Synthesis 2011(17): 2796-2802  
DOI: 10.1055/s-0030-1260129
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Electronically Deficient Atropisomeric Bisphosphine Ligands and Their Application in Asymmetric Hydrogenation of Quinolines

De-Yang Zhanga,b, Duo-Sheng Wangb, Min-Can Wang*a, Chang-Bin Yub, Kai Gaob, Yong-Gui Zhou*b
a Department of Chemistry, Zhengzhou University, Zhengzhou, Henan 450052, P. R. of China
Fax: +86(371)67769024; e-Mail: wangmincan@zzu.edu.cn;
b State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. of China
Fax: +86(411)84379220; e-Mail: ygzhou@dicp.ac.cn;

Further Information

Publication History

Received 9 May 2011
Publication Date:
21 July 2011 (online)

Abstract

A series of electronically deficient atropisomeric bisphos­phine ligands have been synthesized from (S)-MeO-BiPhep. The introduction­ of electron-withdrawing groups in the ligands had a dramatic influence on both the enantioselectivity and the activity of catalyst. The iridium complex of the MeO-BiPhep-based ligand bearing a trifluoromethanesulfonyl group was successfully applied in the asymmetric hydrogenation of quinolines with ee values of up to 95% and turnover numbers (TON) of up to 14,600.

The direct asymmetric hydrogenation of quinoline derivatives provides a convenient route to chiral tetrahydroquinolines, which are useful intermediates and building blocks for the construction of a variety of alkaloids and biologically­ active compounds. [¹] Since our group’s pioneering work on the asymmetric hydrogenation of quinolines using the iridium/bisphosphine/iodine catalyst system with high enantioselectivities and yields, [²] exciting advances have been achieved in this field. [³-7] Most effort has focused on developing effective ligands for higher enantioselectivity and catalytic activity, especially the latter. Thus far, several bisphosphine ligands with high catalytic activity have been developed with the iridium-catalyzed system. Fan and co-workers employed BINAP-cored dendrimers as ligands in iridium-catalyzed asymmetric hydrogenation of quinolines with turnover numbers (TON) up to 43,000. [8] The authors proposed that the formation of inactive species was reduced by the encapsulation of the iridium complex into a dendrimer framework and, thus, the activity of the catalyst was enhanced. Very recently, our group also found that the introduction of bulky groups on the coordination phosphorous atoms of P,P- and P,N-ligands could improve the catalytic activity with a substrate-to-catalyst (S/C) ratio of up to 25,000 and ee values up to 93%. [9] For the above work, the steric hindrance of the matrix ligands were modified to improve their activities. Furthermore, the electronic properties of the ligands were also investigated. In 2007, Lemaire and co-workers synthesized several electronically enriched chiral BINAP derivatives and applied them in the iridium-catalyzed asymmetric hydrogenation of quinolines, however, the enantioselectivity and activity were unsatisfactory. [¹0] Recently, Xu et al. found that air-stable, electro­ni­-cally deficient P-Phos and DifluorPhos showed high activity in the hydrogenation of quinolines with TON up to 43,000. [¹¹]

Encouraged by the above results, we envisioned that the catalytic activity might be improved by introducing electron-withdrawing substituents to the backbone of atrop­isomeric bisphosphine ligands. Commercially available MeO-BiPhep (L1) was thought to be a suitable candidate because of its readily modifiable substituents at the 6- and 6′-positions of the biaryl backbone. Hence, this compound was chosen as the starting material to synthesize electronically deficient atropisomeric bisphosphine ligands (Scheme  [¹] ).

Scheme 1 Design of electronically deficient bisphosphine ligands

These ligands were easily obtained through condensation of (S)-OH-BiPhep with the corresponding acyl chloride or PhNTf2 (Scheme  [²] ) with 45-89% yields. [¹²]

Scheme 2 Synthesis of bisphosphine ligands. Reagents and conditions: Method A (for L2a-e): acyl chloride, t-BuOK, CH2Cl2; Method B (for L3): NaH, PhNTf2, THF.

With these electronically deficient ligands in hand, iridium-catalyzed asymmetric hydrogenation of quinolines was investigated. Initially, 2-methylquinoline was chosen as a model substrate and the catalysts were prepared in situ from [Ir(cod)Cl]2 and the ligands in tetrahydrofuran. The hydrogenation reaction was run on a S/C molar ratio of 1000, with molecular iodine (0.5 mol%) as additive; the results are summarized in Table  [¹] . After 22 hours, full conversions were obtained for all ligands. The lowest ee value was obtained (entry 1; 78%) for the matrix ligand MeO-BiPhep (L1), which was also lower than that obtained with a catalyst loading of 100 (78 vs 94% ee). [²] Gratifyingly, the enantioselectivity was enhanced dramatically with the introduction of electron-withdrawing ester groups on the ligand (entries 2-7). For the commercially available ligand L2a, with a cyclohexanecarbonyl instead of a methyl group, 86% ee was obtained (entry 2). When more electron-withdrawing aroyl groups were introduced, the enantioselectivities were further increased (entries 3-6; 89-91% ee). It is noteworthy that the highest enantioselectivity was achieved for L3, with an electron-withdrawing trifluoromethanesulfonyl group (entry 7; 95% ee), which was consistent with our initial expectation. Based on the above results, it was clear that the ligands with electronically deficient substituents showed excellent performance in iridium-catalyzed asymmetric hydrogenation of 2-methylquinoline, with high enantioselectivity and activity being achieved.

Table 1 Asymmetric Hydrogenation of 2-Methylquinolinea

Entry Ligand Yield (%)b ee (%)c
1 L1 98 78 (S)
2 L2a 98 86 (S)
3 L2b 99 90 (S)
4 L2c 98 91 (S)
5 L2d 98 89 (S)
6 L2e 98 91 (S)
7 L3 99 95 (S)

a Reaction conditions: 1a (1 mmol), [Ir(cod)Cl]2 (0.0005 mmol), ligand (0.0011 mmol), I2 (0.0050 mmol), THF (2 mL), r.t., 22 h.
b Isolated yield.
c Determined by HPLC analysis.

With these promising results in hand, the effect of solvent, amount of iodine, hydrogen pressure, and temperature on the activity and enantioselectivity was further studied using iridium complexes of L3 as the catalyst; the results are summarized in Table  [²] . Solvent screening trials indicated that the reaction was strongly solvent-dependent. The use of toluene and benzene gave similar enantioselectivities to those achieved with tetrahydrofuran, but gave lower yields (entries 2 and 3). The use of dichloromethane and 2-propanol resulted in much lower yields and enantioselectivities (entries 4 and 5). Slightly lower yield and enantioselectivity were obtained in ethyl acetate (entry 6). Ethereal solvents were more effective than other solvents (entries 1 and 7), and the highest enantioselectivity was obtained in tetrahydrofuran (entry 1; 95%). Thus, tetrahydrofuran was the best choice in terms of both yield and enantioselectivity.

It was noticed that the catalytic performance was also related to the amount of additive iodine. In the absence of iodine, very low yield and enantioselectivity were observed (entry 11). Increasing the amount of iodine to 1 mol%, or decreasing the amount to 0.25 mol% had no obvious effect on either the yield or enantioselectivity (entries 8 and 9), but the ee value decreased significantly with 0.125 mol% iodine (entry 10). Either reducing the pressure or increasing the temperature gave full conversions but slightly lower enantioselectivities (entries 12 and 13). Thus, the optimized reaction conditions were: [Ir(cod)Cl]2, L3, and iodine (0.5 mol%) in tetrahydrofuran under a hydrogen atmosphere (700 psi) at room temperature.

Table 2 Optimization of Reaction Conditionsa

Entry Solvent I2 (mol%) Yield (%)b ee (%)c
 1 THF 0.5 99 95 (S)
 2 toluene 0.5 19 94 (S)
 3 benzene 0.5 46 93 (S)
 4 CH2Cl2 0.5 10 71 (S)
 5 i-PrOH 0.5 15 41 (S)
 6 EtOAc 0.5 91 90 (S)
 7 dioxane 0.5 98 94 (S)
 8 THF 1.0 98 95 (S)
 9 THF 0.25 98 94 (S)
10 THF 0.125 97 91 (S)
11 THF - 19  6 (S)
12d THF 0.5 99 94 (S)
13e THF 0.5 99 93 (S)

a Reaction conditions: 1a (1 mmol), [Ir(cod)Cl]2 (0.0005 mmol), L3 (0.0011 mmol), H2 (700 psi), solvent (2 mL), r.t., 22 h.
b Isolated yield.
c Determined by HPLC analysis.
d H2 (300 psi), r.t.
e H2 (700 psi), 50 ˚C.

Having established the optimal conditions, a variety of 2-substituted quinoline derivatives were tested to explore the scope of the reaction. As summarized in Table  [³] , several 2-alkyl substituted quinolines were hydrogenated with high yields and excellent enantioselectivities, regardless of the length of side chain (entries 1-5; >93% ee). Remarkably, the carbon-carbon double bond in the side chain of the substrate was also hydrogenated (entry 4). Slightly lower enantioselectivity was obtained with hydroxyl groups on the side chain (entry 6). It was noted that excellent yields and good enantioselectivities were also observed for 2-arylethyl substituted quinolines (entries 7 and 8). For substrates possessing a substituent on the 6-position, the yields were also excellent, but slightly lower enantioselectivities were observed (entries 9 and 10). Moreover, it was found that the presence of an electron-withdrawing group at the 6-position of the substrate gave better results than those with an electron-donating substituent (92 versus 87% ee). The yield was also excellent with 2-aryl-substituted quinoline, but the enantioselectivity was only moderate (entry 11).

Table 3 Asymmetric Hydrogenation of Quinoline Derivativesa

Entry R¹ R² Product Yield (%)b ee
(%)c
 1 H Me 2a 99 95 (S)
 2 H Et 2b 93 95 (S)
 3 H n-Pr 2c 97 94 (S)
 4 H 3-butenyl 2d 95 94 (S)
 5 H n-pentyl 2e 98 94 (S)
 6 H Me2C(OH)CH2- 2f 99 87 (R)
 7 H 3,4-(MeO)2C6H3(CH2)2- 2g 99 93 (S)
 8 H 3-BnO-4-MeOC6H3(CH2)2- 2h 96 93 (S)
 9 Me Me 2i 96 87 (S)
10 F Me 2j 97 92 (S)
11 H Ph 2k 95 60 (R)

a Reaction conditions: 1 (1 mmol), [Ir(cod)Cl]2 (0.0005 mmol), L3 (0.0011 mmol), I2 (0.0050 mmol), H2 (700 psi), THF (2 mL), r.t., 22 h.
b Isolated yield.
c Determined by HPLC analysis.

To further evaluate the catalytic efficiency of the [Ir(cod)Cl]2, L3, and iodine system in asymmetric hydrogenation, the effect of the S/C molar ratio on the conversion and enantioselectivity of this reaction was investigated. 2-Methylquinoline was selected as substrate and the results are shown in Table  [4] .

Table 4 Effect of S/C Ratio on the Conversion and Enantioselectivitya

S/C 1000 5000d 10000d,e 20000d,e
Conv. (%)b >95 >95 >95 73
Ee (%)c  95  95  95 95

a Reaction conditions: 1a (1 mmol), [Ir(cod)Cl]2/L3 (0.5/1.1), I2 (0.0050 mmol), H2 (700 psi), THF (2 mL), r.t., 22 h.
b Determined by ¹H NMR analysis.
c Determined by HPLC analysis.
d I2 (0.0100 mmol) was used.
e Reaction time: 36 h.

It was notable that the enantioselectivity remained unchanged (95% ee) when the S/C ratio was increased. When the S/C ratio was raised to 5000:1, the reaction proceeded smoothly with complete conversion. When the S/C ratio was increased to 10000:1, prolonging the reaction time could facilitate the reaction to full conversion. However, when the S/C ratio was increased to 20000:1, the conversion decreased to 73%.

In conclusion, a series of electronically deficient atropisomeric bisphosphine ligands were conveniently synthesized and successfully applied in the asymmetric hydrogenation of quinoline derivatives; up to 95% ee was obtained and TON reached 14,600. More importantly, we have shown that the introduction of electron-withdrawing groups to (S)-MeO-BiPhep had a dramatic effect on the enantioselectivity and the activity of catalyst. Our future work will focus on designing other ligands and extending the catalytic system to other hydrogenation reactions.

All reactions were performed under N2 in dried flasks using Schlenk techniques. Commercially available reagents were used without further purification. Solvents were dried and distilled under N2 before use. ¹H, ¹³C and ³¹P NMR spectra were recorded at r.t. in CDCl3 with a 400 MHz Bruker DRX-400 spectrometer. Enantiomeric excesses were determined by HPLC analysis with an Agilent 1100 instrument fitted with a chiral column as described below. Optical rotations were measured with a JASCO P-1010 polarimeter. All reactions were monitored by TLC analysis. Flash column chromatography was performed on either silica gel (particle size 200-300 mesh) or Al2O3 gel (particle size 200-300 mesh).

Bisphosphine Ligands ( S )-L2a-e; General Procedure A [¹²a]

Under an N2 atmosphere, to a solution of (S)-OH-BiPhep [4f] (1.0 equiv) in anhydrous CH2Cl2 (10 mL), was added t-BuOK (2.4 equiv) and the mixture was stirred at r.t. for 30 min. Acyl chloride a-e (2.4 equiv) was added and the solution was stirred at r.t. for an additional 2 h. Degassed H2O (10 mL) was added, the organic layer separated, and the aqueous layer was extracted with CH2Cl2 (3 × 10 mL). The combined organic layers were washed with brine (10 mL), dried over anhydrous Na2SO4 and concentrated under reduced pressure. The crude product was purified by either recrystallization or column chromatography.

( S )-6,6′-Bis(diphenylphosphino)-1,1′-biphenyl-2,2′-diylbis(cyclohexanecarboxylate) (L2a) [¹³]

Obtained following General Procedure A, with (S)-OH-BiPhep (83 mg, 0.15 mmol), t-BuOK (40 mg, 0.36 mmol), and cyclohexanecarbonyl chloride a (53 mg, 0.36 mmol). The crude product was purified by column chromatography on silica gel (PE-EtOAc, 30:1→25:1) to give compound L2a.

Yield: 67 mg (58%); white solid; mp 234-235 ˚C; R f = 0.82 (PE-EtOAc, 5:1); [α] d ²³ -92.2 (c 0.67, CHCl3).

¹H NMR (400 MHz, CDCl3): δ = 7.42-7.23 (m, 12 H), 7.15-7.23 (m, 6 H), 7.03-7.14 (m, 8 H), 1.77-1.94 (m, 2 H), 1.18-1.69 (m, 10 H), 0.93-1.18 (m, 9 H), 0.74-0.93 (m, 1 H).

( S )-6,6′-Bis(diphenylphosphino)-1,1′-biphenyl-2,2′-diylbis(benzenecarboxylate) (L2b)

Obtained following General Procedure A, with (S)-OH-BiPhep (110 mg, 0.20 mmol), t-BuOK (54 mg, 0.48 mmol), and benzoyl chloride b (68 mg, 0.48 mmol). The crude product was purified by recrystallization (CH2Cl2-n-hexane) to give compound L2b.

Yield: 97 mg (64%); white solid; mp 195-196 ˚C; R f = 0.64 (PE-EtOAc, 5:1); [α] d ²³ -38.6 (c 0.70, CHCl3).

¹H NMR (400 MHz, CDCl3): δ = 7.41-7.53 (m, 6 H), 7.33-7.40 (m, 4 H), 7.10-7.30 (m, 22 H), 7.03 (t, J = 7.3 Hz, 4 H).

¹³C NMR (100 MHz, CDCl3): δ = 163.9, 149.4, 149.3, 140.4, 138.4, 138.3, 136.2, 136.1, 134.8, 134.7, 134.6, 133.3, 133.2, 133.1, 131.7, 130.3, 129.6, 129.0, 128.9, 128.5, 128.4, 128.2, 128.1, 123.0.

³¹P NMR (162 MHz, CDCl3): δ = -15.28 (s).

HRMS: m/z [M + Na]+ calcd for C50H36O4P2Na: 785.1987; found: 785.1988.

( S )-6,6′-Bis(diphenylphosphino)-1,1′-biphenyl-2,2′-diylbis(4-methoxybenzenecarboxylate) (L2c)

Obtained following General Procedure A, with (S)-OH-BiPhep (110 mg, 0.20 mmol) and t-BuOK (54 mg, 0.48 mmol), and 4-methoxybenzoyl chloride c (82 mg, 0.48 mmol). The crude product was purified by column chromatography on Al2O3 gel (PE-EtOAc, 10:1→5:1) to give L2c.

Yield: 74 mg (45%); white solid; mp 161-162 ˚C; R f = 0.36 (PE-EtOAc, 5:1); [α] d ²³ -8.0 (c 0.67, CHCl3).

¹H NMR (400 MHz, CDCl3): δ = 7.41 (d, J = 8.8 Hz, 4 H), 7.35 (d, J = 4.4 Hz, 4 H), 7.15-7.31 (m, 16 H), 7.09-7.15 (m, 2 H), 7.05 (t, J = 7.4 Hz, 4 H), 6.73 (d, J = 8.9 Hz, 4 H), 3.81 (s, 6 H).

¹³C NMR (100 MHz, CDCl3): δ = 163.6, 149.4, 134.8, 134.7, 134.6, 133.3, 133.2, 133.1, 132.4, 131.5, 128.9, 128.4, 128.1, 123.0, 122.1, 113.5, 55.6.

³¹P NMR (162 MHz, CDCl3): δ = -15.23 (s).

HRMS: m/z [M + Na]+ calcd for C52H40O6P2Na: 845.2198; found: 845.2175.

( S )-6,6′-Bis(diphenylphosphino)-1,1′-biphenyl-2,2′-diylbis(3,5-bistrifluoromethylbenzenecarboxylate) (L2d)

Obtained following General Procedure A, with (S)-OH-BiPhep (110 mg, 0.20 mmol), t-BuOK (54 mg, 0.48 mmol), and 3,5-bis(trifluoromethyl)benzoyl chloride d (133 mg, 0.48 mmol). The crude product was purified by column chromatography on silica gel (PE-EtOAc, 50:1→30:1) to give L2d.

Yield: 185 mg (89%); white solid; mp 76-77 ˚C; R f = 0.82 (PE-EtOAc, 5:1); [α] d ²³ -11.8 (c 0.70, CHCl3).

¹H NMR (400 MHz, CDCl3): δ = 7.96 (s, 2 H), 7.76 (s, 4 H), 7.37-7.53 (m, 4 H), 7.24-7.34 (m, 12 H), 7.16-7.23 (m, 4 H), 7.08 (t, J = 7.4 Hz, 2 H), 6.97 (t, J = 7.5 Hz, 4 H).

¹³C NMR (101 MHz, CDCl3): δ = 161.2, 148.8, 148.7, 141.4, 141.3, 137.9, 137.8, 137.7, 135.2, 135.1, 135.0, 133.9, 133.7, 133.5, 133.0, 132.9, 132.8, 132.5, 132.2, 132.1, 131.8, 131.6, 131.5, 130.3, 129.5, 129.4, 128.6, 128.5, 128.4, 126.7, 126.6, 124.3, 122.4, 121.6.

³¹P NMR (162 MHz, CDCl3): δ = -15.00 (s).

HRMS: m/z [M + Na]+ calcd for C54H32F12O4P2Na: 1057.1482; found: 1057.1479.

( S )-6,6′-Bis(diphenylphosphino)-1,1′-biphenyl-2,2′-diylbis(2,3,4,5,6-pentafluorobenzenecarboxylate) (L2e)

Obtained following General Procedure A, with (S)-OH-BiPhep (110 mg, 0.20 mmol), t-BuOK (54 mg, 0.48 mmol), and 2,3,4,5,6-pentafluorobenzoyl chloride e (111 mg, 0.48 mmol). The crude product was purified by column chromatography on silica gel (PE-EtOAc, 50:1→30:1) to give L2e.

Yield: 157 mg (83%); white solid; mp 68-69 ˚C; R f = 0.76 (PE-EtOAc, 5:1); [α] d ²³ -86.4 (c 0.73, CHCl3).

¹H NMR (400 MHz, CDCl3): δ = 7.44 (t, J = 7.9 Hz, 2 H), 7.19-7.31 (m, 14 H), 7.12-7.19 (m, 6 H), 7.09 (t, J = 7.4 Hz, 4 H).

¹³C NMR (100 MHz, CDCl3): δ = 156.7, 148.7, 148.6, 146.8, 146.7, 146.6, 144.9, 144.8, 144.7, 144.3, 144.2, 144.0, 142.4, 142.2, 142.0, 141.3, 141.2, 139.0, 138.8, 138.7, 137.7, 137.6, 136.5, 136.3, 136.2, 136.0, 135.9, 135.2, 135.0, 134.9, 134.8, 134.6, 134.3, 134.1, 133.9, 133.2, 133.1, 133.0, 132.8, 129.5, 128.9, 128.5, 128.3, 128.1, 128.0, 122.8.

³¹P NMR (162 MHz, CDCl3): δ = -14.84 (s).

HRMS: m/z [M + H]+ calcd for C50H26F10O4P2: 943.1225; found: 943.1248.

( S )-6,6′-Bis(diphenylphosphino)-1,1′-biphenyl-2,2′-diylbis(tri­fluoromethylsulfonate) (L3) [¹²b]

To a suspension of NaH (60% in mineral oil, 10 mg, 0.24 mmol) in THF (7 mL) under argon, was carefully added a solution of (S)-OH-BiPhep (55 mg, 0.10 mmol) in THF (8 mL) at 0 ˚C, and the resulting mixture was stirred at r.t. for 30 min. After cooling to 0 ˚C, PhNTf2 (86 mg, 0.24 mmol) was added and the mixture was stirred at r.t. for an additional 2 h. The mixture was cooled to 0 ˚C and degassed H2O (10 mL) was added. The resulting mixture was diluted with CH2Cl2 (40 mL) and the organic layer was washed with degassed H2O (10 mL) and brine (10 mL), dried over anhydrous Na2SO4 and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (PE-EtOAc, 20:1→10:1) to give L3.

Yield: 71 mg (87%); white solid; mp 159-160 ˚C; R f  = 0.70 (PE-EtOAc, 5:1); [α] d ²³ +12.2 (c 0.97, CHCl3).

¹H NMR (400 MHz, CDCl3): δ = 7.44 (t, J = 8.0 Hz, 2 H), 7.25-7.36 (m, 8 H), 7.14-7.25 (m, 12 H), 6.98-7.07 (m, 4 H).

¹³C NMR (100 MHz, CDCl3): δ = 148.7, 148.6, 142.5, 142.4, 136.7, 136.6, 136.5, 135.2, 135.1, 134.7, 134.5, 134.4, 134.3, 134.1, 133.7, 133.5, 133.4, 133.3, 133.1, 132.9, 130.7, 129.4, 128.8, 128.6, 120.6, 119.9, 116.7.

³¹P NMR (162 MHz, CDCl3): δ = -14.47 (s).

HRMS: m/z [M + Na]+ calcd for C38H26F6O6P2S2Na: 841.0448; found: 841.0454.

Iridium-Catalyzed Asymmetric Hydrogenation of Quinoline Derivatives: General Procedure B

A mixture of [Ir(cod)Cl]2 (1.0 mg, 0.0015 mmol) and L3 (2.7 mg, 0.0033 mmol) in THF (3.0 mL) was stirred at r.t. for 10 min in a glovebox. I2 (1.3 mg, 0.0050 mmol) and substrate (1.0 mmol) in THF (1.0 mL) were placed in a stainless steel autoclave and the catalyst solution (1.0 mL) was added by using a syringe. The hydrogenation was performed at r.t. under H2 (700 psi) for 22 h. After carefully releasing the hydrogen, the reaction mixture was concentrated to afford the crude product. Purification was performed by silica gel column chromatography (PE-EtOAc) to give the pure product. The enantiomeric excesses were determined by chiral HPLC with chiral columns (OJ-H, OD-H, or AS-H).

( S )-2-Methyl-1,2,3,4-tetrahydroquinoline (2a) [²]

Yield: 99%; yellow oil; 95% ee; [α] d ²² -82.8 (c 0.87, CHCl3).

¹H NMR (400 MHz, CDCl3): δ = 6.95-7.04 (m, 2 H), 6.59-6.70 (m, 1 H), 6.45-6.56 (m, 1 H), 3.68 (br, 1 H), 3.29-3.51 (m, 1 H), 2.82-2.94 (m, 1 H), 2.70-2.84 (m, 1 H), 1.91-2.01 (t, J = 12.3 Hz, 1 H), 1.54-1.69 (t, J = 21.4 Hz, 1 H), 1.24 (dd, J = 6.2, 3.0 Hz, 3 H).

¹³C NMR (100 MHz, CDCl3): δ = 145.0, 129.4, 126.9, 121.3, 117.1, 114.2, 47.3, 30.3, 26.8, 22.8.

HPLC (OJ-H; n-hexane-i-PrOH, 95:5; 254 nm; 0.8 mL/min): t R = 13.8 [(S) major], 15.4 [(R) minor] min.

( S )-2-Ethyl-1,2,3,4-tetrahydroquinoline (2b) [²]

Yield: 93%; yellow oil; 95% ee; [α] d ²³ -83.1 (c 1.00, CHCl3).

¹H NMR (400 MHz, CDCl3): δ = 7.00 (t, J = 7.2 Hz, 2 H), 6.63 (t, J = 7.3 Hz, 1 H), 6.51 (d, J = 8.0 Hz, 1 H), 3.80 (br, 1 H), 3.13-3.26 (m, 1 H), 2.66-2.96 (m, 2 H), 1.90-2.13 (m, 1 H), 1.47-1.76 (m, 3 H), 1.03 (t, J = 7.4 Hz, 3 H).

¹³C NMR (100 MHz, CDCl3): δ = 144.9, 129.4, 126.9, 121.6, 117.0, 114.2, 53.2, 29.6, 27.8, 26.6, 10.2.

HPLC (OJ-H; n-hexane-i-PrOH, 90:10; 254 nm; 0.8 mL/min): t R = 9.8 [(S) major], 10.8 [(R) minor] min.

( S )-2-Propyl-1,2,3,4-tetrahydroquinoline (2c) [²]

Yield: 97%; yellow oil; 94% ee; [α] d ²³ -72.6 (c 0.70, CHCl3).

¹H NMR (400 MHz, CDCl3): δ = 7.00 (t, J = 7.2 Hz, 2 H), 6.63 (t, J = 7.3 Hz, 1 H), 6.50 (d, J = 8.4 Hz, 1 H), 3.78 (br, 1 H), 3.23-3.33 (m, 1 H), 2.58-2.99 (m, 2 H), 1.94-2.04 (m, 1 H), 1.57-1.70 (m, 1 H), 1.38-1.56 (m, 4 H), 0.89-1.12 (m, 3 H).

¹³C NMR (100 MHz, CDCl3): δ = 144.9, 129.4, 126.9, 121.5, 117.0, 114.2, 51.5, 39.1, 28.3, 26.6, 19.1, 14.4.

HPLC (OJ-H; n-hexane-i-PrOH, 90:10; 254 nm; 0.8 mL/min): t R = 9.1 [(S) major], 11.2 [(R) minor] min.

( S )-2-Butyl-1,2,3,4-tetrahydroquinoline (2d) [²]

Yield: 95%; yellow oil; 94% ee; [α] d ²² -82.8 (c 1.07, CHCl3).

¹H NMR (400 MHz, CDCl3): δ = 6.97 (t, J = 7.3 Hz, 2 H), 6.61 (t, J = 7.3 Hz, 1 H), 6.49 (d, J = 8.2 Hz, 1 H), 3.78 (br, 1 H), 3.12-3.43 (m, 1 H), 2.61-2.99 (m, 2 H), 1.88-2.12 (m, 1 H), 1.56-1.68 (m, 1 H), 1.46-1.55 (m, 2 H), 1.26-1.45 (m, 4 H), 0.92-0.99 (m, 3 H).

¹³C NMR (100 MHz, CDCl3): δ = 144.9, 129.4, 126.9, 121.6, 117.1, 114.2, 51.8, 36.6, 28.3, 28.1, 26.6, 23.0, 14.3.

HPLC (OJ-H; n-hexane-i-PrOH, 90:10; 254 nm; 0.8 mL/min): t R = 8.1 [(S) major], 9.3 [(R) minor] min.

( S )-2-Pentyl-1,2,3,4-tetrahydroquinoline (2e) [²]

Yield: 98%; yellow oil; 94% ee; [α] d ²³ -75.1 (c 0.73, CHCl3).

¹H NMR (400 MHz, CDCl3): δ = 7.00 (t, J = 7.5 Hz, 2 H), 6.65 (t, J = 7.4 Hz, 1 H), 6.57 (d, J = 7.8 Hz, 1 H), 4.26 (br, 1 H), 3.23-3.33 (m, 1 H), 2.71-2.89 (m, 2 H), 1.90-2.05 (m, 1 H), 1.24-1.72 (m, 9 H), 0.94 (t, J = 6.7 Hz, 3 H).

¹³C NMR (100 MHz, CDCl3): δ = 144.2, 129.5, 126.9, 122.0, 117.7, 114.7, 52.0, 36.6, 32.1, 28.1, 26.5, 25.6, 22.8, 14.3.

HPLC (OJ-H; n-hexane-i-PrOH, 90:10; 254 nm; 0.8 mL/min): t R = 7.4 [(S) major], 8.0 [(R) minor] min.

( R )-2-Methyl-1-(1,2,3,4-tetrahydroquinolin-2-yl)propan-2-ol (2f) [²]

Yield: 99%; white solid; 87% ee; [α] d ²³ -52.0 (c 0.70, CHCl3).

¹H NMR (400 MHz, CDCl3): δ = 6.96 (t, J = 7.7 Hz, 2 H), 6.59 (t, J = 7.3 Hz, 1 H), 6.49 (d, J = 7.9 Hz, 1 H), 3.51-3.63 (m, 1 H), 2.82-2.95 (m, 1 H), 2.67-2.79 (m, 1 H), 1.80-1.90 (m, 1 H), 1.55-1.77 (m, 3 H), 1.32 (d, J = 5.2 Hz, 6 H).

¹³C NMR (100 MHz, CDCl3): δ = 144.8, 129.4, 126.9, 121.1, 116.9, 114.6, 72.2, 49.0, 48.6, 33.0, 30.0, 28.0, 26.8.

HPLC (OD-H; n-hexane-i-PrOH, 90:10; 254 nm; 0.8 mL/min): t R = 8.1 [(S) minor], 9.4 [(R) major] min.

( S )-2-(3′,4′-Dimethoxyphenethyl)-1,2,3,4-tetrahydroquinoline (2g) [²]

Yield: 99%; yellow oil; 93% ee; [α] d ²³ -75.3 (c 0.73, CHCl3).

¹H NMR (400 MHz, CDCl3): δ = 6.93-7.02 (m, 2 H), 6.80-6.84 (m, 1 H), 6.73-6.79 (m, 2 H), 6.62 (t, J = 7.3 Hz, 1 H), 6.46 (d, J = 8.1 Hz, 1 H), 3.89 (s, 3 H), 3.88 (s, 3 H), 3.79 (br, 1 H), 3.29-3.35 (m, 1 H), 2.74-2.89 (m, 2 H), 2.66-2.74 (m, 2 H), 1.95-2.06 (m, 1 H), 1.77-1.88 (m, 2 H), 1.61-1.76 (m, 1 H).

¹³C NMR (100 MHz, CDCl3): δ = 149.1, 147.4, 144.7, 134.6, 129.4, 126.9, 121.5, 120.3, 117.2, 114.3, 111.8, 111.4, 56.1, 56.0, 51.4, 38.6, 32.0, 28.2, 26.4.

HPLC (AS-H; n-hexane-i-PrOH, 95:5; 254 nm; 0.8 mL/min): t R = 14.5 [(R) minor], 15.4 [(S) major] min.

( S )-2-(3′-Benzyloxy-4′-methoxyphenethyl)-1,2,3,4-tetrahydroquinoline (2h) [4b]

Yield: 96%; yellow oil; 93% ee; [α] d ²³ -49.2 (c 0.80, CHCl3).

¹H NMR (400 MHz, CDCl3): δ = 7.42-7.47 (m, 2 H), 7.33-7.39 (m, 2 H), 7.27-7.32 (m, 1 H), 6.92-7.00 (m, 2 H), 6.83 (d, J = 8.5 Hz, 1 H), 6.73-6.79 (m, 2 H), 6.60 (t, J = 7.2 Hz, 1 H), 6.44 (d, J = 7.8 Hz, 1 H), 5.15 (s, 2 H), 3.88 (s, 3 H), 3.71 (br, 1 H), 3.14-3.28 (m, 1 H), 2.67-2.84 (m, 2 H), 2.60-2.67 (m, 2 H), 1.89-2.00 (m, 1 H), 1.71-1.80 (m, 2 H), 1.53-1.70 (m, 1 H).

¹³C NMR (100 MHz, CDCl3): δ = 148.2, 148.1, 144.6, 137.3, 134.4, 129.3, 128.6, 127.9, 127.4, 126.8, 121.3, 121.0, 117.1, 114.7, 114.2, 112.1, 71.1, 56.2, 51.0, 38.3, 31.7, 28.0, 26.3.

HPLC (AS-H; n-hexane-i-PrOH, 97:3; 254 nm; 0.5 mL/min): t R = 30.1 [(R) minor], 32.2 [(S) major] min.

( S )-2,6-Dimethyl-1,2,3,4-tetrahydroquinoline (2i) [²]

Yield: 96%; yellow solid; 87% ee; [α] d ²² -68.1 (c 0.73, CHCl3).

¹H NMR (400 MHz, CDCl3): δ = 6.79-6.81 (m, 2 H), 6.43 (d, J = 7.9 Hz, 1 H), 3.58 (br, 1 H), 3.32-3.43 (m, 1 H), 2.78-2.90 (m, 1 H), 2.66-2.76 (m, 1 H), 2.23 (s, 3 H), 1.88-1.98 (m, 1 H), 1.53-1.66 (m, 1 H), 1.22 (d, J = 6.3 Hz, 3 H).

¹³C NMR (100 MHz, CDCl3): δ = 142.6, 130.0, 127.4, 126.4, 121.4, 114.4, 47.5, 30.5, 26.8, 22.8, 20.6.

HPLC (OJ-H; n-hexane-i-PrOH, 90:10; 254 nm; 0.8 mL/min): t R = 13.5 [(S) major], 16.7 [(R) minor] min.

( S )-6-Fluoro-2-methyl-1,2,3,4-tetrahydroquinoline (2j) [²]

Yield: 97%; yellow solid; 92% ee; [α] d ²³ -80.7 (c 0.73, CHCl3).

¹H NMR (400 MHz, CDCl3): δ = 6.65-6.72 (m, 2 H), 6.36-6.44 (m, 1 H), 3.57 (br, 1 H), 3.30-3.40 (m, 1 H), 2.77-2.90 (m, 1 H), 2.66-2.75 (m, 1 H), 1.89-1.97 (m, 1 H), 1.51-1.63 (m, 1 H), 1.21 (d, J = 6.3 Hz, 3 H).

¹³C NMR (100 MHz, CDCl3): δ = 156.8, 154.5, 141.2, 122.7, 122.6, 115.7, 115.5, 114.9, 114.8, 113.4, 113.2, 47.5, 30.1, 26.9, 22.7.

HPLC (OD-H; n-hexane-i-PrOH, 95:5; 254 nm; 0.8 mL/min): t R = 6.8 [(R) minor], 8.1 [(S) major] min.

( R )-2-Phenyl-1,2,3,4-tetrahydroquinoline (2k) [6a]

Yield: 95%; yellow solid; 60% ee; [α] d ²³ +19.1 (c 1.00, CHCl3).

¹H NMR (400 MHz, CDCl3): δ = 7.28-7.49 (m, 5 H), 6.97-7.10 (m, 2 H), 6.69 (t, J = 7.3 Hz, 1 H), 6.57 (d, J = 7.9 Hz, 1 H), 4.47 (dd, J = 9.3, 2.9 Hz, 1 H), 4.06 (br, 1 H), 2.89-3.02 (m, 1 H), 2.71-2.84 (m, 1 H), 2.10-2.22 (m, 1 H), 1.96-2.09 (m, 1 H).

¹³C NMR (100 MHz, CDCl3): δ = 145.0, 144.9, 129.5, 128.8, 127.6, 127.1, 126.7, 121.0, 117.3, 114.1, 56.4, 31.2, 26.6.

HPLC (AS-H; n-hexane-i-PrOH, 95:5; 254 nm; 0.8 mL/min): t R = 7.1 [(R) major], 21.5 [(S) minor] min.

Acknowledgment

We are grateful for financial support from the National Science Foundation of China (21032003 & 20921092), the National Basic Research Program (2010CB833300) and the Chinese Academy of Sciences.

    References

  • 1a Keay JG. In Comprehensive Organic Synthesis   Vol. 8:  Pergamon; Oxford: 1991.  p.579 
  • 1b Katrizky AR. Rachwal S. Bachwal B. Tetrahedron  1996,  52:  15031 
  • 1c Barton DH. Nakanishi K. Meth-Cohn O. In Comprehensive Natural Products Chemistry   Vol. 1-9:  Elsevier; Oxford: 1999. 
  • 2 Wang W.-B. Lu S.-M. Yang P.-Y. Han X.-W. Zhou Y.-G. J. Am. Chem. Soc.  2003,  125:  10536 
  • For recent reviews on hydrogenation of heteroaromatic compounds, see:
  • 3a Dyson PJ. Dalton Trans.  2003,  2964 
  • 3b Glorius F. Org. Biomol. Chem.  2005,  3:  4171 
  • 3c Lu S.-M. Han X.-W. Zhou Y.-G. Chin. J. Org. Chem.  2005,  25:  634 
  • 3d Zhou Y.-G. Acc. Chem. Res.  2007,  40:  1357 
  • 3e Kuwano R. Heterocycles  2008,  76:  909 
  • For our group’s work on the asymmetric hydrogenation of quinolines, see:
  • 4a Lu S.-M. Han X.-W. Zhou Y.-G. Adv. Synth. Catal.  2004,  346:  909 
  • 4b Yang P.-Y. Zhou Y.-G. Tetrahedron: Asymmetry  2004,  15:  1145 
  • 4c Zhao Y.-J. Wang Y.-Q. Zhou Y.-G. Chin. J. Catal.  2005,  26:  737 
  • 4d Lu S.-M. Wang Y.-Q. Han X.-W. Zhou Y.-G. Angew. Chem. Int. Ed.  2006,  45:  2260 
  • 4e Wang D.-W. Zeng W. Zhou Y.-G. Tetrahedron: Asymmetry  2007,  18:  1103 
  • 4f Wang X.-B. Zhou Y.-G. J. Org. Chem.  2008,  73:  5640 
  • 4g Wang D.-W. Wang X.-B. Wang D.-S. Lu S.-M. Zhou Y.-G. Li Y.-X. J. Org. Chem.  2009,  74:  2780 
  • 4h Wang D.-W. Wang D.-S. Chen Q.-A. Zhou Y.-G. Chem. Eur. J.  2010,  16:  1133 
  • 4i Wang D.-S. Zhou Y.-G. Tetrahedron Lett.  2010,  51:  3014 
  • For other groups’ work on metal-catalyzed asymmetric hydrogenation of quinolines, see:
  • 5a Fache F. Synlett  2004,  2827 
  • 5b Fujita K.-I. Kitatsuji C. Furukawa S. Yamaguchi R. Tetrahedron Lett.  2004,  45:  3215 
  • 5c Xu L.-J. Lam K.-H. Ji J.-X. Wu J. Fan Q.-H. Lo W.-H. Chan ASC. Chem. Commun.  2005,  1390 
  • 5d Lam K.-H. Xu L.-J. Feng L.-C. Fan Q.-H. Lam F.-L. Lo W.-H. Chan ASC. Adv. Synth. Catal.  2005,  347:  1755 
  • 5e Wu J. Chan ASC. Acc. Chem. Res.  2006,  39:  711 
  • 5f Reetz MT. Li X.-G. Chem. Commun.  2006,  2159 
  • 5g Qiu L. Kwong FY. Wu J. Lam WH. Chan S. Yu W.-Y. Li Y.-M. Guo R. Zhou Z. Chan ASC. J. Am. Chem. Soc.  2006,  128:  5955 
  • 5h Yamagata T. Tadaoka H. Nagata M. Hirao T. Kataoka Y. Ratovelomanana-Vidal V. Genet JP. Mashima K. Organometallics  2006,  25:  2505 
  • 5i Chan S.-H. Lam K.-H. Li Y.-M. Xu L.-J. Tang W.-J. Lam F.-L. Lo W.-H. Yu W.-Y. Fan Q.-H. Chan ASC. Tetrahedron: Asymmetry  2007,  18:  2625 
  • 5j Deport C. Buchotte M. Abecassis K. Tadaoka H. Ayad T. Ohshima T. Genet J.-P. Mashima K. Ratovelomanana-Vidal V. Synlett  2007,  2743 
  • 5k Li Z.-W. Wang T.-L. He Y.-M. Wang Z.-J. Fan Q.-H. Pan J. Xu L.-J. Org. Lett.  2008,  10:  5265 
  • 5l Zhou H.-F. Li Z.-W. Wang Z.-J. Wang T.-L. Xu L.-J. He Y.-M. Fan Q.-H. Pan J. Gu L.-Q. Chan ASC. Angew. Chem. Int. Ed.  2008,  47:  8464 
  • 5m Lu S.-M. Bolm C. Adv. Synth. Catal.  2008,  350:  1101 
  • 5n Mršić N. Lefort L. Boogers JAF. Minnaard AJ. Feringa BL. de Vries JG. Adv. Synth. Catal.  2008,  350:  1081 
  • 5o Eggenstein M. Thomas A. Theuerkauf J. Franciò G. Leitner W. Adv. Synth. Catal.  2009,  351:  725 
  • 5p Wang C. Li C.-Q. Wu X.-F. Pettman A. Xiao J.-L. Angew. Chem. Int. Ed.  2009,  48:  6524 
  • 5q Tadaoka H. Cartigny D. Nagano T. Gosavi T. Ayad T. Genet J.-P. Ohshima T. Ratovelomanana-Vidal V. Mashima K. Chem. Eur. J.  2009,  15:  9990 
  • 5r Wang Z.-J. Zhou H.-F. Wang T.-L. He Y.-M. Fan Q.-H. Green Chem.  2009,  11:  767 
  • 5s Parekh V. Ramsden JA. Wills M. Tetrahedron: Asymmetry  2010,  21:  1549 
  • 5t Gou F.-R. Li W. Zhang XM. Liang Y.-M. Adv. Synth. Catal.  2010,  352:  2441 
  • For the work on organocatalytic asymmetric hydrogenation of quinolines, see:
  • 6a Rueping M. Antonchick AP. Theissmann T. Angew. Chem. Int. Ed.  2006,  45:  3683 
  • 6b Rueping M. Theissmann T. Raja S. Bats JWP. Adv. Synth. Catal.  2008,  350:  1001 
  • 6c Guo Q.-S. Du D.-M. Xu J. Angew. Chem. Int. Ed.  2008,  47:  759 
  • For selected examples on asymmetric hydrogenation of other heteroaromatic compounds, see, for quinoxalines:
  • 7a Cobley CJ. Henschke JP. Adv. Synth. Catal.  2003,  345:  195 
  • 7b Mršić N. Jerphagnon T. Minnaard AJ. Feringa BL. de Vries JG. Adv. Synth. Catal.  2009,  351:  2549 
  • 7c Tang W.-J. Xu L.-J. Fan Q.-H. Wang J. Fan B.-M. Zhou Z.-Y. Lam K.-H. Chan ASC. Angew. Chem. Int. Ed.  2009,  48:  9135 
  • 7d Cartigny D. Nagano T. Ayad T. Genet JP. Ohshima T. Mashima K. Ratovelomanana-Vidal V. Adv. Synth. Catal.  2010,  352:  1886 
  • For furans, see:
  • 7e Ohta T. Miyake T. Seido N. Kumobayashi H. Takaya H. J. Org. Chem.  1995,  60:  357 
  • 7f Kaiser S. Smidt SP. Pfaltz A. Angew. Chem. Int. Ed.  2006,  45:  5194 
  • 7g Feiertag P. Albert M. Nettekoven U. Spindler F. Org. Lett.  2006,  8:  4133 
  • For pyridines, see:
  • 7h Raynor SA. Thomas JM. Raja R. Johnson BFG. Belle RG. Mantle MD. Chem. Commun.  2000,  1925 
  • 7i Glorius F. Spielkamp N. Holle S. Goddard R. Lehmann CW. Angew. Chem. Int. Ed.  2004,  43:  2850 
  • 7j Legault CY. Charette AB. J. Am. Chem. Soc.  2005,  127:  8966 
  • 7k Wang X.-B. Zeng W. Zhou Y.-G. Tetrahedron Lett.  2008,  49:  4922 
  • For indoles, see:
  • 7l Kuwano R. Sato K. Kurokawa T. Karube D. Ito Y. J. Am. Chem. Soc.  2000,  122:  7614 
  • 7m Kuwano R. Kaneda K. Ito T. Sato K. Kurokawa T. Ito Y. Org. Lett.  2004,  6:  2213 
  • 7n Kuwano R. Kashiwabara M. Org. Lett.  2006,  8:  2653 
  • 7o Baeza A. Pfaltz A. Chem. Eur. J.  2010,  16:  2036 
  • 7p Wang D.-S. Chen Q.-A. Li W. Yu C.-B. Zhou Y.-G. Zhang XM. J. Am. Chem. Soc.  2010,  132:  8909 
  • For pyrroles, see:
  • 7q Kuwano R. Kashiwabara M. Ohsumi M. Kusano H. J. Am. Chem. Soc.  2008,  130:  808 
  • 8 Wang Z.-J. Deng G.-J. Li Y. He Y.-M. Tang W.-J. Fan Q.-H. Org. Lett.  2007,  9:  1243 
  • 9 Wang D.-S. Zhou J. Wang D.-W. Guo Y.-L. Zhou Y.-G. Tetrahedron Lett.  2010,  51:  525 
  • 10 Jahjah M. Alame M. Pellet-Rostaing S. Lemaire M. Tetrahedron: Asymmetry  2007,  18:  2305 
  • 11a Tang W.-J. Tan J. Xu L.-J. Lam K.-H. Fan Q.-H. Chan ASC. Adv. Synth. Catal.  2010,  352:  1055 
  • 11b Tang W.-J. Sun Y.-W. Xu L.-J. Wang T.-L. Fan Q.-H. Lam K.-H. Chan ASC. Org. Biomol. Chem.  2010,  8:  3464 
  • 12a Mamat C. Flemming A. Köckerling M. Steinbach J. Wuest FR. Synthesis  2009,  3311 
  • 12b Ishikawa S. Manabe K. Tetrahedron  2010,  66:  297 
  • 13 Michel B, Blandine L, and Sonia R. inventors; PCT Int. Appl. WO  2002012253. 

    References

  • 1a Keay JG. In Comprehensive Organic Synthesis   Vol. 8:  Pergamon; Oxford: 1991.  p.579 
  • 1b Katrizky AR. Rachwal S. Bachwal B. Tetrahedron  1996,  52:  15031 
  • 1c Barton DH. Nakanishi K. Meth-Cohn O. In Comprehensive Natural Products Chemistry   Vol. 1-9:  Elsevier; Oxford: 1999. 
  • 2 Wang W.-B. Lu S.-M. Yang P.-Y. Han X.-W. Zhou Y.-G. J. Am. Chem. Soc.  2003,  125:  10536 
  • For recent reviews on hydrogenation of heteroaromatic compounds, see:
  • 3a Dyson PJ. Dalton Trans.  2003,  2964 
  • 3b Glorius F. Org. Biomol. Chem.  2005,  3:  4171 
  • 3c Lu S.-M. Han X.-W. Zhou Y.-G. Chin. J. Org. Chem.  2005,  25:  634 
  • 3d Zhou Y.-G. Acc. Chem. Res.  2007,  40:  1357 
  • 3e Kuwano R. Heterocycles  2008,  76:  909 
  • For our group’s work on the asymmetric hydrogenation of quinolines, see:
  • 4a Lu S.-M. Han X.-W. Zhou Y.-G. Adv. Synth. Catal.  2004,  346:  909 
  • 4b Yang P.-Y. Zhou Y.-G. Tetrahedron: Asymmetry  2004,  15:  1145 
  • 4c Zhao Y.-J. Wang Y.-Q. Zhou Y.-G. Chin. J. Catal.  2005,  26:  737 
  • 4d Lu S.-M. Wang Y.-Q. Han X.-W. Zhou Y.-G. Angew. Chem. Int. Ed.  2006,  45:  2260 
  • 4e Wang D.-W. Zeng W. Zhou Y.-G. Tetrahedron: Asymmetry  2007,  18:  1103 
  • 4f Wang X.-B. Zhou Y.-G. J. Org. Chem.  2008,  73:  5640 
  • 4g Wang D.-W. Wang X.-B. Wang D.-S. Lu S.-M. Zhou Y.-G. Li Y.-X. J. Org. Chem.  2009,  74:  2780 
  • 4h Wang D.-W. Wang D.-S. Chen Q.-A. Zhou Y.-G. Chem. Eur. J.  2010,  16:  1133 
  • 4i Wang D.-S. Zhou Y.-G. Tetrahedron Lett.  2010,  51:  3014 
  • For other groups’ work on metal-catalyzed asymmetric hydrogenation of quinolines, see:
  • 5a Fache F. Synlett  2004,  2827 
  • 5b Fujita K.-I. Kitatsuji C. Furukawa S. Yamaguchi R. Tetrahedron Lett.  2004,  45:  3215 
  • 5c Xu L.-J. Lam K.-H. Ji J.-X. Wu J. Fan Q.-H. Lo W.-H. Chan ASC. Chem. Commun.  2005,  1390 
  • 5d Lam K.-H. Xu L.-J. Feng L.-C. Fan Q.-H. Lam F.-L. Lo W.-H. Chan ASC. Adv. Synth. Catal.  2005,  347:  1755 
  • 5e Wu J. Chan ASC. Acc. Chem. Res.  2006,  39:  711 
  • 5f Reetz MT. Li X.-G. Chem. Commun.  2006,  2159 
  • 5g Qiu L. Kwong FY. Wu J. Lam WH. Chan S. Yu W.-Y. Li Y.-M. Guo R. Zhou Z. Chan ASC. J. Am. Chem. Soc.  2006,  128:  5955 
  • 5h Yamagata T. Tadaoka H. Nagata M. Hirao T. Kataoka Y. Ratovelomanana-Vidal V. Genet JP. Mashima K. Organometallics  2006,  25:  2505 
  • 5i Chan S.-H. Lam K.-H. Li Y.-M. Xu L.-J. Tang W.-J. Lam F.-L. Lo W.-H. Yu W.-Y. Fan Q.-H. Chan ASC. Tetrahedron: Asymmetry  2007,  18:  2625 
  • 5j Deport C. Buchotte M. Abecassis K. Tadaoka H. Ayad T. Ohshima T. Genet J.-P. Mashima K. Ratovelomanana-Vidal V. Synlett  2007,  2743 
  • 5k Li Z.-W. Wang T.-L. He Y.-M. Wang Z.-J. Fan Q.-H. Pan J. Xu L.-J. Org. Lett.  2008,  10:  5265 
  • 5l Zhou H.-F. Li Z.-W. Wang Z.-J. Wang T.-L. Xu L.-J. He Y.-M. Fan Q.-H. Pan J. Gu L.-Q. Chan ASC. Angew. Chem. Int. Ed.  2008,  47:  8464 
  • 5m Lu S.-M. Bolm C. Adv. Synth. Catal.  2008,  350:  1101 
  • 5n Mršić N. Lefort L. Boogers JAF. Minnaard AJ. Feringa BL. de Vries JG. Adv. Synth. Catal.  2008,  350:  1081 
  • 5o Eggenstein M. Thomas A. Theuerkauf J. Franciò G. Leitner W. Adv. Synth. Catal.  2009,  351:  725 
  • 5p Wang C. Li C.-Q. Wu X.-F. Pettman A. Xiao J.-L. Angew. Chem. Int. Ed.  2009,  48:  6524 
  • 5q Tadaoka H. Cartigny D. Nagano T. Gosavi T. Ayad T. Genet J.-P. Ohshima T. Ratovelomanana-Vidal V. Mashima K. Chem. Eur. J.  2009,  15:  9990 
  • 5r Wang Z.-J. Zhou H.-F. Wang T.-L. He Y.-M. Fan Q.-H. Green Chem.  2009,  11:  767 
  • 5s Parekh V. Ramsden JA. Wills M. Tetrahedron: Asymmetry  2010,  21:  1549 
  • 5t Gou F.-R. Li W. Zhang XM. Liang Y.-M. Adv. Synth. Catal.  2010,  352:  2441 
  • For the work on organocatalytic asymmetric hydrogenation of quinolines, see:
  • 6a Rueping M. Antonchick AP. Theissmann T. Angew. Chem. Int. Ed.  2006,  45:  3683 
  • 6b Rueping M. Theissmann T. Raja S. Bats JWP. Adv. Synth. Catal.  2008,  350:  1001 
  • 6c Guo Q.-S. Du D.-M. Xu J. Angew. Chem. Int. Ed.  2008,  47:  759 
  • For selected examples on asymmetric hydrogenation of other heteroaromatic compounds, see, for quinoxalines:
  • 7a Cobley CJ. Henschke JP. Adv. Synth. Catal.  2003,  345:  195 
  • 7b Mršić N. Jerphagnon T. Minnaard AJ. Feringa BL. de Vries JG. Adv. Synth. Catal.  2009,  351:  2549 
  • 7c Tang W.-J. Xu L.-J. Fan Q.-H. Wang J. Fan B.-M. Zhou Z.-Y. Lam K.-H. Chan ASC. Angew. Chem. Int. Ed.  2009,  48:  9135 
  • 7d Cartigny D. Nagano T. Ayad T. Genet JP. Ohshima T. Mashima K. Ratovelomanana-Vidal V. Adv. Synth. Catal.  2010,  352:  1886 
  • For furans, see:
  • 7e Ohta T. Miyake T. Seido N. Kumobayashi H. Takaya H. J. Org. Chem.  1995,  60:  357 
  • 7f Kaiser S. Smidt SP. Pfaltz A. Angew. Chem. Int. Ed.  2006,  45:  5194 
  • 7g Feiertag P. Albert M. Nettekoven U. Spindler F. Org. Lett.  2006,  8:  4133 
  • For pyridines, see:
  • 7h Raynor SA. Thomas JM. Raja R. Johnson BFG. Belle RG. Mantle MD. Chem. Commun.  2000,  1925 
  • 7i Glorius F. Spielkamp N. Holle S. Goddard R. Lehmann CW. Angew. Chem. Int. Ed.  2004,  43:  2850 
  • 7j Legault CY. Charette AB. J. Am. Chem. Soc.  2005,  127:  8966 
  • 7k Wang X.-B. Zeng W. Zhou Y.-G. Tetrahedron Lett.  2008,  49:  4922 
  • For indoles, see:
  • 7l Kuwano R. Sato K. Kurokawa T. Karube D. Ito Y. J. Am. Chem. Soc.  2000,  122:  7614 
  • 7m Kuwano R. Kaneda K. Ito T. Sato K. Kurokawa T. Ito Y. Org. Lett.  2004,  6:  2213 
  • 7n Kuwano R. Kashiwabara M. Org. Lett.  2006,  8:  2653 
  • 7o Baeza A. Pfaltz A. Chem. Eur. J.  2010,  16:  2036 
  • 7p Wang D.-S. Chen Q.-A. Li W. Yu C.-B. Zhou Y.-G. Zhang XM. J. Am. Chem. Soc.  2010,  132:  8909 
  • For pyrroles, see:
  • 7q Kuwano R. Kashiwabara M. Ohsumi M. Kusano H. J. Am. Chem. Soc.  2008,  130:  808 
  • 8 Wang Z.-J. Deng G.-J. Li Y. He Y.-M. Tang W.-J. Fan Q.-H. Org. Lett.  2007,  9:  1243 
  • 9 Wang D.-S. Zhou J. Wang D.-W. Guo Y.-L. Zhou Y.-G. Tetrahedron Lett.  2010,  51:  525 
  • 10 Jahjah M. Alame M. Pellet-Rostaing S. Lemaire M. Tetrahedron: Asymmetry  2007,  18:  2305 
  • 11a Tang W.-J. Tan J. Xu L.-J. Lam K.-H. Fan Q.-H. Chan ASC. Adv. Synth. Catal.  2010,  352:  1055 
  • 11b Tang W.-J. Sun Y.-W. Xu L.-J. Wang T.-L. Fan Q.-H. Lam K.-H. Chan ASC. Org. Biomol. Chem.  2010,  8:  3464 
  • 12a Mamat C. Flemming A. Köckerling M. Steinbach J. Wuest FR. Synthesis  2009,  3311 
  • 12b Ishikawa S. Manabe K. Tetrahedron  2010,  66:  297 
  • 13 Michel B, Blandine L, and Sonia R. inventors; PCT Int. Appl. WO  2002012253. 

Scheme 1 Design of electronically deficient bisphosphine ligands

Scheme 2 Synthesis of bisphosphine ligands. Reagents and conditions: Method A (for L2a-e): acyl chloride, t-BuOK, CH2Cl2; Method B (for L3): NaH, PhNTf2, THF.