Methoxyphenyl)[4-(piperidin-1-yl)phenyl]methanone (2b)
White powder; yield: 1.3 g (88%); mp 109-110 ˚C (PE).
¹H NMR (300 MHz, CDCl3): δ = 1.60-1.77 (m, 6 H, 3 × CH2), 3.37 (t, J = 5.5 Hz, 4 H, 2 × CH2), 3.88 (s, 3 H, CH3), 6.89 (d, J = 8.8 Hz, 2 H, ArH), 6.96 (d, J = 8.8 Hz, 2 H, ArH), 7.72-7.82 (m, 4 H, ArH).
MS (EI, 70 eV): m/z (%) = 295 (56) [M]+, 280 (77) [M - Me]+, 264 (48) [M - OMe]+, 188 (100).
Anal. Calcd for C19H21NO2: C, 77.26; H, 7.17; N, 4.74. Found: C, 77.41; H, 7.13; N, 4.61.
[4-(Azepan-1-yl)phenyl](4-methoxyphenyl)methanone (2c)
Yellow powder; yield: 1.4 g (90%); mp 85-86 ˚C (PE).
¹H NMR (300 MHz, CDCl3): δ = 1.50-1.64 (m, 4 H, 2 × CH2), 1.75-1.89 (m, 4 H, 2 × CH2), 3.54 (t, J = 5.9 Hz, 4 H, 2 × CH2), 3.88 (s, 3 H, CH3), 6.69 (d, J = 8.8 Hz, 2 H, ArH), 6.96 (d, J = 8.8 Hz, 2 H, ArH), 7.72-7.82 (m, 4 H, ArH).
MS (EI, 70 eV): m/z (%) = 309 (67) [M]+, 294 (58) [M - Me]+, 278 (39) [M - OMe]+, 202 (100).
Anal. Calcd for C20H23NO2: C, 77.64; H, 7.49; N, 4.53. Found: C, 77.33; H, 7.51; N, 4.65.
(2,4-Dimethoxyphenyl)(4-morpholinophenyl)methanone (2d)
White powder; yield: 1.5 g (93%); mp 86-87 ˚C (PE).
¹H NMR (300 MHz, CDCl3): δ = 3.29 (t, J = 5.1 Hz, 4 H, 2 × CH2), 3.68 (s, 3 H, CH3), 3.73 (t, J = 5.1 Hz, 4 H, 2 × CH2), 3.84 (s, 3 H, CH3), 6.62 (dd, J = 2.2, 8.1 Hz, 1 H, ArH), 6.67 (d, J = 2.2 Hz, 1 H, ArH), 6.95 (d, J = 8.8 Hz, 2 H, ArH), 7.19 (d, J = 8.1 Hz, 1 H, ArH), 7.57 (d, J = 8.8 Hz, 2 H, ArH).
MS (EI, 70 eV): m/z (%) = 327 (100) [M]+, 312 (78) [M - Me]+, 296 (44) [M - OMe]+.
Anal. Calcd for C19H21NO4: C, 69.71; H, 6.47; N, 4.28. Found: C, 69.81; H, 6.45; N, 4.44.
(2,4-Dimethoxyphenyl)(2-morpholinophenyl)methanone (2e)
Yellow powder; yield: 1.3 g (81%); mp 82-83 ˚C (PE).
¹H NMR (300 MHz, CDCl3): δ = 2.87 (t, J = 4.6 Hz, 4 H, 2 × CH2), 3.34 (t, J = 4.6 Hz, 4 H, 2 × CH2), 3.60 (s, 3 H, CH3), 3.86 (s, 3 H, CH3), 6.42 (d, J = 2.0 Hz, 1 H, ArH), 6.50 (dd, J = 2.2, 8.5 Hz, 1 H, ArH), 6.96 (d, J = 7.9 Hz, 1 H, ArH), 7.07 (t, J = 7.2 Hz, 1 H, ArH), 7.35-7.47 (m, 2 H, ArH), 7.55 (d, J = 8.5 Hz, 2 H, ArH).
MS (EI, 70 eV): m/z (%) = 327 (100) [M]+, 312 (63) [M - Me]+, 296 (56) [M - OMe]+.
Anal. Calcd for C19H21NO4: C, 69.71; H, 6.47; N, 4.28. Found: C, 69.99; H, 6.37; N, 3.96.
(2,4-Dimethoxyphenyl)[4-(piperidin-1-yl)phenyl]methanone (2f)
White powder; yield: 1.6 g (98%); mp 112-113 ˚C (PE).
¹H NMR (300 MHz, CDCl3): δ = 1.60-1.75 (m, 6 H, 3 × CH2), 3.30-3.42 (m, 4 H, 2 × CH2), 3.74 (s, 3 H, CH3), 3.86 (s, 3 H, CH3), 6.50-6.56 (m, 2 H, ArH), 6.82 (d, J = 8.5 Hz, 2 H, ArH), 7.30 (d, J = 9.2 Hz, 1 H, ArH), 7.73 (d, J = 8.5 Hz, 2 H, ArH).
MS (EI, 70 eV): m/z (%) = 325 (100) [M]+, 310 (54) [M - Me]+, 294 (47) [M - OMe]+.
Anal. Calcd for C20H23NO3: C, 73.82; H, 7.12; N, 4.30. Found: C, 74.09; H, 7.24; N, 4.47.
(2,4-Dimethoxyphenyl)[4-(pyrrolidin-1-yl)phenyl]methanone (2g)
Yellowish powder; yield: 1.5 g (95%); mp 129-130 ˚C (PE).
¹H NMR (300 MHz, CDCl3): δ = 1.95-2.09 (m, 4 H, 2 × CH2), 3.28-3.42 (m, 4 H, 2 × CH2), 3.74 (s, 3 H, CH3), 3.86 (s, 3 H, CH3), 6.44-6.57 (m, 4 H, ArH), 7.28 (d, J = 7.9 Hz, 1 H, ArH), 7.74 (d, J = 8.5 Hz, 2 H, ArH).
MS (EI, 70 eV): m/z (%) = 311 (60) [M]+, 296 (100) [M - Me]+, 174 (57).
Anal. Calcd for C19H21NO3: C, 73.29; H, 6.80; N, 4.50. Found: C, 73.41; H, 6.73; N, 4.30.
[4-(Azepan-1-yl)phenyl](2,4-dimethoxyphenyl)methanone (2h)
Yellowish powder; yield: 1.7 g (99%); mp 98-99 ˚C (PE).
¹H NMR (300 MHz, CDCl3): δ = 1.47-1.63 (m, 4 H, 2 × CH2), 1.69-1.88 (m, 4 H, 2 × CH2), 3.51 (t, J = 6.2 Hz, 4 H, 2 × CH2), 3.74 (s, 3 H, CH3), 3.85 (s, 3 H, CH3), 6.47-6.56 (m, 2 H, ArH), 6.62 (d, J = 9.0 Hz, 2 H, ArH), 7.27 (d, J = 9.0 Hz, 1 H, ArH), 7.72 (d, J = 9.0 Hz, 2 H, ArH).
MS (EI, 70 eV): m/z (%) = 339 (66) [M]+, 324 (100) [M - Me]+, 308 (68) [M - OMe]+.
Anal. Calcd for C21H25NO3: C, 74.31; H, 7.42; N, 4.13. Found: C, 74.24; H, 7.39; N, 4.51.
Naphthalen-1-yl[4-(piperidin-1-yl)phenyl]methanone (2i)
Yellowish powder; yield: 1.3 g (83%); mp 78-79 ˚C (PE).
¹H NMR (300 MHz, CDCl3): δ = 1.64-1.73 (m, 6 H, 3 × CH2), 3.35-3.43 (m, 4 H, 2 × CH2), 6.83 (d, J = 9.2 Hz, 2 H, ArH), 7.44-7.56 (m, 4 H, ArH), 7.78 (d, J = 9.2 Hz, 2 H, ArH), 7.88-8.03 (m, 3 H, ArH).
MS (EI, 70 eV): m/z (%) = 315 (100) [M]+.
Anal. Calcd for C22H21NO: C, 83.78; H, 6.71; N, 4.44. Found: C, 83.86; H, 6.68; N, 4.26.
(4-Hydroxy-2-isopropoxyphenyl)[4-(piperidin-1-yl)phenyl]methanone (2j)
Yellow powder; yield: 1.6 g (96%); mp 103.5-104.5 ˚C (PE).
¹H NMR (300 MHz, CDCl3): δ = 1.38 (d, J = 6.2 Hz, 6 H, 2 × CH3), 1.64-1.76 (m, 6 H, 3 × CH2), 3.37 (t, J = 5.1 Hz, 4 H, 2 × CH2), 4.63 (sept, J = 6.2 Hz, 1 H, CH), 6.38 (dd, J = 2.2, 8.8 Hz, 1 H, ArH), 6.49 (d, J = 2.2 Hz, 1 H, ArH), 6.91 (d, J = 8.8 Hz, 2 H, ArH), 7.57-7.68 (m, 3 H, ArH), 12.51 (br s, 1 H, OH).
MS (EI, 70 eV): m/z (%) = 339 (69) [M]+, 296 (20) [M - iPr]+, 161 (100).
Anal. Calcd for C21H25NO3: C, 74.31; H, 7.42; N, 4.13. Found: C, 74.22; H, 7.48; N, 4.07.
(4-Morpholinophenyl)(thien-2-yl)methanone (2k)
Yellow powder; yield: 1.2 g (90%); mp 122-123 ˚C (PE).
¹H NMR (300 MHz, CDCl3): δ = 3.32 (t, J = 5.0 Hz, 4 H, 2 × CH2), 3.87 (t, J = 5.0 Hz, 4 H, 2 × CH2), 6.92 (d, J = 9.1 Hz, 2 H, ArH), 7.15 (dd, J = 3.9, 5.3 Hz, 1 H, ArH), 7.63-7.68 (m, 2 H, ArH), 7.89 (d, J = 9.1 Hz, 2 H, ArH).
MS (EI, 70 eV): m/z (%) = 273 (100) [M]+.
Anal. Calcd for C15H15NO2S: C, 65.91; H, 5.53; N, 5.12. Found: C, 66.03; H, 5.57; N, 5.33.
[4-(Azepan-1-yl)phenyl][4-(2,3-dihydroindol-1-yl)phenyl]methanone (2l)
Yellow powder; yield: 1.6 g (80%); mp 133-134 ˚C (PE).
¹H NMR (300 MHz, CDCl3): δ = 1.53-1.61 (m, 4 H, 2 × CH2), 1.77-1.89 (m, 4 H, 2 × CH2), 3.18 (t, J = 8.3 Hz, 2 H, CH2), 3.55 (t, J = 5.9 Hz, 4 H, 2 × CH2), 4.04 (t, J = 8.3 Hz, 2 H, CH2), 6.71 (d, J = 8.8 Hz, 2 H, ArH), 6.84 (t, J = 7.3 Hz, 1 H, ArH), 7.14 (d, J = 7.8 Hz, 1 H, ArH), 7.19-7.29 (m, 3 H, ArH), 7.32 (d, J = 7.8 Hz, 1 H, ArH), 7.77-7.87 (m, 4 H, ArH).
MS (EI, 70 eV): m/z (%) = 396 (100) [M]+.
Anal. Calcd for C27H28N2O: C, 81.78; H, 7.12; N, 7.06. Found: C, 81.91; H, 7.06; N, 7.23.
Acknowledgment
This work was financially supported by the Russian Foundation for Basic Research (RFBR Grant - 11-03-00799) and the Russian Academy of Sciences (Program No. 22).
- 1
Michler W. Ber. Dtsch. Chem. Ges. 1876, 9: 716 - 2a
Noack A.Schröder A.Hartmann H. Dyes Pigm. 2002, 57: 131 - 2b
Landl M.imon P.Kvasnik F. Sens. Actuators, B 1998, 51: 114 - 3
Van Gemert B. Benzo and Naphthopyrans (Chromenes), In Organic Photochromic and Thermochromic Compounds Vol. 1:Crano JC.Guglielmetti R. Plenum Press; New York: 1999. p.111-140 - 4a
Reilly LW. inventors; US Patent 4507497. ; Chem. Abstr. 1985, 103, 79453 - 4b
Kuesters W,Heil G,Fischer M,Eisert M, andKast H. inventors; US Patent 4147604. ; Chem. Abstr. 1979, 90, 188700 - 5a
Onen A.Yagci Y. Polymer 2001, 42: 6681 - 5b
Zheng M.Yang M.Liu S.Zhang L. Chin. J. Polym. Sci. 1995, 13: 74 - 5c
Wan T.Wang X.Yi Y.He W. Polym. Int. 2006, 55: 1413 - 6a
Pillai PKC.Tripathi AK.Narula GK.Mendiratta RG. J. Mater. Sci. 1982, 17: 3017 - 6b
Pillai PKC.Shroff N.Tripathi AK. J. Electrostat. 1985, 17: 269 - 6c
.
Pillai PKC. J. Mater. Sci. 1983, 18: 3456 - 7
Küçükkilinça T.Özer . Arch. Biochem. Biophys. 2005, 440: 118 - 8
Arbiser JL. inventors; US Patent 20100160296. ; Chem. Abstr. 2010, 153, 126301 - 9a
Spange S.El-Sayed M.Mueller H.Rheinwald G.Lang H.Poppitz W. Eur. J. Org. Chem. 2002, 4159 - 9b
Magdolen P.Mečiarová M.Toma Š. Tetrahedron 2001, 57: 4781 - 9c
Sanguinet L.Twieg RJ.Wiggers G.Mao G.Singer KD.Petschek RG. Tetrahedron Lett. 2005, 46: 5121 - 9d
Gorman SA.Hepworth JD.Mason D. J. Chem. Soc., Perkin Trans. 2 2000, 1889 - 10a
Mishra N.Arora P.Kumar B.Mishra LC.Bhattacharya A.Awasthi SK.Bhasin VK. Eur. J. Med. Chem. 2008, 43: 1530 - 10b
Hendrickx E.Zhang Y.Ferrio KB.Herlocker JA.Anderson JV.Armstrong NR.Mash EA.Persoons AP.Peyghambarian N.Kippelen B. J. Mater. Chem. 1999, 9: 2251 - 11a
Taylor EC.Skotnicki JS. Synthesis 1981, 606 - 11b
Annoura H.Nakanishi K.Toba T.Takemoto N.Imajo S.Miyajima A.Tamura-Horikawa Y.Tamura S. J. Med. Chem. 2000, 43: 3372 - 12a
Gabbutt CD.Heron BM.Instone AC.Horton PN.Hursthouse MB. Tetrahedron 2005, 61: 463 - 12b
Tian W. inventors; US Patent 20030171581. ; Chem. Abstr. 2001, 135, 371752 - 13
Kotsuki H.Kobayashi S.Matsumoto K.Suenaga H.Nishizawa H. Synthesis 1990, 1147 - 14a
Van Baelen G.Maes BUW. Tetrahedron 2008, 64: 5604 - 14b
Lee BK.Biscoe MR.Buchwald SL. Tetrahedron Lett. 2009, 50: 3672 - 14c
Kuntz J.-F.Schneider R.Walcarius A.Fort Y. Tetrahedron Lett. 2005, 46: 8793 - 14d
Witulski B. Synlett 1999, 1223 - 15a
Anastas P.Eghbali N. Chem. Soc. Rev. 2010, 39: 301 - 15b
Cue BW.Zhang J. Green Chem. Lett. Rev. 2009, 2: 193 - 15c
Horváth IT.Anastas PT. Chem. Rev. 2007, 107: 2167 - 15d
Alfonsi K.Colberg J.Dunn PJ.Fevig T.Jennings S.Johnson TA.Kleine HP.Knight C.Nagy MA.Perry DA.Stefaniak M. Green Chem. 2008, 10: 31 - 16
Faust A.Wolff O.Waldvogel SR. Synthesis 2009, 155 - 17a
Shirinian VZ.Shimkin AA.Tipikin SN.Krayushkin MM. Synthesis 2009, 3803 - 17b
Shirinian VZ.Shimkin AA.Mailian AK.Tsyganov DV.Popov LD.Krayushkin MM. Dyes Pigm. 2009, 84: 19 - 17c
Besugliy SO.Metelitsa AV.Shirinian VZ.Krayushkin MM.Nikalin DM.Minkin VI. J. Photochem. Photobiol. A: Chem. 2009, 206: 116 - 18
Schlosser M.Ruzziconi R. Synthesis 2010, 2111 - 19
Crampton MR. In Organic Reaction Mechanisms 1998Knipe AC. John Wiley & Sons; New York: 2002. Chap. 7. p.275-286 - 20a
Chanda A.Fokin VV. Chem. Rev. 2009, 109: 725 - 20b
Horváth IT. Green Chem. 2008, 10: 1024 - 20c
Li C.-J. Chem. Rev. 2005, 105: 3095 - 20d
Lindström UM. Chem. Rev. 2002, 102: 2751 - 21a
Mokrushina GA.Kotovskaya SK.Baskakova ZM.Petrova GM.Kolmakova TV.Charushin VN.Rusinov VL.Chupakhin ON. Pharm. Chem. J. 1996, 30: 540 - 21b
Lipford GB, andZepp CM. inventors; WO2008152471. ; Chem. Abstr. 2008, 150, 56176 - 21c
Rainville JP,Sinay TG, andWalinsky SW. inventors; US Patent 20030087914. ; Chem. Abstr. 2003, 138, 205085 - 22
Dunlop RD.Gardner JH. J. Am. Chem. Soc. 1933, 55: 1665 - 23
Glamkowski EJ.Fortunato JM.Spaulding TC.Wilker JC.Ellis DB. J. Med. Chem. 1985, 28: 66
References
- 1
Michler W. Ber. Dtsch. Chem. Ges. 1876, 9: 716 - 2a
Noack A.Schröder A.Hartmann H. Dyes Pigm. 2002, 57: 131 - 2b
Landl M.imon P.Kvasnik F. Sens. Actuators, B 1998, 51: 114 - 3
Van Gemert B. Benzo and Naphthopyrans (Chromenes), In Organic Photochromic and Thermochromic Compounds Vol. 1:Crano JC.Guglielmetti R. Plenum Press; New York: 1999. p.111-140 - 4a
Reilly LW. inventors; US Patent 4507497. ; Chem. Abstr. 1985, 103, 79453 - 4b
Kuesters W,Heil G,Fischer M,Eisert M, andKast H. inventors; US Patent 4147604. ; Chem. Abstr. 1979, 90, 188700 - 5a
Onen A.Yagci Y. Polymer 2001, 42: 6681 - 5b
Zheng M.Yang M.Liu S.Zhang L. Chin. J. Polym. Sci. 1995, 13: 74 - 5c
Wan T.Wang X.Yi Y.He W. Polym. Int. 2006, 55: 1413 - 6a
Pillai PKC.Tripathi AK.Narula GK.Mendiratta RG. J. Mater. Sci. 1982, 17: 3017 - 6b
Pillai PKC.Shroff N.Tripathi AK. J. Electrostat. 1985, 17: 269 - 6c
.
Pillai PKC. J. Mater. Sci. 1983, 18: 3456 - 7
Küçükkilinça T.Özer . Arch. Biochem. Biophys. 2005, 440: 118 - 8
Arbiser JL. inventors; US Patent 20100160296. ; Chem. Abstr. 2010, 153, 126301 - 9a
Spange S.El-Sayed M.Mueller H.Rheinwald G.Lang H.Poppitz W. Eur. J. Org. Chem. 2002, 4159 - 9b
Magdolen P.Mečiarová M.Toma Š. Tetrahedron 2001, 57: 4781 - 9c
Sanguinet L.Twieg RJ.Wiggers G.Mao G.Singer KD.Petschek RG. Tetrahedron Lett. 2005, 46: 5121 - 9d
Gorman SA.Hepworth JD.Mason D. J. Chem. Soc., Perkin Trans. 2 2000, 1889 - 10a
Mishra N.Arora P.Kumar B.Mishra LC.Bhattacharya A.Awasthi SK.Bhasin VK. Eur. J. Med. Chem. 2008, 43: 1530 - 10b
Hendrickx E.Zhang Y.Ferrio KB.Herlocker JA.Anderson JV.Armstrong NR.Mash EA.Persoons AP.Peyghambarian N.Kippelen B. J. Mater. Chem. 1999, 9: 2251 - 11a
Taylor EC.Skotnicki JS. Synthesis 1981, 606 - 11b
Annoura H.Nakanishi K.Toba T.Takemoto N.Imajo S.Miyajima A.Tamura-Horikawa Y.Tamura S. J. Med. Chem. 2000, 43: 3372 - 12a
Gabbutt CD.Heron BM.Instone AC.Horton PN.Hursthouse MB. Tetrahedron 2005, 61: 463 - 12b
Tian W. inventors; US Patent 20030171581. ; Chem. Abstr. 2001, 135, 371752 - 13
Kotsuki H.Kobayashi S.Matsumoto K.Suenaga H.Nishizawa H. Synthesis 1990, 1147 - 14a
Van Baelen G.Maes BUW. Tetrahedron 2008, 64: 5604 - 14b
Lee BK.Biscoe MR.Buchwald SL. Tetrahedron Lett. 2009, 50: 3672 - 14c
Kuntz J.-F.Schneider R.Walcarius A.Fort Y. Tetrahedron Lett. 2005, 46: 8793 - 14d
Witulski B. Synlett 1999, 1223 - 15a
Anastas P.Eghbali N. Chem. Soc. Rev. 2010, 39: 301 - 15b
Cue BW.Zhang J. Green Chem. Lett. Rev. 2009, 2: 193 - 15c
Horváth IT.Anastas PT. Chem. Rev. 2007, 107: 2167 - 15d
Alfonsi K.Colberg J.Dunn PJ.Fevig T.Jennings S.Johnson TA.Kleine HP.Knight C.Nagy MA.Perry DA.Stefaniak M. Green Chem. 2008, 10: 31 - 16
Faust A.Wolff O.Waldvogel SR. Synthesis 2009, 155 - 17a
Shirinian VZ.Shimkin AA.Tipikin SN.Krayushkin MM. Synthesis 2009, 3803 - 17b
Shirinian VZ.Shimkin AA.Mailian AK.Tsyganov DV.Popov LD.Krayushkin MM. Dyes Pigm. 2009, 84: 19 - 17c
Besugliy SO.Metelitsa AV.Shirinian VZ.Krayushkin MM.Nikalin DM.Minkin VI. J. Photochem. Photobiol. A: Chem. 2009, 206: 116 - 18
Schlosser M.Ruzziconi R. Synthesis 2010, 2111 - 19
Crampton MR. In Organic Reaction Mechanisms 1998Knipe AC. John Wiley & Sons; New York: 2002. Chap. 7. p.275-286 - 20a
Chanda A.Fokin VV. Chem. Rev. 2009, 109: 725 - 20b
Horváth IT. Green Chem. 2008, 10: 1024 - 20c
Li C.-J. Chem. Rev. 2005, 105: 3095 - 20d
Lindström UM. Chem. Rev. 2002, 102: 2751 - 21a
Mokrushina GA.Kotovskaya SK.Baskakova ZM.Petrova GM.Kolmakova TV.Charushin VN.Rusinov VL.Chupakhin ON. Pharm. Chem. J. 1996, 30: 540 - 21b
Lipford GB, andZepp CM. inventors; WO2008152471. ; Chem. Abstr. 2008, 150, 56176 - 21c
Rainville JP,Sinay TG, andWalinsky SW. inventors; US Patent 20030087914. ; Chem. Abstr. 2003, 138, 205085 - 22
Dunlop RD.Gardner JH. J. Am. Chem. Soc. 1933, 55: 1665 - 23
Glamkowski EJ.Fortunato JM.Spaulding TC.Wilker JC.Ellis DB. J. Med. Chem. 1985, 28: 66
References

Scheme 1 Synthesis of benzophenone 2f in water

Scheme 2 The SNAr (addition-elimination) mechanism for nucleophilic substitution in aromatic compounds



















