Synthesis 2011(14): 2208-2214  
DOI: 10.1055/s-0030-1260666
SPECIALTOPIC
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Functionalized Benzofurans by a Double Heck Reaction of 2,3-Dibromofurans and Subsequent 6π-Electrocyclization/Dehydrogenation

Ghazwan Ali Salmana, Asad Alia,b, Munawar Hussaina, Rasheed Ahmad Kheraa,c, Peter Langer*a,d
a Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
b Department of Chemistry, University of Mardan, Mardan, Pakistan
c Department of Chemistry, University Faisalabad, Government College, Faisalabad, Pakistan
d Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
Fax: +49(381)4986412; e-Mail: peter.langer@uni-rostock.de;

Further Information

Publication History

Received 14 March 2011
Publication Date:
09 June 2011 (online)

Abstract

The twofold Heck reaction of 2,3-dibromofurans afforded 2,3-di(alkenyl)furans which were transformed into functionalized benzofurans by a domino 6π-electrocyclization/dehydrogenation reaction.

Benzofurans are of considerable pharmacological relevance in medicinal chemistry and occur in many natural products. [¹] For example, amiodarone represents a synthetic antiarrhythmic and antianginal drug. [²] The core structures of 7-alkanoylbenzofurans and 7-alkanoyl-2,3-dihydrobenzofurans are present in a number of natural products (e.g., longicaudatin, [³] the sessiliflorols A and B, flemistrictin E, tovophenone C, vismiaguianone C and piperaduncin B). [4]

Polyhalogenated compounds represent interesting substrates in palladium(0)-catalyzed cross-coupling reactions. [5] [6] Bach and Krüger reported Sonogashira and Stille reactions of 2,3-dibromofuran. [7] These reactions proceed with very good site-selectivity in favor of position 2. de Meijere and co-workers reported that the combination of a twofold Heck reaction with 6π-electrocyclization provides a convenient approach to various carbocycles. [8] In recent years, we have studied the application of this methodology to heterocyclic systems. [9] Herein, we report what is, to the best of our knowledge, the first synthesis of functionalized benzofurans by a double Heck reaction of 2,3-dibromofurans and subsequent 6π-electrocyclization and dehydrogenation. This methodology provides a convenient approach to benzofurans containing substituents located at positions 5 and 6 which are not readily accessible by electrophilic substitution reactions.

The Heck reaction of 2,3-dibromofuran (1) with acrylates and styrenes 2a-i (2.5 equiv) afforded the 2,3-di(alkenyl)furans 3a-i in good yields (Scheme  [¹] , Table  [¹] ). The reaction was thoroughly optimized for derivatives 3b and 3f (Table  [²] ). The best yields were obtained when palladium(II) acetate (5 mol%) and the biaryl monophosphine ligands SPhos or XPhos [¹0] (10 mol%) were used. The employment of tetrakis(triphenylphosphine)palladium(0) resulted in considerably lower yields (Table  [²] , entry 1). The reactions were carried out in N,N-dimethylformamide at 120 ˚C. A relatively long reaction time (36 h) was necessary to achieve a complete conversion.

Scheme 1 Synthesis of 3a-i and 4a-d. Reagents and conditions: (i) 2a-i (2.5 equiv), Pd(OAc)2 (5 mol%), SPhos or XPhos (10 mol%), Et3N, DMF, 120 ˚C, 36 h; (ii) (1) Ph2O, 200 ˚C, 24 h; (2) Pd/C (10 mol%), Ph2O, 200 ˚C, 24 h.

Table 1 Synthesis of 3a-i and 4a-d
3, 4 R Yielda (%) of 3 Yielda (%) of 4
a CO2Me 73b 90
b CO2Et 78c 93
c CO2 i-Bu 93b 92
d CO2 n-Bu 78c 95
e CO2(CH2)5Me 88c -d
f CO2 t-Bu 79c -e
g 4-MeOC6H4 90c -e
h 4-Tol 89b -e
i 4-t-BuOC6H4 87c -e

a Yields of isolated products.
b XPhos was used.
c SPhos was used.
d Reaction was not carried out.
e Decomposition.
Table 2 Optimization of the Reaction Conditions for the Synthesis of 3b and 3f a
Entry Catalyst Yieldb (%) of 3b Yieldb (%) of 3f
1 Pd(PPh3)4 (5 mol%) 35 41
2 Pd(OAc)2 (5 mol%), XPhos (10 mol%) 73 72
3 Pd(OAc) 2 (5 mol%), SPhos (10 mol%) 78 79
4 Pd(OAc)2 (3 mol%),
Cy3P (6 mol%)
65 59
5 Pd(OAc)2 (2 mol%), (HOCH2CH2)3Nc traces traces

a Reactions were carried out in DMF using Et3N as the base.
b Yields of isolated products.
c Triethanolamine was used as solvent, base and ligand.

Our next target was to find suitable conditions for a 6π-electrocyclization. In fact, 2,3-di(alkenyl)furans 3 proved to be rather reluctant to undergo the desired transformation. Stirring of a diphenyl ether solution of 3a-d at 200 ˚C for 24 hours was required to induce the desired electrocyclization. To the reaction mixture was added palladium on carbon (10 mol%) and the mixture was stirred for an additional 24 hours at 200 ˚C to give benzofurans 4a-d by dehydrogenation (see Table  [¹] ). Heating of 3f resulted in decomposition of the tert-butyl ester moiety. Heating of the styrene-derived products 3g-i also resulted in decomposition.

Scheme 2 Synthesis of 6a-h and 7a-h. Reagents and conditions: (i) 2a-f,j,k (2.5 equiv), Pd(OAc)2 (5 mol%), XPhos (10 mol%), Et3N, DMF, 100 ˚C, 24 h; (ii) (1) Ph2O, 170 ˚C, 12 h; (2) Pd/C (10 mol%), Ph2O, 170 ˚C, 12 h.

The twofold Heck reaction of 2,3-dibromo-5-(ethoxycarbonyl)furan (5) with acrylates and styrenes 2a-f,j,k afforded the 2,3-di(alkenyl)furans 6a-h (Scheme  [²] , Table  [³] ). The reactions proceeded at slightly lower temperature (100 ˚C, 24 h) as compared to the synthesis of 3a-i. The transformation of 2,3-di(alkenyl)furans 6a,b,d-h to benzofurans 7a,b,d-h required less drastic conditions (stirring at 170 ˚C, 2 × 12 h) as compared to the synthesis of 4a-d (200 ˚C, 2 × 24 h). Similar to 3f, heating of tert-butyl ester 6c resulted in decomposition. In contrast to 3g-i, electrocyclization of the styrene-derived 2,3-di(al­kenyl)furan 6h proved to be possible and afforded 7h in good yield.

Table 3 Synthesis of 6a-h and 7a-h
2 6, 7 R Yielda (%)
of 6
Yielda (%) of 7
c a CO2 i-Bu 81 95
e b CO2(CH2)5Me 85 97
f c CO2 t-Bu 83 -b
j d CO2(CH2)5CHMe2 85 88
d e CO2 n-Bu 88 90
a f CO2Me 84 93
b g CO2Et 94 94
k h 4-ClC6H4 83 90

a Yields of isolated products.
b Decomposition.

It was noted above that Sonogashira and Stille reactions of 2,3-dibromofurans are known to proceed with excellent site-selectivity in favor of position 2. The site-selectivity of palladium(0)-catalyzed reactions of polyhalogenated substrates is generally controlled by steric and electronic effects. More electron-deficient carbon atoms are usually more reactive than electron-rich atoms; however, all attempts to carry out site-selective mono-Heck reactions of dibromofuran 1 or 5 failed. All reactions resulted in the isolation of double-Heck products 3 and 6 and of unreacted starting material. This might be explained by a proximity effect. The first attack occurs at carbon atom C-2 of the furan. The palladium catalyst is coordinated by the alkene and the reactivity of the neighbored carbon atom C-3 might thus be increased. In the case of products 3a-f and 6a-g, the increased reactivity of C-3 might alternatively be explained by the electron-withdrawing effect of the acrylate moiety located at carbon C-2.

In conclusion, functionalized benzofurans were prepared by a twofold Heck reaction of 2,3-dibromofurans and a subsequent domino 6π-electrocyclization/dehydrogenation reaction. The products are not readily available by other methods.

All solvents were dried by standard methods and all reactions were carried out under an inert atmosphere. For ¹H and ¹³C NMR spectra, the deuterated solvents indicated were used. Mass spectrometric data (MS) were obtained by electron ionization (EI, 70 eV), chemical ionization (CI, isobutane) or electrospray ionization (ESI). For preparative-scale chromatography, silica gel 60 (0.063-0.200 mm, 70-230 mesh) was used. Melting points are uncorrected.

2,3-Di(alkenyl)furans 3a-i and 6a-h; General Procedure

In a pressure tube (glass bomb), a suspension of Pd(OAc)2 (12 mg, 5 mol%) and XPhos or SPhos (10 mol%) in DMF (5 mL) was purged with argon and stirred at 20 ˚C to give a yellowish or brownish clear solution. To the stirred solution were added dibromofuran 1 (0.12 mL, 1.0 mmol) or 5 (300 mg, 1.0 mmol), Et3N (1.1 mL, 8.0 mmol) and the acrylate or styrene 2a-i (2.5 mmol). The reaction mixture was stirred at 120 ˚C for 36 h (for 3a-i) or at 100 ˚C for 24 h (for 6a-h). The solution was cooled to 20 ˚C, poured into H2O (25 mL) and CH2Cl2 (25 mL), and the organic layer and the aqueous layer were separated. The latter was extracted with CH2Cl2 (3 × 25 mL). The combined organic layers were dried (Na2SO4) and concentrated under reduced pressure. The residue was purified by flash silica gel chromatography (heptanes-EtOAc).

Dimethyl (2 E ,2′ E )-3,3′-(Furan-2,3-diyl)diacrylate (3a)

Yield: 172 mg (73%); light yellow oil.

IR (KBr): 3100 (w), 2850 (m), 1711 (s), 1676 (w), 1631 (m), 1510 (w), 1445, 1292 (m), 1275, 1245, 1178 (s), 1035, 970, 872, 749 (m), 861, 756 (w), 721 (m), 530 (m) cm.

¹H NMR (300 MHz, CDCl3): δ = 3.72 (s, 3 H, CH3O), 3.74 (s, 3 H, CH3O), 6.16 (d, J = 15.8 Hz, 1 H, CH), 6.34 (d, J = 15.8 Hz, 1 H, CH), 6.57 (d, J = 2.2 Hz, 1 H, ArH), 7.38 (d, J = 1.7 Hz, 1 H, ArH), 7.55 (d, J = 15.8 Hz, 1 H, CH), 7.62 (d, J = 15.8 Hz, 1 H, CH).

¹³C NMR (75.5 MHz, CDCl3): δ = 51.79, 51.85 (CH3O), 109.4, 117.8, 119.8 (CH), 124.8 (C), 127.4, 132.7, 145.2 (CH), 150.5 (C), 166.9, 167.0 (CO).

GC-MS (EI, 70 eV): m/z (%) = 236 (11) [M+], 230 (14), 213 (29), 187 (100), 173 (5), 151 (6), 111 (4).

HRMS (EI, 70 eV): m/z calcd for C12H12O5: 236.06847; found: 236.06801.

Diethyl (2 E ,2′ E )-3,3′-(Furan-2,3-diyl)diacrylate (3b)

Compound 3b was directly transformed into 4b without characteri­zation.

Diisobutyl (2 E ,2′ E )-3,3′-(Furan-2,3-diyl)diacrylate (3c)

Yield: 297 mg (93%); light yellow oil.

IR (KBr): 3119 (w), 2935 (s), 2852 (m), 1711 (s), 1631 (m), 1579, 1509 (w), 1290 (m), 1272, 1257 (s), 1045, 832, 740 (m), 658, 606 (w), 530 (m) cm.

¹H NMR (300 MHz, CDCl3): δ = 0.89 (d, J = 6.8 Hz, 12 H, 4 CH3), 1.86-1.97 (m, 2 H, 2 CH), 3.90 (d, J = 6.7 Hz, 2 H, CH2O), 3.91 (d, J = 6.7 Hz, 2 H, CH2O), 6.17 (d, J = 15.6 Hz, 1 H, CH), 6.35 (d, J = 15.6 Hz, 1 H, CH), 6.58 (d, J = 1.8 Hz, 1 H, ArH), 7.37 (d, J = 2.0 Hz, 1 H, ArH), 7.55 (d, J = 15.6 Hz, 1 H, CH), 7.59 (d, J = 15.6 Hz, 1 H, CH).

¹³C NMR (62.9 MHz, CDCl3): δ = 19.1 (4 CH3), 27.8 (2 CH), 70.7, 70.8 (CH2O), 109.3, 118.2, 120.3 (CH), 124.7 (C), 127.2, 132.4, 145.1 (CH), 150.5 (C), 166.4, 166.5 (CO).

GC-MS (EI, 70 eV): m/z (%) = 320 (71) [M+], 305 (18), 290 (11), 262 (11), 249 (20), 189 (17), 153 (19), 147 (100).

HRMS (EI, 70 eV): m/z calcd for C18H24O5: 320.16237; found: 320.16360.

Dibutyl (2 E ,2′ E )-3,3′-(Furan-2,3-diyl)diacrylate (3d)

Yield: 249 mg (78%); light yellow oil.

IR (KBr): 3133, 3118 (w), 2925 (s), 2850 (m), 1711 (s), 1676 (w), 1631 (m), 1549, 1500 (w), 1445 (m), 1290 (m), 1275, 1255, 1168 (s), 1035, 969, 862, 749 (m), 746 (w), 720 (m), 648, 606 (w), 539 (m) cm.

¹H NMR (300 MHz, CDCl3): δ = 0.86 (t, J = 7.3 Hz, 6 H, 2 CH3), 1.28-1.40 (m, 4 H, 2 CH2), 1.56-1.65 (m, 4 H, 2 CH2), 4.10-4.15 (m, 4 H, 2 CH2O), 6.14 (d, J = 15.6 Hz, 1 H, CH), 6.32 (d, J = 15.6 Hz, 1 H, CH), 6.56 (d, J = 1.9 Hz, 1 H, ArH), 7.36 (d, J = 2.0 Hz, 1 H, ArH), 7.52 (d, J = 15.6 Hz, 1 H, CH), 7.57 (d, J = 15.5 Hz, 1 H, CH).

¹³C NMR (75.5 MHz, CDCl3): δ = 13.6 (2 CH3), 19.1 (2 CH2), 30.7 (2 CH2), 64.4, 64.5 (CH2O), 109.3, 118.2, 120.3 (CH), 124.7 (C), 127.2, 132.3, 145.1 (CH), 150.5 (C), 166.5, 166.6 (CO).

GC-MS (EI, 70 eV): m/z (%) = 320 (71) [M+], 264 (8), 247 (23), 190 (17), 163 (86), 147 (100), 134 (11), 119 (53).

HRMS (EI, 70 eV): m/z calcd for C18H24O5: 320.16238; found: 320.16236.

Dihexyl (2 E ,2′ E )-3,3′-(Furan-2,3-diyl)diacrylate (3e)

Yield: 331 mg (88%); light yellow oil.

IR (KBr): 3122, 3108 (w), 2921, 1711 (s), 1631 (m), 1549, 1500 (w), 1445 (m), 1377 (w), 1292 (m), 1275, 1255, 1167 (s), 1069 (w), 1035 (m), 1018 (w), 959 (m), 933 (w), 862 (m), 825 (w), 749 (m), 746 (w), 721 (m), 648, 607 (w), 538 (m) cm.

¹H NMR (300 MHz, CDCl3): δ = 0.83-0.86 (m, 6 H, 2 CH3), 1.16-1.34 (m, 12 H, 6 CH2), 1.58-1.68 (m, 4 H, 2 CH2), 4.13 (t, J = 6.8 Hz, 2 H, CH2O), 4.14 (t, J = 6.7 Hz, 2 H, CH2O), 6.16 (d, J = 15.5 Hz, 1 H, CH), 6.35 (d, J = 15.5 Hz, 1 H, CH), 6.57 (d, J = 2.4 Hz, 1 H, ArH), 7.37 (d, J = 1.9 Hz, 1 H, ArH), 7.55 (d, J = 15.5 Hz, 1 H, CH), 7.60 (d, J = 15.6 Hz, 1 H, CH).

¹³C NMR (75.5 MHz, CDCl3): δ = 14.0 (2 CH3), 22.5, 22.6, 28.7, 31.4 (2 CH2), 64.9, 65.0 (CH2O), 109.4, 118.3, 120.3 (CH), 124.7 (C), 127.2, 132.4, 145.1 (CH), 150.5 (C), 166.5, 166.6 (CO).

GC-MS (EI, 70 eV): m/z (%) = 376 (1) [M+], 345 (8), 291 (3), 206 (10), 189 (100), 162 (8).

HRMS (EI, 70 eV): m/z calcd for C22H32O5: 376.22497; found: 376.22397.

Di- tert -butyl (2 E ,2′ E )-3,3′-(Furan-2,3-diyl)diacrylate (3f)

Yield: 252 mg (79%); light yellow oil.

IR (KBr): 2976, 2931 (m), 1705 (s), 1636, 1454, 1392, 1367, 1313, 1283, 1253 (m), 1146 (s), 1018, 977, 844, 767 (m), 711, 685, 594, 574 (w) cm.

¹H NMR (300 MHz, CDCl3): δ = 1.46 (s, 18 H, 6 CH3), 6.03 (d, J = 16.1 Hz, 1 H, CH), 6.27 (d, J = 15.5 Hz, 1 H, CH), 6.54 (d, J = 2.3 Hz, 1 H, ArH), 7.34 (d, J = 2.3 Hz, 1 H, ArH), 7.44 (d, J = 15.5 Hz, 1 H, CH), 7.45 (d, J = 15.7 Hz, 1 H, CH).

¹³C NMR (75.5 MHz, CDCl3): δ = 28.2 (6 CH3), 80.7, 80.8 (C), 109.4, 120.1, 122.1 (CH), 124.4 (C), 126.5, 131.6, 144.8 (CH), 150.5 (C), 165.8, 165.9 (CO).

GC-MS (EI, 70 eV): m/z (%) = 320 (15) [M+], 247 (11), 208 (100), 163 (31), 147 (21), 119 (26).

HRMS (EI, 70 eV): m/z calcd for C18H24O5: 320.16237; found: 320.16232.

2,3-Bis(4-methoxystyryl)furan (3g)

Yield: 299 mg (90%); light yellow oil.

IR (KBr): 3030, 2996, 2992, 2930, 2833 (w), 1599, 1571, 1508, 1497, 1456, 1436, 1417, 1298, 1290, 1267 (m), 1246 (s), 1174, 1145, 1109, 1061, 958, 934, 895, 852, 845 (m), 815 (s), 740, 720 (m), 696, 659, 637, 610, 561, 547 (w) cm.

¹H NMR (300 MHz, CDCl3): δ = 3.74 (s, 6 H, 2 CH3O), 6.56 (d, J = 2.1 Hz, 1 H, ArH), 6.71 (d, J = 16.2 Hz, 1 H, CH), 6.82 (d, J = 8.8 Hz, 4 H, ArH), 6.87-6.92 (m, 3 H), 7.25 (d, J = 2.0 Hz, 1 H, ArH), 7.34 (d, J = 8.6 Hz, 2 H, ArH), 7.38 (d, J = 8.7 Hz, 2 H, ArH).

¹³C NMR (62.9 MHz, CDCl3): δ = 55.3 (CH3O), 108.7, 112.1, 114.1, 114.2, 116.0 (CH), 121.6 (C), 126.8, 127.4, 127.7, 128.1 (CH), 130.0, 130.3 (C), 142.1 (CH), 150.0, 159.2, 159.4 (C).

GC-MS (EI, 70 eV): m/z (%) = 332 (100) [M+], 207 (20), 166 (10), 121 (17).

HRMS (EI, 70 eV): m/z calcd for C22H20O3: 332.14070; found: 332.14073.

2,3-Bis(4-methylstyryl)furan (3h)

Yield: 270 mg (89%); light yellow oil.

IR (KBr): 3020, 2992, 2963, 2833 (w), 1599, 1571, 1508, 1498, 1456, 1436, 1418, 1298, 1290 (m), 1246, 1174 (s), 1029, 959, 815, 740, 720 (m), 659, 638, 610, 562, 548 (w) cm.

¹H NMR (300 MHz, CDCl3): δ = 2.24 (s, 6 H, 2 CH3), 6.54 (d, J = 2.0 Hz, 1 H, ArH), 6.68 (d, J = 16.2 Hz, 1 H, CH), 6.97 (m, 3 H), 7.05 (d, J = 7.9 Hz, 4 H, ArH), 7.22 (d, J = 2.0 Hz, 1 H, ArH), 7.28 (d, J = 7.9 Hz, 2 H, ArH), 7.29 (d, J = 8.2 Hz, 2 H, ArH).

¹³C NMR (62.9 MHz, CDCl3): δ = 21.3, 21.4 (CH3), 108.8, 113.1, 117.1 (CH), 122.0 (C), 126.2, 126.5, 127.4, 128.7, 129.4, 129.5 (CH), 134.4, 134.8, 137.3, 137.7 (C), 142.3 (CH), 150.1 (C).

GC-MS (EI, 70 eV): m/z (%) = 300 (100) [M+], 281 (33), 245 (8), 216 (10), 204 (8), 198 (10).

HRMS (EI, 70 eV): m/z calcd for C22H20O: 300.15142; found: 300.15133.

2,3-Bis(4- tert -butoxystyryl)furan (3i)

Yield: 361 mg (87%); light yellow oil.

IR (KBr): 3033, 2972, 2929, 2872, 1623 (w), 1503, 1362, 1271 (m), 1159 (s), 1102, 1060, 1029, 968, 959, 947 (w), 891, 864, 832, 743, 690, 677, 591 (m) cm.

¹H NMR (300 MHz, CDCl3): δ = 1.37 (s, 18 H, 6 CH3), 6.54 (d, J = 2.0 Hz, 1 H, ArH), 6.67 (d, J = 16.1 Hz, 1 H, CH), 6.80-6.94 (m, 7 H), 7.23 (d, J = 2.0 Hz, 1 H, ArH), 7.30 (d, J = 8.5 Hz, 2 H, ArH), 7.31 (d, J = 8.6 Hz, 2 H, ArH).

¹³C NMR (62.9 MHz, CDCl3): δ = 28.9 (6 CH3), 78.7, 78.8 (CO), 108.8, 112.9, 116.9 (CH), 121.8 (C), 124.2, 124.3, 126.7, 126.9, 127.0, 128.3 (CH), 132.4, 132.7 (C), 142.3 (CH), 150.1, 155.0, 155.3 (C).

GC-MS (EI, 70 eV): m/z (%) = 416 (14) [M+], 360 (7), 304 (100), 210 (7).

HRMS (EI, 70 eV): m/z calcd for C28H32O3: 416.23460; found: 416.23516.

Diisobutyl (2 E ,2′ E )-3,3′-[5-(Ethoxycarbonyl)furan-2,3-diyl]di­acrylate (6a)

Yield: 318 mg (81%); light yellow solid; mp 152-154 ˚C.

IR (KBr): 3109, 2958, 2874 (w), 1709 (s), 1633, 1578, 1515, 1469 (m), 1394 (w), 1368 (m), 1343 (w), 1318 (s), 1300, 1270 (w), 1255 (m), 1239 (w), 1220 (m), 1171 (s), 1114 (m), 1080 (w), 1008, 962 (s), 875, 861, 837 (w), 765, 748, 720, 693, 657 (m), 609, 595, 542 (w) cm.

¹H NMR (300 MHz, CDCl3): δ = 0.89 (d, J = 6.7 Hz, 12 H, 4 CH3), 1.40 (t, J = 7.3 Hz, 3 H, CH3), 1.96-2.01 (m, 2 H, 2 CH), 4.01 (d, J = 3.6 Hz, 2 H, CH2O), 4.03 (d, J = 3.5 Hz, 2 H, CH2O), 4.41 (q, J = 7.1 Hz, 2 H, CH2O), 6.34 (d, J = 15.8 Hz, 1 H, CH), 6.71 (d, J = 15.8 Hz, 1 H, CH), 7.37 (s, 1 H, ArH), 7.62 (d, J = 8.6 Hz, 1 H, CH), 7.67 (d, J = 8.4 Hz, 1 H, CH).

¹³C NMR (75.5 MHz, CDCl3): δ = 14.3 (CH3), 19.1 (4 CH3), 27.8 (2 CH), 61.7, 71.0, 71.1 (CH2O), 115.8, 121.5, 121.6 (CH), 125.2 (C), 126.5, 131.5 (CH), 145.5, 152.4 (C), 158.0, 166.2, 166.5 (CO).

GC-MS (EI, 70 eV): m/z (%) = 393 (22), 392 (80) [M+], 347 (22), 336 (18), 320 (10), 319 (49), 280 (53), 263 (16), 235 (72), 219 (100), 206 (44).

HRMS (EI, 70 eV): m/z calcd for C21H28O7: 392.18295; found: 392.18259.

Dihexyl (2 E ,2′ E )-3,3′-[5-(Ethoxycarbonyl)furan-2,3-diyl]di­acrylate (6b)

Yield: 382 mg (85%); yellow solid; mp 162-164 ˚C.

IR (KBr): 3107, 2953, 2929, 2857 (w), 1715, 1632 (s), 1579, 1518, 1467 (m), 1453, 1392, 1368, 1346 (w), 1321 (s), 1301, 1265, 1252, 1240 (w), 1223 (m), 1175 (s), 1123, 1107, 1052, 1038 (w), 1024, 977, 961 (m), 910 (w), 875, 860 (m), 822, 799 (w), 764, 724, 661, 596 (m) cm.

¹H NMR (300 MHz, CDCl3): δ = 0.81-0.86 (m, 6 H, 2 CH3), 1.23-1.28 (m, 12 H, 6 CH2), 1.38 (t, J = 7.3 Hz, 3 H, CH3), 1.59-1.68 (m, 4 H, 2 CH2), 4.02 (d, J = 3.7 Hz, 2 H, CH2O), 4.05 (d, J = 3.6 Hz, 2 H, CH2O), 4.32 (q, J = 7.1 Hz, 2 H, CH2O), 6.23 (d, J = 15.7 Hz, 1 H, CH), 6.61 (d, J = 15.8 Hz, 1 H, CH), 7.27 (s, 1 H, ArH), 7.53 (d, J = 8.0 Hz, 1 H, CH), 7.58 (d, J = 8.0 Hz, 1 H, CH).

¹³C NMR (75.5 MHz, CDCl3): δ = 14.0 (2 CH3), 14.3 (CH3), 22.5, 25.6, 28.6, 31.4 (2 CH2), 61.7, 65.0, 65.2 (CH2O), 115.8, 121.6, 121.7 (CH), 125.2 (C), 126.5, 131.5 (CH), 145.8, 152.4 (C), 158.0, 166.2, 166.5 (CO).

GC-MS (EI, 70 eV): m/z (%) = 449 (14), 448 (49) [M+], 403 (17), 347 (18), 320 (10), 291 (7), 280 (19), 246 (22), 235 (100).

HRMS (EI, 70 eV): m/z calcd for C25H36O7: 448.24555; found: 448.24519.

Di- tert -butyl (2 E ,2′ E )-3,3′-[5-(Ethoxycarbonyl)furan-2,3-diyl]diacrylate (6c)

Yield: 326 mg (83%); orange solid; mp 158-160 ˚C.

IR (KBr): 3109, 2979, 2930 (w), 1714, 1699 (s), 1633 (m), 1575, 1509, 1475, 1455, 1391 (w), 1367, 1322, 1280, 1256, 1220 (m), 1141 (s), 1079, 1019 (w), 975, 958 (m), 885, 863, 844 (w), 763, 750, 722, 653 (m), 607, 579 (w) cm.

¹H NMR (250 MHz, CDCl3): δ = 1.32 (t, J = 7.2 Hz, 3 H, CH3), 1.46 (s, 18 H, 6 CH3), 4.31 (q, J = 7.2 Hz, 2 H, CH2O), 6.14 (d, J = 15.4 Hz, 1 H, CH), 6.53 (d, J = 15.7 Hz, 1 H, CH), 7.24 (s, 1 H, ArH), 7.42 (d, J = 4.3 Hz, 1 H, CH), 7.48 (d, J = 4.3 Hz, 1 H, CH).

¹³C NMR (62.9 MHz, CDCl3): δ = 14.3 (CH3), 28.1 (6 CH3), 61.5 (CH2), 81.1, 81.2 (C), 115.9, 123.4, 123.5 (CH), 124.9 (C), 125.7, 130.5 (CH), 145.6, 152.3 (C), 158.1, 165.3, 165.4 (CO).

GC-MS (EI, 70 eV): m/z (%) = 392 (11) [M+], 336 (9), 280 (100), 235 (23), 219 (17), 206 (34).

HRMS (EI, 70 eV): m/z calcd for C21H28O7: 392.18295; found: 392.18307.

Bis(6-methylheptyl) (2 E ,2′ E )-3,3′-[5-(Ethoxycarbonyl)furan-2,3-diyl]diacrylate (6d)

Yield: 430 mg (85%); yellow solid; mp 153-155 ˚C.

IR (KBr): 3107, 2956, 2948, 2857 (w), 1717, 1635 (s), 1579, 1517, 1469 (m), 1457, 1392, 1368, 1346 (w), 1323 (s), 1311, 1266, 1253, 1242 (w), 1224 (m), 1178 (s), 1125, 1105, 1053, 1039 (w), 1021, 978, 962 (m), 910 (w), 875, 861 (m), 823, 798 (w), 764, 723, 663, 598 (m) cm.

¹H NMR (300 MHz, CDCl3): δ = 0.72-0.87 (m, 12 H, 4 CH3), 0.89-0.90 (m, 2 H, 2 CH), 1.10-1.23 (m, 8 H, 4 CH2), 1.32 (t, J = 7.3 Hz, 3 H, CH3), 1.36-1.39 (m, 8 H, 4 CH2), 4.10-4.22 (m, 4 H, 2 CH2O), 4.32 (q, J = 7.1 Hz, 2 H, CH2O), 6.23 (dd, J = 2.8, 15.8 Hz, 1 H, CH), 6.61 (dd, J = 2.8, 15.8 Hz, 1 H, CH), 7.27 (s, 1 H, ArH), 7.53 (d, J = 8.2 Hz, 1 H, CH), 7.58 (d, J = 8.2 Hz, 1 H, CH).

¹³C NMR (62.9 MHz, CDCl3): δ = 14.3 (CH3), 19.5 (4 CH3), 23.4, 25.7, 28.6, 31.4 (2 CH2), 27.7 (2 CH), 61.6, 65.1, 65.4 (CH2O), 115.7, 121.4, 121.8 (CH), 125.2 (C), 126.7, 131.8 (CH), 145.7, 152.6 (C), 158.4, 166.2, 166.4 (CO).

GC-MS (EI, 70 eV): m/z (%) = 504 (40) [M+], 459 (30), 457 (60), 392 (35), 376 (100), 348 (53), 317 (33), 280 (26), 246 (50), 219 (72).

HRMS (EI, 70 eV): m/z calcd for C29H44O7: 504.30816; found: 504.30782.

Dibutyl (2 E ,2′ E )-3,3′-[5-(Ethoxycarbonyl)furan-2,3-diyl]di­acrylate (6e)

Yield: 346 mg (88%); light yellow solid; mp 158-160 ˚C.

IR (KBr): 3107, 2953, 2929, 2857 (w), 1715, 1632 (s), 1579, 1518, 1467 (m), 1453, 1392, 1368, 1346 (w), 1321 (s), 1301, 1265, 1252, 1240 (w), 1223 (m), 1175 (s), 1123, 1107, 1052, 1038 (w), 1024, 977, 961 (m), 910 (w), 875, 860 (m), 822, 799 (w), 764, 724, 661, 596 (m) cm.

¹H NMR (300 MHz, CDCl3): δ = 0.89 (t, J = 7.4 Hz, 6 H, 2 CH3), 1.32 (t, J = 7.1 Hz, 3 H, CH3), 1.35-1.42 (m, 4 H, 2 CH2), 1.57-1.67 (m, 4 H, 2 CH2), 4.12-4.18 (m, 4 H, 2 CH2O), 4.32 (q, J = 7.1 Hz, 2 H, CH2O), 6.23 (d, J = 15.8 Hz, 1 H, CH), 6.61 (d, J = 15.5 Hz, 1 H, CH), 7.27 (s, 1 H, ArH), 7.53 (d, J = 8.1 Hz, 1 H, CH), 7.58 (d, J = 8.1 Hz, 1 H, CH).

¹³C NMR (75.5 MHz, CDCl3): δ = 13.7 (2 CH3), 14.3 (CH3), 19.1 (2 CH2), 30.7 (2 CH2), 61.6, 64.8, 64.9 (CH2O), 115.8, 121.6, 121.7 (CH), 125.2 (C), 126.5, 131.4 (CH), 145.9, 152.3 (C), 158.0, 166.1, 166.2 (CO).

GC-MS (EI, 70 eV): m/z (%) = 392 (43) [M+], 347 (9), 336 (11), 319 (23), 291 (16), 263 (15), 235 (60), 219 (49), 191 (100).

HRMS (EI, 70 eV): m/z calcd for C21H28O7: 392.18295; found: 392.18324.

Dimethyl (2 E ,2′ E )-3,3′-[5-(Ethoxycarbonyl)furan-2,3-diyl]di­acrylate (6f)

Yield: 259 mg (84%); orange solid; mp 150-152 ˚C.

IR (KBr): 3397, 3109, 2985 (w), 1708 (s), 1639 (m), 1580, 1517, 1443, 1395 (w), 1367, 1321 (m), 1267, 1256, 1234, 1223 (w), 1182 (s), 1117, 1083 (w), 1036, 968, 957 (s), 893, 874, 863, 810 (w), 763, 746, 722, 656 (m), 607, 585 (w) cm.

¹H NMR (300 MHz, CDCl3): δ = 1.32 (t, J = 7.1 Hz, 3 H, CH3), 3.74 (s, 3 H, CH3O), 3.76 (s, 3 H, CH3O), 4.32 (q, J = 7.3 Hz, 2 H, CH2O), 6.23 (d, J = 15.9 Hz, 1 H, CH), 6.59 (d, J = 15.9 Hz, 1 H, CH), 7.27 (s, 1 H, ArH), 7.54 (d, J = 8.7 Hz, 1 H, CH), 7.59 (d, J = 8.7 Hz, 1 H, CH).

¹³C NMR (75.5 MHz, CDCl3): δ = 13.2 (CH3), 50.9, 51.1 (CH3O), 60.7 (CH2O), 114.7, 120.1, 120.2 (CH), 124.2 (C), 125.7, 130.7 (CH), 145.0, 151.3 (C), 157.0, 165.4, 165.5 (CO).

GC-MS (EI, 70 eV): m/z (%) = 308 (100) [M+], 277 (36), 263 (20), 249 (63), 235 (91), 217 (31), 205 (55), 177 (44), 162 (30), 145 (92).

HRMS (EI, 70 eV): m/z calcd for C15H16O7: 308.08905; found: 308.08870.

Diethyl (2 E ,2′ E )-3,3′-[5-(Ethoxycarbonyl)furan-2,3-diyl]di­acrylate (6g)

Yield: 317 mg (94%); yellow solid; mp 168-170 ˚C.

IR (KBr): 3399, 3108, 2983 (w), 1705 (s), 1637 (m), 1579, 1515, 1444, 1392 (w), 1366, 1320 (m), 1268, 1255, 1234, 1221 (w), 1180 (s), 1116, 1081 (w), 1037, 969, 958 (s), 893, 874, 863, 810 (w), 763, 746, 722, 656 (m), 607, 585 (w) cm.

¹H NMR (300 MHz, CDCl3): δ = 1.25-1.35 (m, 9 H, 3 CH3), 4.17-4.25 (m, 4 H, 2 CH2O), 4.32 (q, J = 7.3 Hz, 2 H, CH2O), 6.23 (d, J = 15.7 Hz, 1 H, CH), 6.60 (d, J = 15.7 Hz, 1 H, CH), 7.27 (s, 1 H, ArH), 7.54 (d, J = 8.1 Hz, 1 H, CH), 7.59 (d, J = 8.1 Hz, 1 H, CH).

¹³C NMR (62.9 MHz, CDCl3): δ = 14.2 (2 CH3), 14.3 (CH3), 60.8, 61.0, 61.6 (CH2O), 115.7, 121.6, 121.7 (CH), 125.2 (C), 126.5, 131.4 (CH), 145.9, 152.3 (C), 158.0, 166.0, 166.1 (CO).

GC-MS (EI, 70 eV): m/z (%) = 336 (100) [M+], 291 (53), 263 (89), 235 (45), 219 (46), 217 (35), 191 (70).

HRMS (EI, 70 eV): m/z calcd for C17H20O7: 336.12035; found: 336.11988.

Ethyl 4,5-Bis(4-chlorostyryl)furan-2-carboxylate (6h)

Compound 6h was directly transformed into 7h without characteri­zation.

Functionalized Benzofurans 4a-d and 7a-h; General Procedure

A diphenyl ether solution (3 mL) of a 2,3-di(alkenyl)furan 3a-d or 6a-h (0.5 mmol) was stirred at 200 ˚C for 24 h (for 3a-d) or at 170 ˚C for 12 h (for 6a-h) in a pressure tube. The solution was allowed to cool to 20 ˚C and Pd/C (10 mol%) was added. The solution was stirred at 200 ˚C for 24 h (for 3a-d) or at 170 ˚C for 12 h (for 6a-h) under argon atmosphere. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure. The residue was purified by flash silica gel chromatography (heptanes-EtOAc).

Dimethyl Benzofuran-5,6-dicarboxylate (4a)

Yield: 105 mg (90%); light yellow oil.

IR (KBr): 3010, 2850 (w), 1723, 1716 (s), 1583, 1486, 1435 (w), 1229, 1202, 1165, 1071, 1021, 981, 865, 797, 750, 692, 666 (s) cm.

¹H NMR (300 MHz, CDCl3): δ = 3.81 (s, 3 H, CH3O), 3.82 (s, 3 H, CH3O), 6.75 (d, J = 2.1 Hz, 1 H, ArH), 7.63 (d, J = 2.2 Hz, 1 H, ArH), 7.80 (s, 1 H, ArH), 7.90 (s, 1 H, ArH).

¹³C NMR (75.5 MHz, CDCl3): δ = 52.6, 52.7 (CH3O), 107.0, 112.6, 122.6 (CH), 127.4, 128.2, 129.6 (C), 148.3 (CH), 155.2 (C), 167.9, 168.4 (CO).

GC-MS (EI, 70 eV): m/z (%) = 234 (10) [M+], 204 (4), 187 (100), 171 (5), 149 (6), 111 (4).

HRMS (EI, 70 eV): m/z calcd for C12H10O5: 234.05282; found: 234.05277.

Diethyl Benzofuran-5,6-dicarboxylate (4b)

Yield: 122 mg (93%); light yellow oil.

IR (KBr): 3411, 3120, 2931, 2872 (w), 1715 (s), 1619, 1586, 1529 (w), 1488, 1465 (m), 1391 (w), 1367 (m), 1300, 1219, 1149, 1125, 1102, 1039 (s), 896, 859, 772, 691, 588 (m) cm.

¹H NMR (300 MHz, CDCl3): δ = 0.86 (t, J = 7.5 Hz, 6 H, 2 CH3), 4.30-4.35 (m, 4 H, 2 CH2O), 6.77 (d, J = 2.2 Hz, 1 H, ArH), 7.69 (d, J = 2.2 Hz, 1 H, ArH), 7.81 (s, 1 H, ArH), 7.91 (s, 1 H, ArH).

¹³C NMR (75.5 MHz, CDCl3): δ = 14.1 (2 CH3), 61.6, 61.7 (CH2O), 107.3, 112.4, 122.5 (CH), 127.8, 128.8, 129.5 (C), 148.2 (CH), 155.2 (C), 167.6, 168.0 (CO).

GC-MS (EI, 70 eV): m/z (%) = 262 (18) [M+], 234 (4), 217 (19), 189 (100), 175 (5), 145 (6), 133 (4), 116 (7).

HRMS (EI, 70 eV): m/z calcd for C14H14O5: 262.08458; found: 262.08413.

Diisobutyl Benzofuran-5,6-dicarboxylate (4c)

Yield: 146 mg (92%); light yellow oil.

IR (KBr): 3434 (w), 2959, 2874 (m), 1769 (w), 1716 (s), 1614, 1585, 1529 (w), 1468, 1377 (m), 1305, 1218 (s), 1125 (m), 1103, 1035, 938 (s), 893, 773 (m), 691, 632 (w) cm.

¹H NMR (300 MHz, CDCl3): δ = 0.92 (d, J = 6.7 Hz, 6 H, 2 CH3), 0.93 (d, J = 6.8 Hz, 6 H, 2 CH3), 1.96-2.01 (m, 2 H, 2 CH), 4.02 (d, J = 6.7 Hz, 2 H, CH2O), 4.03 (d, J = 6.7 Hz, 2 H, CH2O), 6.76 (d, J = 2.2 Hz, 1 H, ArH), 7.71 (d, J = 2.1 Hz, 1 H, ArH), 7.81 (s, 1 H, ArH), 7.91 (s, 1 H, ArH).

¹³C NMR (75.5 MHz, CDCl3): δ = 19.1 (4 CH3), 27.5 (2 CH), 71.8, 71.9 (CH2O), 107.0, 112.6, 122.6 (CH), 127.9, 128.8, 129.5 (C), 148.2 (CH), 155.2 (C), 167.6, 168.0 (CO).

GC-MS (EI, 70 eV): m/z (%) = 318 (1) [M+], 263 (3), 189 (100), 162 (9), 144 (4), 133 (2), 116 (6).

HRMS (ESI+): m/z calcd for C18H22O5: 318.14674; found: 318.14664.

Dibutyl Benzofuran-5,6-dicarboxylate (4d)

Yield: 151 mg (95%); light yellow, highly viscous oil.

IR (KBr): 3144, 3117 (w), 2959, 2921, 2852 (m), 1711 (s), 1631, 1462, 1446, 1377, 1292 (w), 1275, 1255, 1223, 1169 (m), 1036, 969, 862, 794, 721, 539 (w) cm.

¹H NMR (300 MHz, CDCl3): δ = 0.86 (t, J = 7.3 Hz, 6 H, 2 CH3), 1.30-1.43 (m, 4 H, 2 CH2), 1.60-1.69 (m, 4 H, 2 CH2), 4.24 (t, J = 6.7 Hz, 2 H, CH2O), 4.25 (t, J = 6.7 Hz, 2 H, CH2O), 6.74 (d, J = 2.2 Hz, 1 H, ArH), 6.67 (d, J = 2.2 Hz, 1 H, ArH), 7.78 (s, 1 H, ArH), 7.88 (s, 1 H, ArH).

¹³C NMR (75.5 MHz, CDCl3): δ = 13.7 (2 CH3), 19.2 (2 CH2), 30.6 (2 CH2), 65.5, 65.6 (CH2O), 107.0, 112.5, 122.5 (CH), 127.8, 128.7, 129.4 (C), 148.1 (CH), 155.1 (C), 167.5, 168.0 (CO).

GC-MS (EI, 70 eV): m/z (%) = 318 (5) [M+], 245 (5), 189 (100), 116 (10).

HRMS (ESI+): m/z calcd for C18H22O5: 318.14623; found: 318.14626.

2-Ethyl 5,6-Diisobutyl Benzofuran-2,5,6-tricarboxylate (7a)

Yield: 185 mg (95%); light yellow oil.

IR (KBr): 2874 (w), 1719 (s), 1621 (w), 1583, 1467 (m), 1442, 1394 (w), 1369, 1345 (m), 1309 (s), 1259 (m), 1194, 1155, 1100 (s), 1038, 982, 943 (m), 901, 846 (w), 765, 740, 690 (m) cm.

¹H NMR (300 MHz, CDCl3): δ = 0.92 (d, J = 6.5 Hz, 12 H, 4 CH3), 1.37 (t, J = 7.1 Hz, 3 H, CH3), 1.96-2.01 (m, 2 H, 2 CH), 4.03 (d, J = 3.4 Hz, 2 H, CH2O), 4.05 (d, J = 3.3 Hz, 2 H, CH2O), 4.40 (q, J = 7.1 Hz, 2 H, CH2O), 7.49 (s, 1 H, ArH), 7.87 (s, 1 H, ArH), 8.01 (s, 1 H, ArH).

¹³C NMR (75.5 MHz, CDCl3): δ = 14.3 (CH3), 19.1, 19.2 (4 CH3), 27.7 (2 CH), 62.0, 72.0, 72.1 (CH2O), 113.4, 113.5, 124.3 (CH), 128.6, 128.8, 131.9, 148.7, 155.7 (C), 158.8, 167.1, 167.1 (CO).

GC-MS (EI, 70 eV): m/z (%) = 390 (5) [M+], 345 (20), 278 (30), 261 (100), 233 (16).

HRMS (EI, 70 eV): m/z calcd for C21H26O7: 390.16730; found: 390.16659.

2-Ethyl 5,6-Dihexyl Benzofuran-2,5,6-tricarboxylate (7b)

Yield: 216 mg (97%); light yellow oil.

IR (KBr): 2955, 2928, 2857 (w), 1720 (s), 1621, 1582 (w), 1462 (m), 1369, 1344 (w), 1302 (s), 1258 (m), 1193, 1156, 1101 (s), 1017 (m), 944, 900, 836 (w), 765 (m), 740, 690, 574 (w) cm.

¹H NMR (300 MHz, CDCl3): δ = 0.81-0.85 (m, 6 H, 2 CH3), 1.24-1.28 (m, 12 H, 6 CH2), 1.37 (t, J = 7.2 Hz, 3 H, CH3), 1.63-1.72 (m, 4 H, 2 CH2), 4.22-4.28 (m, 4 H, 2 CH2O), 4.40 (q, J = 7.4 Hz, 2 H, CH2O), 7.50 (s, 1 H, ArH), 7.86 (s, 1 H, ArH), 8.01 (s, 1 H, ArH).

¹³C NMR (75.5 MHz, CDCl3): δ = 14.0 (2 CH3), 14.3 (CH3), 22.5, 25.6, 28.5, 31.5 (2 CH2), 62.0, 66.1, 66.2 (CH2O), 113.4, 113.5, 124.3 (CH), 128.5, 128.7, 131.9, 148.7, 155.7 (C), 158.8, 167.1, 167.3 (CO).

GC-MS (EI, 70 eV): m/z (%) = 446 (20) [M+], 401 (20), 363 (20), 345 (10), 278 (14), 261 (100), 233 (12).

HRMS (EI, 70 eV): m/z calcd for C25H34O7: 446.22990; found: 446.22914.

2-Ethyl 5,6-Bis(6-methylheptyl) Benzofuran-2,5,6-tricarboxylate (7d)

Yield: 221 mg (88%); light yellow oil.

IR (KBr): 3109, 2958, 2874 (w), 1709 (s), 1633, 1578, 1515, 1469 (m), 1394 (w), 1368 (m), 1343 (w), 1318 (s), 1300, 1270 (w), 1255 (m), 1239 (w), 1220 (m), 1171 (s), 1114 (m), 1080 (w), 1008, 962 (s), 875, 861, 837 (w), 765, 748, 720, 693, 657 (m), 609, 595, 542 (w) cm.

¹H NMR (300 MHz, CDCl3): δ = 0.74-0.89 (m, 12 H, 4 CH3), 0.90-0.91 (m, 2 H, 2 CH), 1.11-1.23 (m, 8 H, 4 CH2), 1.33 (t, J = 7.3 Hz, 3 H, CH3), 1.37-1.41 (m, 8 H, 4 CH2), 4.12-4.24 (m, 4 H, 2 CH2O), 4.34 (q, J = 7.1 Hz, 2 H, CH2O), 7.49 (s, 1 H, ArH), 7.85 (s, 1 H, ArH), 8.00 (s, 1 H, ArH).

¹³C NMR (75.5 MHz, CDCl3): δ = 14.4 (CH3), 19.8 (4 CH3), 23.5, 25.8, 28.7, 31.6 (2 CH2), 27.3 (2 CH), 61.7, 65.2, 65.5 (CH2O), 113.6, 113.7, 124.5 (CH), 128.7, 128.9, 131.7, 148.4, 155.8 (C), 158.6, 166.3, 166.5 (CO).

GC-MS (EI, 70 eV): m/z (%) = 502 (20) [M+], 457 (30), 391 (28), 279 (21), 261 (100), 233 (15).

HRMS (EI, 70 eV): m/z calcd for C29H42O7: 502.29251; found: 502.29179.

5,6-Dibutyl 2-Ethyl Benzofuran-2,5,6-tricarboxylate (7e)

Yield: 176 mg (90%); highly viscous, yellow oil.

IR (KBr): 2873 (w), 1719 (s), 1621 (w), 1583 (m), 1563, 1508, 1488 (w), 1462 (m), 1369, 1344 (w), 1302 (s), 1257, 1242 (w), 1193, 1156, 1100 (s), 1060, 1037, 1015, 961 (w), 941 (m), 901, 840 (w), 765, 740, 691 (m), 643, 603, 579 (w) cm.

¹H NMR (300 MHz, CDCl3): δ = 0.89 (t, J = 7.3 Hz, 6 H, 2 CH3), 1.32 (t, J = 7.2 Hz, 3 H, CH3), 1.35-1.45 (m, 4 H, 2 CH2), 1.62-1.71 (m, 4 H, 2 CH2), 4.12-4.18 (m, 4 H, 2 CH2O), 4.40 (q, J = 7.2 Hz, 2 H, CH2O), 7.49 (s, 1 H, ArH), 7.86 (s, 1 H, ArH), 8.00 (s, 1 H, ArH).

¹³C NMR (75.5 MHz, CDCl3): δ = 13.7 (2 CH3), 14.3 (CH3), 19.2 (2 CH2), 30.5, 30.6 (CH2), 62.0, 65.8, 65.9 (CH2O), 113.4, 113.5, 124.3 (CH), 128.5, 128.7, 131.9, 148.7, 155.7 (C), 158.8, 167.1, 167.3 (CO).

GC-MS (EI, 70 eV): m/z (%) = 390 (43) [M+], 345 (30), 335 (11), 317 (40), 278 (18), 261 (100), 233 (17).

HRMS (EI, 70 eV): m/z calcd for C21H26O7: 390.16730; found: 390.16658.

2-Ethyl 5,6-Dimethyl Benzofuran-2,5,6-tricarboxylate (7f)

Yield: 142 mg (93%); light yellow oil.

IR (KBr): 2951, 2925, 2853 (w), 1721 (s), 1620, 1578 (w), 1564 (m), 1535, 1488, 1475, 1465 (w), 1431, 1372, 1347 (m), 1310 (s), 1265, 1242 (m), 1207, 1156, 1100 (s), 1043, 1019, 966 (m), 934, 919, 876 (w), 854, 825, 785 (m), 765 (s), 742, 690, 667, 641, 568 (m) cm.

¹H NMR (300 MHz, CDCl3): δ = 1.37 (t, J = 7.1 Hz, 3 H, CH3), 3.86 (s, 3 H, CH3O), 3.88 (s, 3 H, CH3O), 4.40 (q, J = 7.3 Hz, 2 H, CH2O), 7.49 (s, 1 H, ArH), 7.86 (s, 1 H, ArH), 8.03 (s, 1 H, ArH).

¹³C NMR (75.5 MHz, CDCl3): δ = 14.3 (CH3), 52.8, 53.0 (CH3O), 62.1 (CH2O), 113.4, 113.5, 124.4 (CH), 128.0, 128.9, 131.5, 148.8, 155.8 (C), 158.8, 167.6, 167.7 (CO).

GC-MS (EI, 70 eV): m/z (%) = 306 (40) [M+], 276 (15), 275 (100), 261 (8), 247 (44), 217 (5).

HRMS (EI, 70 eV): m/z calcd for C15H14O7: 306.07340; found: 306.07314.

Triethyl Benzofuran-2,5,6-tricarboxylate (7g)

Yield: 157 mg (94%); highly viscous, orange oil.

IR (KBr): 3055, 2981, 2929 (w), 1714 (s), 1622 (w), 1581, 1564 (m), 1536, 1504 (w), 1488, 1474, 1445, 1396 (m), 1368 (s), 1345 (w), 1305, 1238, 1198, 1156, 1102 (s), 1043, 1020, 906, 868, 837, 785 (m), 765 (s), 740, 691, 671, 643, 562 (w) cm.

¹H NMR (250 MHz, CDCl3): δ = 1.29-1.40 (m, 9 H, 3 CH3), 4.18-4.45 (m, 6 H, 3 CH2O), 7.49 (s, 1 H, ArH), 7.86 (s, 1 H, ArH), 8.03 (s, 1 H, ArH).

¹³C NMR (62.9 MHz, CDCl3): δ = 14.0, 14.1, 14.3 (CH3), 61.8, 61.9, 62.0 (CH2O), 113.3, 113.4, 124.3 (CH), 128.4, 128.7, 131.8, 148.7, 155.7 (C), 158.8, 167.1, 167.2 (CO).

GC-MS (EI, 70 eV): m/z (%) = 334 (25) [M+], 306 (4), 289 (26), 261 (100), 247 (7), 233 (32), 217 (6).

HRMS (EI, 70 eV): m/z calcd for C17H18O7: 334.10470; found: 334.10407.

Ethyl 5,6-Bis(4-chlorophenyl)benzofuran-2-carboxylate (7h)

Yield: 185 mg (90%); light brown, highly viscous oil.

IR (KBr): 2957, 2922, 2852 (w), 1720 (s), 1657, 1622, 1581, 1566, 1555 (w), 1494, 1455 (m), 1434, 1392 (w), 1368, 1328, 1301, 1285, 1261, 1240, 1228 (m), 1183, 1152, 1089, 1012 (s), 953 (m), 934, 889, 871, 854 (w), 827 (s), 765, 756, 743, 728 (m), 697, 682, 646, 636, 625, 590, 537 (w).

¹H NMR (250 MHz, CDCl3): δ = 1.37 (t, J = 7.1 Hz, 3 H, CH3), 4.39 (q, J = 7.1 Hz, 2 H, CH2O), 6.96-7.00 (dd, J = 2.3, 8.6 Hz, 4 H, ArH), 7.13-7.17 (dd, J = 2.0, 8.5 Hz, 4 H, ArH), 7.48 (s, 1 H, ArH), 7.51 (s, 1 H, ArH), 7.59 (s, 1 H, ArH).

¹³C NMR (62.9 MHz, CDCl3): δ = 13.3 (CH3), 60.6 (CH2O), 112.5, 112.7, 123.3 (CH), 125.6 (C), 127.2, 127.3, 130.1, 130.2 (CH), 131.9, 132.2, 135.0, 138.2, 138.3, 138.5, 145.8, 154.2 (C), 158.3 (CO).

GC-MS (EI, 70 eV): m/z (%) = 412 (68), 411 (26), 410 (100) [M+], 382 (5), 367 (4), 365 (5), 347 (4), 312 (14), 302 (10).

HRMS (ESI+): m/z calcd for C23H16O3Cl2: 410.04710; found: 410.04713.

Acknowledgment

Financial support by the DAAD (scholarships for A.A., G.A.S. and R.A.K.), by the State of Pakistan (HEC scholarships for M.H. and R.A.K.) and by the State of Mecklenburg-Vorpommern (scholarship for M.H.) is gratefully acknowledged.

    References

  • 1a Miyata O. Takeda N. Morikami Y. Naito T. Org. Biomol. Chem.  2003,  1:  254 
  • 1b Xie X. Chen B. Lu J. Han J. She X. Pan X. Tetrahedron Lett.  2004,  45:  6235 
  • 1c Zhang H. Ferreira EM. Stoltz BM. Angew. Chem. Int. Ed.  2004,  43:  6144 
  • 1d Hagiwara H. Sato K. Nishino D. Hoshi T. Suzuki T. Ando M. J. Chem. Soc., Perkin Trans. 1  2001,  2946 
  • For a review, see:
  • 1e Butin AV. Gutnow AV. Abaev VT. Krapivin GD. Molecules  1999,  4:  52 
  • 1f Fuerst DE. Stoltz BM. Wood JL. Org. Lett.  2000,  2:  3521 
  • 1g Schneider B. Phytochemistry  2003,  64:  459 
  • 1h Katritzky AR. Kirichenkok K. Ji Y. Steel PJ. Karelson M. ARKIVOC  2003,  (vi):  49 
  • 2a Wendt B. Ha HR. Hesse M. Helv. Chim. Acta  2002,  85:  2990 
  • 2b Carlsson B. Singh BN. Temciuc M. Nilsson S. Li YL. Mellin C. Malm J. J. Med. Chem.  2002,  45:  623 ; and references cited therein
  • 2c Kwiecien H. Baumann E. J. Heterocycl. Chem.  1997,  34:  1587 
  • 2d Larock RC. Harrison LW. J. Am. Chem. Soc.  1984,  106:  4218 
  • 2e Mátyus P. Varga I. Rettegi T. Simay A. Kállay N. Károlyházy L. Kocsis A. Varró A. Pénzes I. Papp JG. Curr. Med. Chem.  2004,  11:  61 
  • 2f Wong HNC. Yu P. Yick C.-Y. Pure Appl. Chem.  1999,  71:  1041 
  • For longicaudatin, see:
  • 3a Joshi AS. Li X.-C. Nimrod AC. ElSohly HN. Walker LA. Clark AM. Planta Med.  2001,  67:  186 
  • For related natural products, see:
  • 3b Sigstad E. Catalan CAN. Diaz JG. Herz W. Phytochemistry  1993,  33:  165 
  • 3c Drewes SE. Hudson NA. Bates RB. J. Chem. Soc., Perkin Trans. 1  1987,  2809 
  • For sessiliflorol A, see:
  • 4a Chan JA. Shultis EA. Carr SA. DeBrosse CW. Eggleston DS. J. Org. Chem.  1989,  54:  2098 
  • For sessiliflorol B, see:
  • 4b Marston A. Zagorski MG. Hostettmann K. Helv. Chim. Acta  1988,  71:  1210 
  • 4c Drewes SE. Hudson NA. Bates RB. Linz GS. Tetrahedron Lett.  1984,  25:  105 
  • For flemistrictin E, see:
  • 4d Subrahmanyam K. Rao JM. Vemuri VSS. Babu SS. Roy CP. Rao KVJ. Indian J. Chem., Sect. B  1982,  21:  895 
  • For tovophenone C, see:
  • 4e Seo E.-K. Wall ME. Wani MC. Navarro H. Mukherjee R. Farnsworth NR. Kinghorn AD. Phytochemistry  1999,  52:  669 
  • For vismiaguianone C, see:
  • 4f Seo E.-K. Wani MC. Wall ME. Navarro H. Mukherjee R. Farnsworth NR. Kinghorn AD. Phytochemistry  2000,  55:  35 
  • 4g For piperaduncin B, see ref. 3a and: Bohlmann F. Zdero C. Chem. Ber.  1976,  109:  1436 
  • For reviews of cross-coupling reactions of polyhalogenated heterocycles, see:
  • 5a Schröter S. Stock C. Bach T. Tetrahedron  2005,  61:  2245 
  • 5b Schnürch M. Flasik R. Khan AF. Spina M. Mihovilovic MD. Stanetty P. Eur. J. Org. Chem.  2006,  3283 
  • 6a Dang TT. Ahmad R. Dang TT. Reinke H. Langer P. Tetrahedron Lett.  2008,  49:  1698 
  • 6b Dang TT. Villinger A. Langer P. Adv. Synth. Catal.  2008,  350:  2109 
  • 6c Dang TT. Dang TT. Rasool N. Villinger A. Langer P. Adv. Synth. Catal.  2009,  351:  1595 
  • 7a Bach T. Krüger L. Tetrahedron Lett.  1998,  39:  1729 
  • 7b Bach T. Krüger L. Eur. J. Org. Chem.  1999,  2045 
  • 7c Bach T. Krüger L. Synlett  1998,  1185 
  • 8 de Meijere and co-workers reported twofold Heck reactions of 1,2-dibromocycloalk-1-enes and related substrates and subsequent 6π-electrocyclization; see: Voigt K. von Zezschwitz P. Rosauer K. Lansky A. Adams A. Reiser O. de Meijere A. Eur. J. Org. Chem.  1998,  1521 ; and references cited therein
  • 9a Hussain M. Nguyen TH. Langer P. Tetrahedron Lett.  2009,  50:  3929 
  • 9b Tengho Toguem S.-M. Hussain M. Malik I. Villinger A. Langer P. Tetrahedron Lett.  2009,  50:  4962 
  • 10 Billingsley K. Buchwald SL. J. Am. Chem. Soc.  2007,  129:  3358 ; and references cited therein

    References

  • 1a Miyata O. Takeda N. Morikami Y. Naito T. Org. Biomol. Chem.  2003,  1:  254 
  • 1b Xie X. Chen B. Lu J. Han J. She X. Pan X. Tetrahedron Lett.  2004,  45:  6235 
  • 1c Zhang H. Ferreira EM. Stoltz BM. Angew. Chem. Int. Ed.  2004,  43:  6144 
  • 1d Hagiwara H. Sato K. Nishino D. Hoshi T. Suzuki T. Ando M. J. Chem. Soc., Perkin Trans. 1  2001,  2946 
  • For a review, see:
  • 1e Butin AV. Gutnow AV. Abaev VT. Krapivin GD. Molecules  1999,  4:  52 
  • 1f Fuerst DE. Stoltz BM. Wood JL. Org. Lett.  2000,  2:  3521 
  • 1g Schneider B. Phytochemistry  2003,  64:  459 
  • 1h Katritzky AR. Kirichenkok K. Ji Y. Steel PJ. Karelson M. ARKIVOC  2003,  (vi):  49 
  • 2a Wendt B. Ha HR. Hesse M. Helv. Chim. Acta  2002,  85:  2990 
  • 2b Carlsson B. Singh BN. Temciuc M. Nilsson S. Li YL. Mellin C. Malm J. J. Med. Chem.  2002,  45:  623 ; and references cited therein
  • 2c Kwiecien H. Baumann E. J. Heterocycl. Chem.  1997,  34:  1587 
  • 2d Larock RC. Harrison LW. J. Am. Chem. Soc.  1984,  106:  4218 
  • 2e Mátyus P. Varga I. Rettegi T. Simay A. Kállay N. Károlyházy L. Kocsis A. Varró A. Pénzes I. Papp JG. Curr. Med. Chem.  2004,  11:  61 
  • 2f Wong HNC. Yu P. Yick C.-Y. Pure Appl. Chem.  1999,  71:  1041 
  • For longicaudatin, see:
  • 3a Joshi AS. Li X.-C. Nimrod AC. ElSohly HN. Walker LA. Clark AM. Planta Med.  2001,  67:  186 
  • For related natural products, see:
  • 3b Sigstad E. Catalan CAN. Diaz JG. Herz W. Phytochemistry  1993,  33:  165 
  • 3c Drewes SE. Hudson NA. Bates RB. J. Chem. Soc., Perkin Trans. 1  1987,  2809 
  • For sessiliflorol A, see:
  • 4a Chan JA. Shultis EA. Carr SA. DeBrosse CW. Eggleston DS. J. Org. Chem.  1989,  54:  2098 
  • For sessiliflorol B, see:
  • 4b Marston A. Zagorski MG. Hostettmann K. Helv. Chim. Acta  1988,  71:  1210 
  • 4c Drewes SE. Hudson NA. Bates RB. Linz GS. Tetrahedron Lett.  1984,  25:  105 
  • For flemistrictin E, see:
  • 4d Subrahmanyam K. Rao JM. Vemuri VSS. Babu SS. Roy CP. Rao KVJ. Indian J. Chem., Sect. B  1982,  21:  895 
  • For tovophenone C, see:
  • 4e Seo E.-K. Wall ME. Wani MC. Navarro H. Mukherjee R. Farnsworth NR. Kinghorn AD. Phytochemistry  1999,  52:  669 
  • For vismiaguianone C, see:
  • 4f Seo E.-K. Wani MC. Wall ME. Navarro H. Mukherjee R. Farnsworth NR. Kinghorn AD. Phytochemistry  2000,  55:  35 
  • 4g For piperaduncin B, see ref. 3a and: Bohlmann F. Zdero C. Chem. Ber.  1976,  109:  1436 
  • For reviews of cross-coupling reactions of polyhalogenated heterocycles, see:
  • 5a Schröter S. Stock C. Bach T. Tetrahedron  2005,  61:  2245 
  • 5b Schnürch M. Flasik R. Khan AF. Spina M. Mihovilovic MD. Stanetty P. Eur. J. Org. Chem.  2006,  3283 
  • 6a Dang TT. Ahmad R. Dang TT. Reinke H. Langer P. Tetrahedron Lett.  2008,  49:  1698 
  • 6b Dang TT. Villinger A. Langer P. Adv. Synth. Catal.  2008,  350:  2109 
  • 6c Dang TT. Dang TT. Rasool N. Villinger A. Langer P. Adv. Synth. Catal.  2009,  351:  1595 
  • 7a Bach T. Krüger L. Tetrahedron Lett.  1998,  39:  1729 
  • 7b Bach T. Krüger L. Eur. J. Org. Chem.  1999,  2045 
  • 7c Bach T. Krüger L. Synlett  1998,  1185 
  • 8 de Meijere and co-workers reported twofold Heck reactions of 1,2-dibromocycloalk-1-enes and related substrates and subsequent 6π-electrocyclization; see: Voigt K. von Zezschwitz P. Rosauer K. Lansky A. Adams A. Reiser O. de Meijere A. Eur. J. Org. Chem.  1998,  1521 ; and references cited therein
  • 9a Hussain M. Nguyen TH. Langer P. Tetrahedron Lett.  2009,  50:  3929 
  • 9b Tengho Toguem S.-M. Hussain M. Malik I. Villinger A. Langer P. Tetrahedron Lett.  2009,  50:  4962 
  • 10 Billingsley K. Buchwald SL. J. Am. Chem. Soc.  2007,  129:  3358 ; and references cited therein

Scheme 1 Synthesis of 3a-i and 4a-d. Reagents and conditions: (i) 2a-i (2.5 equiv), Pd(OAc)2 (5 mol%), SPhos or XPhos (10 mol%), Et3N, DMF, 120 ˚C, 36 h; (ii) (1) Ph2O, 200 ˚C, 24 h; (2) Pd/C (10 mol%), Ph2O, 200 ˚C, 24 h.

Scheme 2 Synthesis of 6a-h and 7a-h. Reagents and conditions: (i) 2a-f,j,k (2.5 equiv), Pd(OAc)2 (5 mol%), XPhos (10 mol%), Et3N, DMF, 100 ˚C, 24 h; (ii) (1) Ph2O, 170 ˚C, 12 h; (2) Pd/C (10 mol%), Ph2O, 170 ˚C, 12 h.