Synthesis 2011(14): 2310-2320  
DOI: 10.1055/s-0030-1260064
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Chemodivergent Synthesis of 7-Aryl/alkyl-6-hydroxy-1,4-oxazepan-5-ones and 2-[Aryl/alkyl(hydroxy)methyl]morpholin-3-ones from a Common Epoxyamide Precursor

David M. Aparicioa, Joel L. Terán*a, Luis F. Roab, Dino Gneccoa, Jorge R. Juáreza, María L. Oreaa, Angel Mendozaa, Marcos Flores-Alamoc, Laurent Micouind
a Centro de Química, Benemérita Universidad Autónoma de Puebla, Edif. 103F Complejo de Ciencias, C.U., 72570 Puebla, Pue., México
Fax: +52(222)229551; e-Mail: joelluisteran@hotmail.com;
b División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, 86690 Cunduacán, Tab., México
c Facultad de Química, Universidad Nacional Autónoma de México, 04510 México, DF, México
d Laboratoire de Chimie Thérapeutique, UMR 8638 associée au CNRS et à l’Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, 4 av de l’Observatoire, 75270 Paris cedex 06, France

Further Information

Publication History

Received 14 January 2011
Publication Date:
09 June 2011 (online)

Abstract

We present here a regiospecific synthesis of 7-alkyl- or 7-aryl-6-hydroxy-1,4-oxazepan-5-ones and 2-[aryl(hydroxy)methyl]- or 2-(1-hydroxyalkyl)morpholin-3-ones from a diastereomeric mixture of trans-3-alkyl- or -3-aryl-N-(2-hydroxyethyl)-N-(1-phenylethyl)oxirane-2-carboxamides. This chemodivergent synthesis is easily controlled by an appropriate choice of cyclization reaction conditions.

Six- and seven-membered nitrogen-oxygen-containing chiral heterocycles are general scaffolds classically associated with diverse biological activity. [¹] In addition, these heterocycles frequently exhibit several stereogenic centers. As a consequence, intensive effort has been devoted towards the development of efficient strategies for their synthesis. In our ongoing work on the asymmetric synthesis of nitrogen heterocycles, [²] we have reported an expeditious access to chiral nonracemic epoxyamides. [³] Epoxyamides are known to be versatile intermediates in organic synthesis [4] offering an extensive range of synthetic possibilities. [5] Among them, the use of controlled intramolecular nucleophilic ring closure [6] could deliver, in a straightforward manner, 1,4-oxazepan-5-ones and/or morpholin-3-ones with potential biological interest. In this work, we report that epoxyamide 1 can indeed lead to both heterocyclic scaffolds using a controlled set of reaction conditions (Scheme  [¹] ).

Chiral sulfonium salt 3 was synthesized in three steps starting from (S)-phenylethylamine (2) in 77% overall yield (Scheme  [²] ).

With the chiral sulfonium salt 3 in hand, the asymmetric epoxidation with benzaldehyde was then investigated (Table  [¹] ). Standard basic conditions (KOH, t-BuOK, or NaH as the base) [³] [7] proved to be inappropriate with this substrate, as the NMR analysis of the crude reaction only showed traces of the corresponding epoxyamide. Best results were obtained when sulfonium salt 3 was treated with DBU, in dichloromethane, from 0 ˚C to room temperature (entry 5) giving the corresponding diastereomeric mixture of trans-epoxyamides 4a/4b in 92% yield. The NMR spectra show the presence of an E vs. Z rotameric mixture of each diastereomer. The exclusive formation of the trans adducts was confirmed by the magnitude of the coupling constants of the epoxides (J = 2.1 and 1.6 Hz).

Scheme 1 Divergent synthesis of nitrogen heterocycles from epoxyamide 1

Scheme 2   Reagents and conditions: (a) ethylene oxide, H2O, sonication, 20 min, 91%; (b) bromoacetyl bromide, Et3N, CH2Cl2, -10 ˚C; (c) Me2S, CH2Cl2, r.t., 77% from (S)-phenylethylamine (2).

The detection by ¹H NMR spectroscopy of the corresponding morpholinone 4c in the crude reaction mixture when using inorganic bases such as potassium hydroxide (entry 3), suggests that the formation of the alkoxide rather than the sulfur ylide might be favored under these cyclization conditions, whereas DBU cleanly generated the reactive ylide when the reaction was performed from 0 ˚C to room temperature (Table  [¹] ).

Table 1 Examination of the Conditions for the Epoxidation of 3 with Benzaldehydea

Entry Solvent Base (equiv) Temp (˚C) Time (h) Product Yieldb (%)
1 THF KOH (15)   0 to r.t. 12 - trace
2 EtOH KOH (2) -30 to 0 10 - trace
3 CH2Cl2 KOH (15)   0 to r.t. 12 4c 60
4 CH2Cl2 DBU (2)   r.t.  8 4c 30
5 CH2Cl2 DBU (2)   0 to r.t. 12 4a + 4b 92

a All entries were performed using 2 equiv of benzaldehyde.
b Isolated yield of diastereomeric mixture.

The asymmetric epoxidation of chiral sulfonium salt 3 with several aromatic aldehydes was then investigated (Table  [²] ). In the case of vanillin, the asymmetric epoxidation was unsuccessful; however, high yields of 11a/11b were obtained when the hydroxy function was protected with a tosyl group (entry 7). The asymmetric epoxidation with aliphatic aldehydes was tested giving the corresponding epoxyamides 12a/12b and 13a/13b in good yields (entries 8 and 9).

Table 2 Epoxidation of 3 with Various Aromatic Aldehydes and Alkanalsa

Entry R Product Yieldb (%)
1 2-O2NC6H4 5a/5b 85
2 3-O2NC6H4 6a/6b 85
3 4-O2NC6H4 7a/7b 90
4 2,6-ClC6H3 8a/8b 90
5 3,4-ClC6H3 9a/9b 87
6 3-MeO-4-BnOC6H3 10a/10b 35
7 3-MeO-4-TsOC6H3 11a/11b 95
8 Pr 12a/12b 75
9 Bu 13a/13b 70

a Reaction conditions: aldehyde (2 equiv), 0 ˚C to r.t., 12 h.
b Isolated yield of diastereomeric mixture

As the separation of the diastereomers proved to be difficult at this stage, access to the oxazepanone moiety via a 7-endo-tet ring closure was investigated. Oxirane ring opening of epoxyamides has been reported using various Lewis acids, such as: ZnCl2, [8] MgI2, [9] ZrCl4, [¹0] TFA or Sc(OTf)3, [¹¹] and Zn(OTf)2 or Cu(OTf)2. [¹²] Although a double substitution reaction pathway has been proposed in the presence of magnesium iodide, [9] trans-epoxyamides 4a/4b, led in our hands to the diastereomeric mixture of 1,4-oxazepan-5-ones 14a/14b, coming from the direct SN2 opening reaction in a low yield (Table  [³] , entry 1), in agreement with results reported by Ohnmacht et al. [¹¹]

Table 3 Synthesis of 1,4-Oxazepanones via 7-endo-tet Ring Closurea

Entry R Lewis acid Solvent Time (h) Product Yieldb (%)
 1 Ph MgI2 THF  36 14a/14b 23
 2 Ph TFA MeCN-H2O  12 14a/14b 90
 3 2-O2NC6H4 TFA MeCN-H2O 360 15a/15b trace
 4 3-MeO-4-BnOC6H3 TFA MeCN-H2O  36 20a/20b 73
 5 Ph Cu(OTf)2 MeCN   0.3 14a/14b 95
 6 2-O2NC6H4 Cu(OTf)2 MeCN   0.5 15a/15b 78
 7 3-O2NC6H4 Cu(OTf)2 MeCN   0.3 16a/16b 92
 8 4-O2NC6H4 Cu(OTf)2 MeCN   0.15 17a/17b 95
 9 2,6-Cl2C6H4 Cu(OTf)2 MeCN   0.08 18a/18b 91
10 3,4-Cl2C6H3 Cu(OTf)2 MeCN   0.3 19a/19b 87
11 3-MeO-4-BnOC6H3 Cu(OTf)2 MeCN   0.6 20a/20b 96
12 3-MeO-4-TsOC6H3 Cu(OTf)2 MeCN   0.15 21a/21b 98
13 Pr Cu(OTf)2 MeCN   0.08 22a/22b 98
14 Bu Cu(OTf)2 MeCN   0.08 23a/23b 98

a All entries except 1-4 were performed using 20 mol% of Cu(OTf)2.
b Isolated yield of diastereomeric mixture.

The use of trifluoroacetic acid activation led to 1,4-oxazepan-5-ones 14a/14b in better yield (Table  [³] , entry 2,). This reaction proved to be highly sensitive to the electron density of the aromatic moiety. Thus, only traces of 1,4-oxazepan-5-ones 15a/15b were obtained with epoxy­amides containing an electron-withdrawing group (entry 3) even using prolonged reaction times. In contrast, 1,4-oxazepan-5-ones 20a/20b was obtained in 73% yield (entry 4). Lewis acid activation was then investigated in order to increase the reaction yields. The best results were obtained in the presence of 20 mol% copper(II) triflate, leading to the desired 1,4-oxazepan-5-ones 14a/14b-21a/21b in good to excellent yields, even in the presence of deactivating groups on the aromatic ring. This condition also was tested with epoxyamides containing an aliphatic group affording the corresponding 1,4-oxazepan-5-ones 22a/22b and 23a/23b in excellent yields (entries 13 and 14).

Diastereomers were easily separated at this stage by chromatographic purification (yielding for entry 7; 16a, 50% and 16b, 42%). Fortunately, the major diastereomer 16a crystallized, enabling the determination of its absolute configuration and securing the presence of the 1,4-oxazepan-5-one ring by X-ray diffraction analysis (Figure  [¹] ).

Figure 1 X-ray ORTEP diagram of compound 16a

We then explored the access to the morpholinone ring based on a regiospecific 6-exo-tet ring closure under basic conditions.

In this way, Liebscher [8] reported the intramolecular opening of oxirane carboxamide using DBU in boiling ethanol forming predominantly the corresponding morpholinone derivative, however when we applied this methodology to the corresponding diastereomeric mixture of trans-epoxyamides­ even using prolonged reaction times, we obtained the desired morpholinone in low yield.

The use of bases such as potassium hydroxide and potassium tert-butoxide led only to degradation of the starting material. Better results were obtained when we used a new procedure based on the in situ sodium alkoxide formation by the treated of epoxyamides 4a/4b with sodium in anhydrous tetrahydrofuran (Table  [4] , entry 1). [¹³] The total conversion of the starting material was observed after 20 minutes. The NMR analysis of the crude reaction showed exclusively the presence of the corresponding diastereomeric mixture of 2-[hydroxy(phenyl)methyl]-4-(1-phenylethyl)morpholin-3-ones 24a/24b in 95% yield.

Diastereomers were easily separated at this stage by chromatographic purification (yields of separated diastereo­mers: 57% for 24a and 38% for 24b). Fortunately, the major diastereomer 24a crystallized, enabling the determination of its absolute configuration and the confirmation of the presence of the morpholinone ring by X-ray diffraction analysis (Figure  [²] ).

Figure 2 X-ray ORTEP diagram of compound 24a

Epoxyamides 5a/5b-13a/13b were reacted with sodium, affording the corresponding morpholin-3-ones 25a/25b-33a/33b in good to excellent yields, even in the presence of deactivating groups on the aromatic ring (Table  [4] ). Even, the use of epoxyamides 8a/8b (entry 5) gave the corresponding morpholinones 28a/28b in good yields despite the presence of two chlorine atoms which could represent a combination of unfavorable steric and electronic effects. Also, the use of epoxyamides 9a/9b (entry 6) led to the corresponding morpholinones 29a/29b in 85% yield. Epoxyamides containing an aliphatic group 12a/12b and 13a/13b also gave the corresponding morpholinones 32a/32b and 33a/33b in excellent yields (entries 9 and 10).

Table 4 Intramolecular 6-exo-tet Ring-Closure Reaction

Entry R Substrate Time (min) Product Yield (%)
 1 Ph  4a/4b  20 24a/24b 95
 2 2-O2NC6H4  5a/5b  40 25a/25b 96
 3 3-O2NC6H4  6a/6b  70 26a/26b 90
 4 4-O2NC6H4  7a/7b  75 27a/27b 90
 5 2,6-Cl2C6H3  8a/8b 120 28a/28b 40
 6 3,4-Cl2C6H3  9a/9b  70 29a/29b 85
 7 3-MeO-4-BnOC6H3 10a/10b  80 30a/30b 75
 8 3-MeO-4-TsOC6H3 11a/11b  85 31a/31b 85
 9 Pr 12a/12b  40 32a/32b 95
10 Bu 13a/13b  40 33a/33b 80

The divergent pathways for the regiospecific ring-closure reactions can be explained as follows. Under basic conditions, the cyclization through the epoxide opening follows an exo mode, as a six-membered transition state is more favored than a seven-membered one, in accordance with Baldwin’s rules. [¹4] The use of acidic activation favors a later transition state, having a positive charge developing, at the benzylic position for aromatic epoxyamides or at the more stabilized carbon by inductive effect for aliphatic epoxyamides, and therefore favors the formation of the oxazepanone skeleton via a 7-endo-tet process. This mechanism also explains the influence of the aromatic substitution in the cyclization process.

Finally, we performed the removal of chiral auxiliary from 1,4-oxazepan-5-one 14a in two steps. In the first step, compound 14a was reduced with borane-dimethyl sulfide complex, affording the cyclic amine 34 in 91% yield. Finally, compound 34 was selectively N-debenzylated when it was treated under transfer hydrogenation condition to give the desired 7-phenyl-1,4-oxazepan-6-ol 35 in 90% yield (Scheme  [³] ).

Scheme 3

In summary, we have developed a new strategy to build in a high yielding, highly functionalized, and regiospecific manner chiral 1,4-oxazepan-5-ones and morpholin-3-ones starting from chiral trans-epoxyamides. This strategy opens a new, versatile, and scalable access to chiral six- and seven-membered N,O-heterocycles for further pharmacological investigations.

All moisture-sensitive reactions were performed using syringe-septum cap techniques under an N2 atmosphere and all glassware was dried in an oven at 80 ˚C for 2 h prior to use. Reactions at -10 ˚C, 0 ˚C were performed using ultra cold equipment (Mod. SEV CRYO1-80). Melting points were measured by a hot stage melting point apparatus (uncorrected). Optical rotations were measured with a Perkin-Elmer 341 polarimeter, using a 1-dm cell with a total volume of 1 mL and are referenced Na d-line. For flash chromatography, Silica Gel 60, 0.063-0.2 mm/70-230 mesh ASTM was employed; PE = petroleum ether. ¹H NMR spectra were recorded using a Varian VX400 (400 MHz) spectrometer relative to TMS (in CDCl3) as internal standard. ¹³C NMR spectra were recorded using a Varian VX400 (100 MHz) spectrometer and referenced to the residual CHCl3 signal. X-ray diffraction data were obtained by using an Oxford Diffraction Gemini Atlas CCD diffractometer, with graphite-monochromatic MoKα radiation (λ = 0.71073 Å). CrysAlis RED program was used to collect and refine cell, CrysAlis RED program was used to reduce data, and SHELXL97 program was used to solve structure and refine it. Exact mass (HRMS) spectra were recorded with a Jeol JEM-AX505HA instrument at a voltage of 70 eV. Infrared spectra were obtained on a Nicolet FT-IR Magna 750 spectrophotometer.

6-Hydroxy-7-substituted-4-[( S )-1-phenylethyl]-1,4-oxazepan-5-ones 4a/4b-13a/13b; General Procedure

To a stirred soln of the diastereomeric mixture of trans-N-(2-hydroxyethyl)-3-substituted-N-[(S)-1-phenylethyl]oxirane-2-carboxamide (0.56 mmol) in MeCN (5 mL) was added Cu(OTf)2 (20% mol) at r.t. The mixture was stirred until the total disappearance of the starting material (20 min). The reaction was quenched by addition of brine (10 mL). The organic phase was separated, dried (anhyd Na2SO4), filtered, and the solvent was removed by evaporation. The resulting diastereomeric mixture was purified via flash column chromatography (silica gel, EtOAc-PE, 1:4).

(-)-(6 R ,7 R )-6-Hydroxy-7-phenyl-4-[( S )-1-phenylethyl]-1,4-oxazepan-5-one (14a)

Yield: 0.329 mmol (51%); R f  = 0.65 (EtOAc-PE, 40:60).

[α]D ²0 -85.8 (c 1.0, CH2Cl2).

IR (KBr): 3380, 1639, 1106, 737 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.59 (d, J = 6.8 Hz, 3 H, CH3), 3.11 (dd, J = 4.1, 16.3 Hz, 1 H, H3), 3.40 (dd, J = 9.9, 16.3 Hz, 1 H, H3), 3.53 (dd, J = 9.9, 12.9 Hz, 1 H, H2), 4.10 (dd, J = 4.1, 12.9 Hz, 1 H, H2), 4.29 (d, J = 9.0 Hz, 1 H, H7), 4.47 (m, 2 H, OH, H6), 6.15 (q, J = 6.8 Hz, 1 H, H1′), 7.24-7.39 (m, 10 H).

¹³C NMR (100 MHz, CDCl3): δ = 16.5, 45.5, 52.6, 70.6, 73.5, 82.2, 127.1-128.7, 139.1, 139.2, 174.4.

HRMS (ESI): m/z [M] calcd for C19H21NO3: 311.1521; found: 311.1541.

(-)-(6 S ,7 S )-6-Hydroxy-7-phenyl-4-[( S )-1-phenylethyl]-1,4-oxazepan-5-one (14b)

Yield: 0.280 mmol (44%); R f  = 0.55 (EtOAc-PE, 40:60).

[α]D ²0 -160 (c 1.0, CH2Cl2).

IR (KBr): 3377, 1642, 1100, 725 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.54 (d, J = 6.9 Hz, 3 H), 2.93 (ddd, J = 0.8, 9.9, 13.0 Hz, 1 H, H3), 3.15 (ddd, J = 0.6, 4.16, 15.8 Hz, 1 H, H2), 3.60 (ddd, J = 0.8, 9.9, 15.8 Hz, 1 H, H2), 3.75 (ddd, J = 0.9, 4.16, 13.0 Hz, 1 H, H3), 4.19 (d, J = 8.7 Hz, 1 H, H7), 4.45 (m, 2 H, OH, H6), 6.17 (q, J = 6.9 Hz, 1 H, H1′), 7.29-7.41 (m, 10 H).

¹³C NMR (100 MHz, CDCl3): δ = 15.3, 44.8, 52.6, 69.8, 73.7, 82.0, 127.4-128.7, 139.2, 174.3.

HRMS (ESI): m/z [M] calcd for C19H21NO3: 311.1521; found: 311.1538.

(-)-(6 R ,7 R )-6-Hydroxy-7-(2-nitrophenyl)-4-[( S )-1-phenylethyl]-1,4-oxazepan-5-one (15a)

Yield: 0.188 mmol (42%); R f  = 0.88 (EtOAc-PE, 40:60).

[α]D ²0 -223.5 (c 1.1, CH2Cl2).

IR (KBr): 3362, 1658, 1530, 1338, 1127 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.61 (d, J = 7.0 Hz, 3 H), 3.10 (dd, J = 4.0, 16.4 Hz, 1 H, H3), 3.38 (dd, J = 10.2, 16.4 Hz, 1 H, H3), 3.58 (dd, J = 10.2, 12.9 Hz, 1 H, H2), 4.16 (dd, J = 4.0, 12.9 Hz, 1 H, H2), 4.39 (m, 2 H, OH, H7), 5.28 (d, J = 8.3 Hz, 1 H, H6), 6.16 (q, J = 7.0 Hz, 1 H), 7.29-7.94 (m, 9 H).

¹³C NMR (100 MHz, CDCl3): δ = 16.6, 45.6, 52.6, 71.0, 74.0, 77.3, 124.2, 127.1-128.77, 132.9, 133.9, 139.1, 173.6.

HRMS (ESI): m/z [M] calcd for C19H20N2O5: 356.1372; found: 356.1402.

(-)-(6 S ,7 S )-6-Hydroxy-7-(2-nitrophenyl)-4-[( S )-1-phenylethyl]-1,4-oxazepan-5-one (15b)

Yield: 0.160 mmol (36%); R f  = 0.53 (EtOAc-PE, 40:60).

[α]D ²0 -35.4 (c 1.1, CH2Cl2).

IR (KBr): 3375, 1654, 1552, 1347 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.54 (d, J = 7.0 Hz, 3 H), 2.95 (dd, J = 10.0, 13.0 Hz, 1 H, H3), 3.17 (dd, J = 3.9, 16.0 Hz, 1 H, H2), 3.58 (dd, J = 10.0, 16.0 Hz, 1 H, H2), 3.78 (dd, J = 3.9, 13.0 Hz, 1 H, H3), 4.32 (dd, J = 4.9, 8.48 Hz, 1 H, H6), 4.41 (d, J = 4.9 Hz, 1 H, OH), 5.24 (d, J = 8.48 Hz, 1 H, H7), 6.17 (q, J = 7.0 Hz, 1 H), 7.29-7.95 (m, 9 H).

¹³C NMR (100 MHz, CDCl3): δ = 15.3, 44.9, 52.6, 70.3, 74.2, 76.3, 124.2, 127.7-128.8, 132.9, 134.0, 139.1, 173.7.

HRMS (ESI): m/z [M] calcd for C19H20N2O5: 356.1372; found: 356.1402.

(-)-(6 R ,7 R )-6-Hydroxy-7-(3-nitrophenyl)-4-[( S )-1-phenylethyl]-1,4-oxazepan-5-one (16a)

Yield: 0.251 mmol (50%); R f  = 0.88 (EtOAc-PE, 40:60).

[α]D ²0 -75.6 (c 1.1, CH2Cl2).

IR (KBr): 3377, 1640, 1536, 1330 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.61 (d, J = 7.0 Hz, 3 H), 3.14 (dd, J = 4.2, 16.4 Hz, 1 H), 3.41 (dd, J = 10.0, 16.4 Hz, 1 H), 3.56 (dd, J = 10.0, 12.9 Hz, 1 H), 4.16 (d, J = 4.2, 12.9 Hz, 1 H), 4.40 (m, 2 H), 4.51 (d, J = 3.5 Hz, 1 H), 6.14 (q, J = 7.0 Hz, 1 H), 7.26-7.41 (m, 5 H), 7.53 (t, J = 7.9 Hz, 1 H), 7.69 (dt, J = 1.2, 7.7 Hz, 1 H), 8.18 (ddd, J = 1.2, 2.2, 8.2 Hz, 1 H), 8.3 (t, J = 1.9 Hz, 1 H).

¹³C NMR (100 MHz, CDCl3): δ = 16.5, 45.5, 52.8, 70.8, 73.4, 80.0, 122.5, 123.0, 127.1, 128.0, 128.8, 134.0, 138.8, 141.2, 173.7.

HRMS (ESI): m/z [M] calcd for C19H20N2O5: 356.1372; found: 356.1397.

(-)-(6 S ,7 S )-6-Hydroxy-7-(3-nitrophenyl)-4-[( S )-1-phenylethyl]-1,4-oxazepan-5-one (16b)

Yield: 0.213 mmol (42%); R f  = 0.55 (EtOAc-PE, 40:60).

[α]D ²0 -134.4 (c 1.1, CH2Cl2).

IR (KBr): 3370, 1644, 1526, 1347, 1111 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.56 (d, J = 7.0 Hz, 3 H), 2.93 (dd, J = 9.8, 12.9 Hz, 1 H), 3.22 (dd, J = 3.9, 15.9 Hz, 1 H), 3.63 (dd, J = 9.8, 15.9 Hz, 1 H), 3.79 (dd, J = 3.5, 13.1 Hz, 1 H), 4.31 (d, J = 9.0 Hz, 1 H), 4.39 (dd, J = 3.2, 9.0 Hz, 1 H), 4.53 (d, J = 3.5 Hz, 1 H), 6.17 (q, J = 7.0 Hz, 1 H), 7.26-8.29 (m, 9 H).

¹³C NMR (100 MHz, CDCl3): δ = 15.3, 44.8, 52.8, 70.0, 73.6, 80.6, 122.5, 122.9, 127.1, 127.6, 128.2, 128.7, 128.8, 133.9, 141.31, 173.6.

HRMS (ESI): m/z [M] calcd for C19H20N2O5: 356.1372; found: 356.1399.

(-)-(6 R ,7 R )-6-Hydroxy-7-(4-nitrophenyl)-4-[( S )-1-phenylethyl]-1,4-oxazepan-5-one (17a)

Yield: 0.314 mmol (52%); R f  = 0.5 (EtOAc-PE, 30:70).

[α]D ²0 -69.55 (c 1.0, CH2Cl2).

IR (KBr): 3380, 1645, 1526, 1350 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.62 (d, J = 7.0 Hz, 3 H), 3.14 (dd, J = 4.0, 16.4 Hz, 1 H, H3), 3.39 (dd, J = 10.0, 16.4 Hz, 1 H, H3), 3.55 (dd, J = 10.0, 12.8 Hz, 1 H, H2), 4.14 (dd, J = 4.0, 12.8 Hz, 1 H, H2), 4.39 (m, J = 9.0 Hz, 2 H, H7, H6), 4.50 (d, J = 3.6 Hz, 1 H, OH), 6.13 (q, J = 7.0 Hz, 1 H), 7.26-7.56 (m, 7 H), 8.22 (m, 2 H).

¹³C NMR (100 MHz, CDCl3): δ = 16.5, 45.5, 52.8, 70.8, 73.4, 80.9, 123.2, 127.1-128.8, 138.8, 146.3, 147.5, 173.7.

HRMS (ESI): m/z [M] calcd for C19H20N2O5: 356.1372; found: 356.1407.

(-)-(6 S ,7 S )-6-Hydroxy-7-(4-nitrophenyl)-4-[( S )-1-phenylethyl]-1,4-oxazepan-5-one (17b)

Yield: 0.269 mmol (43%); R f  = 0.4 (EtOAc-PE, 30:70).

[α]D ²0 -208.3 (c 1.0, CH2Cl2).

IR (KBr): 3277, 1654, 1555, 1264 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.55 (d, J = 7.0 Hz, 3 H), 2.93 (dd, J = 9.5, 13.1 Hz, 1 H, H3), 3.22 (dd, J = 3.9, 15.8 Hz, 1 H, H2), 3.62 (dd, J = 9.5, 15.8 Hz, 1 H, H2), 3.79 (dd, J = 3.4, 13.1 Hz, 1 H, H3), 4.33 (dd, J = 9.0 Hz, 2 H, H6, H7), 4.50 (d, J = 3.9 Hz, 1 H, OH), 6.16 (q, J = 7.0 Hz, 1 H), 7.32-7.43 (m, 5 H), 7.54 (m, 2 H), 8.21 (m, 2 H).

¹³C NMR (100 MHz, CDCl3): δ = 15.4, 44.8, 52.8, 70.1, 73.6, 80.8, 123.2, 127.7-128.8, 139.0, 146.3, 173.6.

HRMS (ESI): m/z [M] calcd for C19H20N2O5: 356.1372; found: 356.1395.

(-)-(6 R ,7 R )-7-(2,6-Dichlorophenyl)-6-hydroxy-4-[( S )-1-phenylethyl]-1,4-oxazepan-5-one (18a)

Yield: 0.207 mmol (49%); R f  = 0.53 (EtOAc-PE, 10:90).

[α]D ²0 -65.90 (c 1.0, CH2Cl2).

IR (KBr): 3383, 2975, 1646, 1437, 1320, 1109, 775, 735, 701 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.61 (d, J = 7.1 Hz, 3 H), 3.10 (dd, J = 4.2, 16.3 Hz, 1 H, H3), 3.50 (dd, J = 9.9, 16.3 Hz, 1 H, H3), 3.55 (dd, J = 9.9, 12.7 Hz, 1 H, H2), 4.15 (dd, J = 4.2, 12.7 Hz, 1 H, H2), 4.38 (d, J = 4.3 Hz, 1 H, H7), 5.19 (d, J = 9.3 Hz, 1 H, OH), 5.25 (dd, J = 4.3, 9.3 Hz, 1 H, H6), 6.14 (q, J = 7.1 Hz, 1 H, H1′), 7.13-7.39 (m, 8 H).

¹³C NMR (100 MHz, CDCl3): δ = 16.6, 45.4, 52.4, 70.6, 71.5, 78.6, 127.1-130.0, 134.0, 134.5, 136.4, 139.0, 174.5.

HRMS (ESI): m/z [M] calcd for C19H19Cl2NO3: 379.0742; found: 379.0775.

(-)-(6 S ,7 S )-7-(2,6-Dichlorophenyl)-6-hydroxy-4-[( S )-1-phenylethyl]-1,4-oxazepan-5-one (18b)

Yield: 0.176 mmol (42%); R f  = 0.41 (EtOAc-PE, 10:90).

[α]D ²0 -187.4 (c 1.0, CH2Cl2).

IR (KBr): 3385, 2980, 1646, 1435, 1390, 1110, 778, 740, 701 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.53 (d, J = 7.0 Hz, 3 H), 2.91 (dd, J = 9.8, 13.0 Hz, 1 H, H3), 3.16 (dd, J = 3.6, 15.9 Hz, 1 H, H2), 3.63 (dd, J = 9.8, 15.9 Hz, 1 H, H2), 3.76 (dd, J = 3.6, 13.0 Hz, 1 H, H3), 4.37 (d, J = 4.3 Hz, 1 H, H7), 5.13 (d, J = 9.2 Hz, 1 H, OH), 5.21 (dd, J = 4.3, 9.2 Hz, 1 H, H6), 6.16 (q, J = 7.0 Hz, 1 H), 7.12-7.41 (m, 8 H).

¹³C NMR (100 MHz, CDCl3): δ = 15.3, 44.8, 52.5, 70.8, 70.9, 78.5, 127.7-130.1, 134.0, 139.2, 174.5.

HRMS (ESI): m/z [M] calcd for C19H19Cl2NO3: 379.0742; found: 379.0770.

(-)-(6 R ,7 R )-7-(3,4-Dichlorophenyl)-6-hydroxy-4-[( S )-1-phenylethyl]-1,4-oxazepan-5-one (19a)

Yield: 0.247 mmol (47%); R f  = 0.88 (EtOAc-PE, 50:50).

[α]D ²0 -83.4 (c 1.0, CH2Cl2).

IR (KBr): 3393, 1642, 1464, 1113, 739 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.61 (d, J = 7.1 Hz, 3 H), 3.10 (dd, J = 4.1, 16.4 Hz, 1 H, H3), 3.35 (dd, J = 9.8, 16.4 Hz, 1 H, H3), 3.50 (dd, J = 9.8, 12.9 Hz, 1 H, H2), 4.10 (dd, J = 3.9, 12.9 Hz, 1 H, H2), 4.22 (d, J = 9.0 Hz, 1 H, OH), 4.36 (dd, J = 4.1, 9.0 Hz, 1 H, H6), 4.48 (d, J = 4.1 Hz, 1 H, H7), 6.11 (q, J = 7.1 Hz, 1 H), 7.18-7.49 (m, 8 H).

¹³C NMR (100 MHz, CDCl3): δ = 16.4, 45.4, 52.7, 70.6, 73.3, 80.7, 127.0-132.2, 138.8, 139.4, 173.7.

HRMS (ESI): m/z [M] calcd for C19H19Cl2NO3: 379.0742; found: 379.0773.

(-)-(6 S ,7 S )-7-(3,4-Dichlorophenyl)-6-hydroxy-4-[( S )-1-phenylethyl]-1,4-oxazepan-5-one (19b)

Yield: 0.211 mmol (40%); R f  = 0.79 (EtOAc-PE, 50:50).

[α]D ²0 -143.6 (c 1.0, CH2Cl2).

IR (KBr): 3397, 1642, 1460, 1390, 1114, 739 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.53 (d, J = 7.0 Hz, 3 H), 2.89 (dd, J = 9.4, 13.1 Hz, 1 H, H3), 3.18 (dd, J = 3.8, 15.8 Hz, 1 H, H2), 3.57 (dd, J = 9.4, 15.8 Hz, 1 H, H2), 3.73 (dd, J = 3.8, 13.1 Hz, 1 H, H3), 4.15 (d, J = 9.0 Hz, 1 H, OH), 4.33 (dd, J = 4.0, 9.0 Hz, 1 H, H6), 4.49 (d, J = 4.0 Hz, 1 H, H7), 6.15 (q, J = 7.0 Hz, 1 H), 7.19 (dd, J = 2.0, 8.2 Hz, 1 H), 7.38-7.48 (m, 7 H).

¹³C NMR (100 MHz, CDCl3): δ = 15.3, 44.8, 52.7, 69.9, 73.6, 80.6, 127.0-129.9, 139.0, 139.4, 173.7.

HRMS (ESI): m/z [M] calcd for C19H19Cl2NO3: 379.0742; found: 379.0778.

(-)-(6 R ,7 R )-7-[4-(Benzyloxy)-3-methoxyphenyl]-6-hydroxy-4-[( S )-1-phenylethyl]-1,4-oxazepan-5-one (20a)

Yield: 0.104 mmol (52%); R f  = 0.53 (EtOAc-PE, 40:60).

[α]D ²0 -139.8 (c 1.0, CH2Cl2).

IR (KBr): 3380, 2924, 1634, 1511, 1460, 1265, 1106 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.53 (d, J = 7.08 Hz, 3 H), 2.91 (dd, J = 9.8, 12.9 Hz, 1 H, H3), 3.16 (dd, J = 3.9, 15.7 Hz, 1 H, H2), 3.59 (dd, J = 9.8, 15.7 Hz, 1 H, H2), 3.73 (dd, J = 3.7, 12.9 Hz, 1 H, H3), 3.90 (s, 3 H, OCH3), 4.15 (d, J = 8.6 Hz, 1 H, OH), 4.45 (m, 2 H, H6, H7), 5.14 (s, 2 H, CH2Ph), 6.16 (q, J = 7.08 Hz, 1 H, H1′), 6.85-6.92 (m, 3 H), 7.25-7.42 (m, 10 H).

¹³C NMR (100 MHz, CDCl3): δ = 15.4, 44.8, 52.6, 55.9, 69.8, 70.9, 73.7, 81.9, 110.8, 113.4, 119.9, 127.2-128.8, 132.4, 137.2, 139.2, 148.0, 149.4, 174.3.

HRMS (ESI): m/z [M] calcd for C27H29NO5: 447.2046; found: 447.2080.

(-)-(6 S ,7 S )-7-[4-(Benzyloxy)-3-methoxyphenyl]-6-hydroxy-4-[( S )-1-phenylethyl]-1,4-oxazepan-5-one (20b)

Yield: 0.088 mmol (44%); R f  = 0.37 (EtOAc-PE, 40:60).

[α]D ²0 -62.8 (c 1.0, CH2Cl2).

IR (KBr): 3390, 2929, 1634, 1509, 1455, 1270, 1110 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.59 (d, J = 7.08 Hz, 3 H), 3.09 (dd, J = 4.0, 16.3 Hz, 1 H, H3), 3.38 (dd, J = 9.8, 16.3 Hz, 1 H, H3), 3.51 (dd, J = 9.8, 12.7 Hz, 1 H, H2), 3.90 (s, 3 H, OCH3), 4.09 (dd, J = 4.0, 12.7 Hz, 1 H, H2), 4.22 (d, J = 8.5 Hz, 1 H, OH), 4.48 (m, 2 H, H6, H7), 5.14 (s, 2 H, CH2Ph), 6.13 (q, J = 7.08 Hz, 1 H, H1′), 6.86-6.94 (m, 3 H), 7.26-7.43 (m, 10 H).

¹³C NMR (100 MHz, CDCl3): δ = 16.53, 45.55, 52.65, 55.91, 70.60, 70.90, 73.50, 82.12, 110.79, 113.45, 120.0, 127.1-132.3, 137.2, 139.1, 148.1, 149.4, 174.4.

HRMS (ESI): m/z [M] calcd for C27H29NO5: 447.2046; found: 447.2080.

(-)-(6 R ,7 R )-6-Hydroxy-7-[3-methoxy-4-(tosyloxy)phenyl]-4-[( S )-1-phenylethyl]-1,4-oxazepan-5-one (21a)

Yield: 0.155 mmol (52%); R f  = 0.68 (EtOAc-PE, 50:50).

[α]D ²0 -52.3 (c 1.0, CH2Cl2).

IR (KBr): 3449, 2929, 1642, 1371, 1177, 1112, 855 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.59 (d, J = 7.1 Hz, 3 H), 2.42 (s, 3 H, CH3-Ph), 3.10 (dd, J = 4.0, 16.3 Hz, 1 H, H3), 3.37 (dd, J = 9.8, 16.3 Hz, 1 H, H3), 3.51 (dd, J = 9.8, 12.7 Hz, 1 H, H2), 3.56 (s, 3 H, OCH3), 4.10 (dd, J = 3.5, 12.7 Hz, 1 H, H2), 4.22 (d, J = 8.8 Hz, 1 H, OH), 4.41 (m, 2 H, H6, H7), 6.12 (q, J = 7.1 Hz, 1 H, H1′), 6.86-6.90 (m, 2 H), 7.11 (d, J = 8.2 Hz, 1 H), 7.26-7.36 (m, 8 H), 7.74 (d, J = 8.3 Hz, 1 H).

¹³C NMR (100 MHz, CDCl3): δ = 16.5, 21.6, 45.4, 52.7, 55.5, 70.6, 73.4, 76.7, 81.6, 111.8, 123.5, 127.1, 127.9, 128.6, 128.8, 129.3, 139.3, 144.8, 151.4, 174.0.

HRMS (ESI): m/z [M] calcd for C27H29NO7S: 511.1665; found: 511.1691.

(-)-(6 S ,7 S )-6-Hydroxy-7-[3-methoxy-4-(tosyloxy)phenyl]-4-[( S )-1-phenylethyl]-1,4-oxazepan-5-one (21b)

Yield: 0.132 mmol (46%); R f  = 0.57 (EtOAc-PE, 50:50).

[α]D ²0 -120.3 (c 1.0, CH2Cl2).

IR (KBr): 3421, 2929, 1638, 1365, 1112, 860 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.53 (d, J = 7.08 Hz, 3 H), 2.42 (s, 3 H, CH3-Ph), 2.89 (dd, J = 9.4, 13.0 Hz, 1 H, H3), 3.17 (dd, J = 3.9, 15.7 Hz, 1 H, H2), 3.56 (s, 3 H, OCH3), 3.58 (m, 1 H), 3.72 (m, 1 H), 4.15 (d, J = 8.9 Hz, 1 H, OH), 4.36 (dd, J = 4.0, 8.9 Hz, 1 H, H6), 4.44 (d, J = 4.0 Hz, 1 H, H7), 6.14 (q, J = 7.08 Hz, 1 H, H1′), 6.87 (m, 2 H), 7.11 (m, 1 H), 7.26-7.39 (m, 8 H), 7.73 (d, J = 8.3 Hz, 1 H).

¹³C NMR (100 MHz, CDCl3): δ = 15.4, 21.6, 44.7, 52.7, 55.5, 69.8, 73.6, 81.4, 111.8, 119.7, 123.5, 127.6, 128.1, 128.6, 128.8, 129.3, 139.1, 139.3, 144.8, 151.4, 174.0.

HRMS (ESI): m/z [M] calcd for C27H29NO7S: 511.1665; found: 511.1687.

(-)-(6 R ,7 R )-6-Hydroxy-4-[( S )-1-phenylethyl]-7-propyl-1,4-oxazepan-5-one (22a)

Yield: 0.2 mmol (54%); R f  = 0.82 (EtOAc-PE, 30:70).

[α]D ²0 -87.3 (c 1.0, CH2Cl2).

IR (KBr): 2957, 1639, 1111 cm.

¹H NMR (400 MHz, CDCl3): δ = 0.92 (t, J = 7.2 Hz, 3 H), 1.37 (m, 2 H), 1.53 (d, J = 7.0 Hz, 3 H), 1.58 (m, 2 H), 1.89 (m, 1 H), 2.98 (dd, J = 4.0, 16.1 Hz, 1 H), 3.17-3.37 (m, 2 H), 3.97 (dd, J = 4.0, 12.7 Hz, 1 H), 4.12 (dd, J = 4.2, 8.9 Hz, 1 H), 4.45 (d, J = 4.3 Hz, 1 H), 6.08 (q, J = 7.0 Hz, 1 H), 7.23-7.36 (m, 5 H).

¹³C NMR (100 MHz, CDCl3): δ = 13.9, 16.3, 18.0, 34.0, 45.5, 52.2, 70.1, 73.3, 79.3, 127.0, 127.6, 128.5, 139.1, 175.0.

HRMS (ESI): m/z [M] calcd for C16H23NO3: 277.1678; found: 277.1680.

(-)-(6 S ,7 S )-6-Hydroxy-4-[( S )-1-phenylethyl]-7-propyl-1,4-oxazepan-5-one (22b)

Yield: 0.165 mmol (44%); R f  = 0.71 (EtOAc-PE, 30:70).

[α]D ²0 -254.4 (c 1.0, CH2Cl2).

IR (KBr): 2957, 1638, 1112 cm.

¹H NMR (400 MHz, CDCl3): δ = 0.90 (t, J = 7.3 Hz, 3 H), 1.33 (m, 2 H), 1.49 (d, J = 7.1 Hz, 3 H), 1.54 (m, 1 H), 1.87 (m, 1 H), 2.73 (dd, J = 10.0, 13.0 Hz, 1 H), 3.06 (dd, J = 4.0, 15.7 Hz, 1 H), 3.22 (td, J = 2.8, 8.7 Hz, 1 H), 3.41 (dd, J = 10.0, 15.7 Hz, 1 H), 3.62 (dd, J = 4.0, 13.0 Hz, 1 H), 4.09 (dd, J = 3.5, 8.9 Hz, 1 H), 4.46 (d, J = 3.8 Hz, 1 H), 6.11 (q, J = 7.1 Hz, 1 H), 7.27-7.38 (m, 5 H).

¹³C NMR (100 MHz, CDCl3): δ = 14.3, 15.6, 18.37, 34.4, 45.1, 52.6, 69.7, 73.9, 79.5, 127.9, 128.2, 128.9, 139.5, 175.3.

HRMS (ESI): m/z [M] calcd for C16H23NO3: 277.1678; found: 277.1680.

(-)-(6 R ,7 R )-7-Butyl-6-hydroxy-4-[( S )-1-phenylethyl]-1,4-oxazepan-5-one (23a)

Yield: 0.2 mmol (54%); R f  = 0.86 (EtOAc-PE, 30:70).

[α]D ²0 -61.65 (c 1.0, CH2Cl2).

IR (KBr): 2957, 1638, 1112 cm.

¹H NMR (400 MHz, CDCl3): δ = 0.90 (t, J = 7.2 Hz, 3 H), 1.3 (m, 3 H), 1.53 (d, J = 7.0 Hz, 3 H), 1.58 (m, 2 H), 1.93 (m, 1 H), 2.97 (dd, J = 3.9, 16.1 Hz, 1 H), 3.17-3.37 (m, 3 H), 3.98 (dd, J = 3.8, 12.6 Hz, 1 H), 4.13 (dd, J = 4.4, 8.8 Hz, 1 H), 4.45 (d, J = 4.4 Hz, 1 H), 6.08 (q, J = 7.0 Hz, 1 H), 7.23-7.36 (m, 5 H).

¹³C NMR (100 MHz, CDCl3): δ = 14.0, 16.3, 22.6, 27.0, 31.7, 45.5, 52.2, 70.1, 73.3, 79.5, 127.0, 127.6, 128.5, 139.1, 175.0.

HRMS (ESI): m/z [M] calcd for C17H25NO3: 291.1833; found: 291.1843.

(-)-(6 S ,7 S )-7-Butyl-6-hydroxy-4-[( S )-1-phenylethyl]-1,4-oxazepan-5-one (23b)

Yield: 0.164 mmol (44%); R f  = 0.76 (EtOAc-PE, 30:70).

[α]D ²0 -197.1 (c 1.0, CH2Cl2).

IR (KBr): 2957, 1638, 1112 cm.

¹H NMR (400 MHz, CDCl3): δ = 0.89 (t, J = 7.3 Hz, 3 H), 1.29 (m, 3 H), 1.49 (d, J = 7.08 Hz, 3 H), 1.54 (m, 2 H), 1.91 (m, 1 H), 2.73 (dd, J = 10.0, 12.9 Hz, 1 H), 3.05 (dd, J = 4.0, 15.7 Hz, 1 H), 3.21 (td, J = 2.9, 8.7 Hz, 1 H), 3.41 (dd, J = 10.0, 15.7 Hz, 1 H), 3.62 (dd, J = 4.0, 12.9 Hz, 1 H), 4.10 (dd, J = 3.5, 8.9 Hz, 1 H), 4.46 (d, J = 4.1 Hz, 1 H), 6.13 (q, J = 7.08 Hz, 1 H), 7.28-7.38 (m, 5 H).

¹³C NMR (100 MHz, CDCl3): δ = 14.0, 15.2, 22.6, 27.0, 31.7, 44.8, 52.2, 69.4, 73.5, 79.4, 127.5, 127.8, 128.5, 139.2, 175.0.

HRMS (ESI): m/z [M] calcd for C17H25NO3: 291.1833; found: 291.1843.

2-[Hydroxymethyl]-4-[( S )-1-phenylethyl]morpholin-3-ones 24a/24b-33a/33b; General Procedure

To a stirred suspension of Na (14-18 mg) in anhyd THF (3.5 mL), was added a soln of the corresponding trans-diastereomeric mixture of epoxyamide (0.64 mmol) in anhyd THF (5.0 mL) at r.t. The resulting mixture was stirred until the total conversion of the starting material. Finally, the reaction was filtered and quenched by addition of aq brine (20 mL) and the organic phase was separated, dried (anhyd Na2SO4), filtered, and the solvent was removed by evaporation. The resulting diastereomeric mixture was purified via flash column chromatography (silica gel, EtOAc-PE, 1:1).

(-)-(2 S )-2-[( S )-Hydroxy(phenyl)methyl]-4-[( S )-1-phenylethyl]morpholin-3-one (24a)

Yield: 0.333 mmol (57%); R f  = 0.51 (EtOAc-PE, 40:60).

[α]D ²0 -144 (c 1.1, CH2Cl2).

IR (KBr): 3405, 1630, 1447, 701 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.40 (d, J = 7.2 Hz, 3 H), 2.67 (d, J = 12.2 Hz, 1 H, H5), 3.17 (td, J = 4.1, 11.5 Hz, 1 H, H6), 3.42 (td, J = 2.9, 11.5 Hz, 1 H, H6), 3.80 (ddd, J = 1.3, 3.9, 11.8 Hz, 1 H, H5), 4.28 (d, J = 7.1 Hz, 1 H, H2), 4.99 (d, J = 7.1 Hz, 1 H, H1′′), 6.02 (q, J = 7.2 Hz, 1 H), 7.26-7.45 (m, 10 H).

¹³C NMR (100 MHz, CDCl3): δ = 15.0, 39.9, 49.8, 63.0, 74.4, 78.8, 127.1-128.5, 138.9, 139.9, 168.4.

HRMS (ESI): m/z [M] calcd for C19H21NO3: 311.1521; found: 311.1539.

(+)-(2 R )-2-[( R )-Hydroxy(phenyl)methyl]-4-[( S )-1-phenylethyl]morpholin-3-one (24b)

Yield: 0.283 mmol (38%); R f  = 0.35 (EtOAc-PE, 40:60).

[α]D ²0 +1.53 (c 1.0, CH2Cl2).

IR (KBr): 3416, 1623, 1454, 700 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.49 (d, J = 7.1 Hz, 3 H), 2.78 (m, 1 H, H5), 2.92 (dt, J = 2.7, 12.6 Hz, 1 H, H5), 3.61 (td, J = 3.2, 10.12, 11.9 Hz, 1 H, H6), 3.80 (ddd, J = 2.7, 4.15, 11.9 Hz, 1 H, H6), 4.32 (d, J = 7.0 Hz, 1 H, H1′′), 5.03 (d, J = 7.0 Hz, 1 H, H2), 5.97 (q, J = 7.1 Hz, 1 H, H1′), 7.05-7.44 (m, 10 H).

¹³C NMR (100 MHz, CDCl3): δ = 15.0, 40.4, 49.9, 63.0, 74.4, 79.1, 127.3-128.5, 138.5, 140.0, 168.2.

HRMS (ESI): m/z [M] calcd for C19H21NO3: 311.1521; found: 311.1537.

(+)-(2 S )-2-[( S )-Hydroxy(2-nitrophenyl)methyl]-4-[( S )-1-phenylethyl]morpholin-3-one (25a)

Yield: 0.363 mmol (52%); R f  = 0.85 (EtOAc-PE, 50:50).

[α]D ²0 +113.3 (c 1.1, CH2Cl2).

IR (KBr): 3374, 1627, 1528, 737 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.58 (d, J = 7.2 Hz, 3 H), 2.75 (m, 1 H), 3.39 (m, 2 H), 3.78 (m, 1 H), 3.99 (d, J = 8.8 Hz, 1 H, H1′′), 5.53 (br, 1 H, OH), 5.86 (d, J = 8.8 Hz, 1 H, H2), 6.06 (q, J = 7.2 Hz, 1 H), 7.23-7.37 (m, 5 H), 7.26 (td, J = 1.6, 7.6, 8.0 Hz, 1 H), 7.64 (td, J = 0.8, 7.6, 8.0 Hz, 1 H), 7.81 (dd, J = 0.8, 1.2, 8.2 Hz, 1 H), 7.99 (dd, J = 1.2, 1.6, 7.8 Hz, 1 H).

¹³C NMR (100 MHz, CDCl3): δ = 15.3, 40.0, 50.2, 63.1, 68.4, 78.5, 123.8, 127.2-128.7, 132.8, 134.6, 138.9, 168.9.

HRMS (ESI): m/z [M] calcd for C19H20N2O5: 356.1372; found: 356.1390.

(-)-(2 R )-2-[( R )-Hydroxy(2-nitrophenyl)methyl]-4-[( S )-1-phenylethyl]morpholin-3-one (25b)

Yield: 0.309 mmol (44%); R f  = 0.68 (EtOAc-PE, 50:50).

[α]D ²0 -169 (c 1.1, CH2Cl2).

IR (KBr): 3365, 1630, 1510, 724 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.54 (d, J = 7.1 Hz, 3 H), 2.98 (m, 2 H, H5, H6), 3.59 (td, J = 3.4, 8.8, 12.0 Hz, 1 H, H5), 3.75 (dt, J = 3.7, 11.8 Hz, 1 H, H6), 4.02 (d, J = 8.4 Hz, 1 H, H1′′), 5.53 (br, 1 H, OH), 5.86 (d, J = 8.4 Hz, 1 H, H2), 6.04 (q, J = 7.1 Hz, 1 H, H1′), 7.29-7.45 (m, 6 H), 7.64 (m, 1 H), 7.82 (dd, J = 1.2, 8.0 Hz, 1 H), 7.99 (d, J = 8.0 Hz, 1 H).

¹³C NMR (100 MHz, CDCl3): δ = 15.2, 40.5, 50.3, 62.9, 68.4, 78.5, 123.8, 127.3-128.8, 132.8, 134.7, 138.3, 168.8.

HRMS (ESI): m/z [M] calcd for C19H20N2O5: 356.1372; found: 356.1385.

(-)-(2 S )-2-[( S )-Hydroxy(3-nitrophenyl)methyl]-4-[( S )-1-phenylethyl]morpholin-3-one (26a)

Yield: 0.204 mmol (49%).

[α]D ²0 -134 (c 1.1, CH2Cl2); R f  = 0.79 (EtOAc-PE, 50:50).

IR (KBr): 3414, 2926, 1628, 1528, 1347 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.50 (d, J = 7.1 Hz, 3 H), 2.77 (m, 1 H), 3.32 (td, J = 4.2, 11.5 Hz, 1 H), 3.47 (td, J = 2.9, 11.5 Hz, 1 H), 3.87 (ddd, J = 1.4, 4.2, 11.8 Hz, 1 H), 4.19 (d, J = 7.7 Hz, 1 H, H1′′), 5.08 (d, J = 7.7 Hz, 1 H, H2), 5.51 (br, OH), 6.06 (q, J = 7.2 Hz, 1 H, H1′), 7.28-7.37 (m, 5 H), 7.51 (t, J = 7.9 Hz, 1 H), 7.81 (m, 1 H), 8.16 (m, 1 H), 8.34 (m, 1 H).

¹³C NMR (100 MHz, CDCl3): δ = 15.2, 40.0, 50.1, 63.2, 73.5, 78.3, 122.6, 127.1-128.7, 133.7, 138.7, 142.3, 168.3.

HRMS (ESI): m/z [M] calcd for C19H20N2O5: 356.1372; found: 356.1389.

(-)-(2 R )-2-[( R )-Hydroxy(3-nitrophenyl)methyl]-4-[( S )-1-phenylethyl]morpholin-3-one (26b)

Yield: 0.174 mmol (41%); R f  = 0.41 (EtOAc-PE, 50:50).

[α]D ²0 -0.6 (c 1.1, CH2Cl2).

IR (KBr): 3378, 2940, 1640, 1527, 1330 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.53 (d, J = 7.1 Hz, 3 H), 2.86 (m, 1 H), 3.00 (dt, J = 2.4, 12.6 Hz, 1 H), 3.67 (m, 1 H), 3.86 (ddd, J = 2.3, 4.1, 11.9 Hz, 1 H), 4.22 (d, J = 7.4 Hz, 1 H, H1′′), 5.09 (d, J = 7.4 Hz, 1 H, H2), 6.00 (q, J = 7.1 Hz, 1 H, H1′), 7.15-7.35 (m, 5 H), 7.49 (t, J = 7.9 Hz, 1 H), 7.78 (d, J = 7.6 Hz, 1 H), 8.1 (m, 1 H), 8.33 (m, 1 H).

¹³C NMR (100 MHz, CDCl3): δ = 15.0, 40.3, 50.1, 63.0, 73.4, 78.4, 122.7, 127.2-128.7, 133.8, 138.2, 142.3, 168.0.

HRMS (ESI): m/z [M] calcd for C19H20N2O5: 356.1372; found: 356.1389.

(-)-(2 S )-2-[( S )-Hydroxy(4-nitrophenyl)methyl]-4-[( S )-1-phenylethyl]morpholin-3-one (27a)

Yield: 0.341 mmol (48%); R f  = 0.8 (EtOAc-PE, 50:50).

[α]D ²0 -75.4 (c 1.0, CH2Cl2).

IR (KBr): 3450, 2925, 1630, 1528, 1340 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.49 (d, J = 7.2 Hz, 3 H), 2.75 (m, 1 H), 3.29 (td, J = 4.2, 11.6 Hz, 1 H), 3.47 (td, J = 2.9, 11.6 Hz, 1 H), 3.85 (ddd, J = 1.4, 4.1, 11.8 Hz, 1 H), 4.19 (d, J = 7.5 Hz, 1 H), 5.09 (d, J = 7.5 Hz, 1 H), 6.05 (q, J = 7.2 Hz, 1 H), 7.28-7.37 (m, 5 H), 7.64 (m, 2 H), 8.19 (m, 2 H).

¹³C NMR (100 MHz, CDCl3): δ = 15.5, 40.3, 50.4, 63.5, 73.9, 78.7, 123.3, 127.4-129.0, 139.0, 147.8, 168.4.

HRMS (ESI): m/z [M] calcd for C19H20N2O5: 356.1372; found: 356.1387.

(+)-(2 R )-2-[( R )-Hydroxy(4-nitrophenyl)methyl]-4-[( S )-1-phenylethyl]morpholin-3-one (27b)

Yield: 0.290 mmol (42%); R f  = 0.44 (EtOAc-PE, 50:50).

[α]D ²0 +12.8 (c 1.0, CH2Cl2).

IR (KBr): 3398, 2929, 1630, 1526, 1347 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.52 (d, J = 7.1 Hz, 3 H), 2.82 (m, J = 4.2, 10.4, 12.5 Hz, 1 H), 3.00 (dt, J = 2.6, 12.6 Hz, 1 H), 3.65 (m, J = 3.2, 10.4, 11.9 Hz, 1 H), 3.85 (ddd, J = 2.3, 4.3, 11.9 Hz, 1 H), 4.24 (d, J = 7.1 Hz, 2 H), 5.12 (d, J = 7.1 Hz, 1 H), 6.98 (q, J = 7.1 Hz, 1 H), 7.14-7.34 (m, 5 H), 7.61 (m, 2 H), 8.16 (m, 2 H).

¹³C NMR (100 MHz, CDCl3): δ = 15.1, 40.3, 50.2, 63.1, 73.6, 78.6, 123.0, 127.3-128.6, 138.3, 147.4, 167.8.

HRMS (ESI): m/z [M] calcd for C19H20N2O5: 356.1372; found: 356.1389.

(-)-(2 S )-2-[( S )-(2,6-Dichlorophenyl)hydroxymethyl]-4-[( S )-1-phenylethyl]morpholin-3-one (28a)

Yield: 0.170 mmol (21%); R f  = 0.86 (EtOAc-PE, 50:50).

[α]D ²0 -6.3 (c 0.9, CH2Cl2).

IR (KBr): 3401, 2930, 1635, 1464, 1135, 1063, 1037 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.60 (d, J = 7.1 Hz, 3 H), 2.83 (td, J = 3.2, 12.4 Hz, 1 H), 3.37 (ddd, J = 3.9, 9.2, 12.6 Hz, 1 H), 3.55 (ddd, J = 3.1, 9.2, 12.0 Hz, 1 H), 3.88 (td, J = 3.6, 11.9 Hz, 1 H), 5.01 (d, J = 9.6 Hz, 1 H), 5.41 (d, J = 1.2 Hz, 1 H), 5.76 (dd, J = 1.1, 9.6 Hz, 1 H), 6.11 (q, J = 7.1 Hz, 1 H), 7.14 (dd, J = 7.6, 8.4 Hz, 1 H), 7.29-7.39 (m, 7 H).

¹³C NMR (100 MHz, CDCl3): δ = 15.3, 40.3, 50.0, 63.1, 71.0, 74.7, 127.2, 127.8, 128.7, 129.3, 133.8, 138.8, 169.6.

HRMS (ESI): m/z [M] calcd for C19H19Cl2NO3: 379.0742; found: 379.0755.

(-)-(2 R )-2-[( R )-(2,6-Dichlorophenyl)hydroxymethyl]-4-[( S )-1-phenylethyl]morpholin-3-one (28b)

Yield: 0.145 mmol (19%); R f  = 0.77 (EtOAc-PE, 50:50).

[α]D ²0 -5.3 (c 0.9, CH2Cl2).

IR (KBr): 3401, 2930, 1635, 1464, 1135, 1063, 1037 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.57 (d, J = 7.1 Hz, 3 H), 2.93 (ddd, J = 3.9, 7.5, 12.5 Hz, 1 H), 3.17 (ddd, J = 3.5, 5.1, 12.5 Hz, 1 H), 3.69 (ddd, J = 3.5, 7.5, 11.9 Hz, 1 H), 3.84 (ddd, J = 3.9, 5.1, 11.9 Hz, 1 H), 5.06 (d, J = 9.6 Hz, 1 H), 5.39 (d, J = 1.3 Hz, 1 H), 5.78 (dd, J = 1.3, 9.6 Hz, 1 H), 6.12 (q, J = 7.1 Hz, 1 H), 7.13-7.42 (m, 8 H).

¹³C NMR (100 MHz, CDCl3): δ = 15.1, 40.5, 50.0, 62.6, 70.8, 74.5, 122.9, 127.3, 127.8, 128.7, 129.4, 133.9, 138.6, 169.6.

HRMS (ESI): m/z [M] calcd for C19H19Cl2NO3: 379.0742; found: 379.0759.

(-)-(2 S )-2-[( S )-(3,4-Dichlorophenyl)hydroxymethyl]-4-[( S )-1-phenylethyl]morpholin-3-one (29a)

Yield: 0.217 mmol (45.5%); R f  = 0.47 (EtOAc-PE, 50:50).

[α]D ²0 -129.0 (c 1.0, CH2Cl2).

IR (KBr): 3401, 2930, 1635, 1464, 1135, 1063, 1037 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.47 (d, J = 7.2 Hz, 3 H), 2.73 (m, 1 H), 3.26 (td, J = 4.1, 11.5 Hz, 1 H), 3.45 (td, J = 2.9, 11.5 Hz, 1 H), 3.84 (ddd, J = 1.5, 4.1, 11.8 Hz, 1 H), 4.15 (d, J = 7.4 Hz, 1 H), 4.94 (d, J = 7.4 Hz, 1 H), 6.04 (q, J = 7.2 Hz, 1 H), 7.28-7.37 (m, 5 H), 7.64 (m, 2 H), 8.19 (m, 2 H).

¹³C NMR (100 MHz, CDCl3): δ = 15.2, 40.0, 50.0, 63.2, 73.3, 78.5, 127.0-131.9, 138.8, 140.5, 168.2.

HRMS (ESI): m/z [M] calcd for C19H19Cl2NO3: 379.0742; found: 379.0766.

(+)-(2 R )-2-[( R )-(3,4-Dichlorophenyl)hydroxymethyl]-4-[( S )-1-phenylethyl] morpholin-3-one (29b)

Yield: 0.185 mmol (39.5%); R f  = 0.17 (EtOAc-PE, 50:50).

[α]D ²0 +3.0 (c 1.0, CH2Cl2).

IR (KBr): 3398, 2929, 1635, 1460, 1130, 1050, 1028 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.51 (d, J = 7.1 Hz, 3 H), 2.81 (m, J = 4.2, 10.4, 12.6 Hz, 1 H), 2.95 (dt, J = 2.5, 12.6 Hz, 1 H), 3.64 (ddd, J = 3.2, 10.4, 11.9 Hz, 1 H), 3.85 (ddd, J = 2.4, 4.2, 11.9 Hz, 1 H), 4.21 (d, J = 7.0 Hz, 1 H), 4.97 (d, J = 7.0 Hz, 1 H), 5.97 (q, J = 7.1 Hz, 1 H), 7.10 (m, 2 H), 7.26-7.39 (m, 5 H), 7.57 (d, J = 1.9 Hz, 1 H).

¹³C NMR (100 MHz, CDCl3): δ = 15.0, 40.4, 50.1, 63.1, 73.3, 78.7, 127.2-132.0, 138.3, 140.4, 167.9.

HRMS (ESI): m/z [M] calcd for C19H19Cl2NO3: 379.0742; found: 379.0770.

(-)-(2 S )-2-{( S )-[4-(Benzyloxy)-3-methoxyphenyl]hydroxymethyl}-4-[( S )-1-phenylethyl]morpholin-3-one (30a)

Yield: 0.072 mmol (40.5%); R f  = 0.25 (EtOAc-PE, 90:10).

[α]D ²0 -87.0 (c 1.1, CH2Cl2).

IR (KBr): 3418, 2927, 1640, 1511, 1265, 1138, 699 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.44 (d, J = 7.2 Hz, 3 H), 2.72 (dt, J = 1.9, 12.2 Hz, 1 H), 3.25 (dd, J = 4.1, 11.5, 1 H), 3.48 (dd, J = 2.9, 11.4 Hz, 1 H), 3.86 (ddd, J = 1.6, 4.0, 11.8 Hz, 1 H), 3.91 (s, 3 H), 4.25 (d, J = 7.5, 1 H), 4.90 (d, J = 7.5 Hz, 1 H), 5.07 (br, 1 H), 5.15 (s, 2 H), 6.04 (q, J = 7.2 Hz, 1 H), 6.87 (m, 2 H), 7.07 (d, J = 1.8 Hz, 1 H), 7.25-7.44 (m, 10 H).

¹³C NMR (100 MHz, CDCl3): δ = 15.2, 40.1, 49.9, 55.9, 63.2, 70.8, 74.4, 78.8, 110.8, 113.2, 120.0, 127.2, 127.7, 127.8, 128.5, 128.7, 133.2, 137.2, 139.1, 147.9, 149.3, 168.8.

HRMS (ESI): m/z [M] calcd for C27H29NO5: 447.2046; found: 447.2051.

(+)-(2 R )-2-{( R )-[4-(Benzyloxy)-3-methoxyphenyl]hydroxy­methyl}-4-[( S )-1-phenylethyl]morpholin-3-one (30b)

Yield: 0.061 mmol (34.5%); R f  = 0.11 (EtOAc-PE, 90:10).

[α]D ²0 +7.0 (c 1.0, CH2Cl2).

IR (KBr): 3418, 2927, 1640, 1511, 1265, 1138, 699 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.51 (d, J = 7.0 Hz, 3 H), 2.82 (m, 1 H), 2.96 (dt, J = 2.7, 12.5 Hz, 1 H), 3.65 (td, J = 3.2, 11.9 Hz, 1 H), 3.84 (dd, J = 2.8, 7.9 Hz, 1 H), 3.87 (s, 3 H), 4.30 (d, J = 7.2 Hz, 1 H), 4.95 (d, J = 7.2 Hz, 1 H), 5.1 (s, 2 H), 5.99 (q, J = 7.0 Hz, 1 H), 6.86 (m, 2 H), 7.0 (m, 1 H), 7.25-7.44 (m, 10 H).

¹³C NMR (100 MHz, CDCl3): δ = 15.0, 40.4, 49.9, 55.9, 63.0, 70.8, 74.3, 79.0, 111.0, 113.1, 120.2, 127.2-128.6, 137.2, 138.5, 148.0, 149.3, 168.4.

HRMS (ESI): m/z [M] calcd for C27H29NO5: 447.2046; found: 447.2055.

(-)-(2 S )-2-{( S )-[3-Methoxy-4-(tosyloxy)phenyl]hydroxymethyl}-4-[( S )-1-phenylethyl]morpholin-3-one (31a)

Yield: 0.116 mmol (46%); R f  = 0.2 (EtOAc-PE, 50:50).

[α]D ²0 -88.4 (c 1.0, CH2Cl2).

IR (KBr): 3449, 1642, 1271, 1177, 700 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.46 (d, J = 7.2 Hz, 3 H), 2.43 (s, 3 H), 2.73 (m, 1 H), 3.25 (td, J = 4.1, 11.5 Hz, 1 H), 3.46 (td, J = 2.9, 11.8 Hz, 1 H), 3.56 (s, 3 H), 3.85 (ddd, J = 1.5, 4.0, 11.8 Hz, 1 H), 4.17 (d, J = 7.4 Hz, 1 H), 4.93 (d, J = 7.4 Hz, 1 H), 6.03 (q, J = 7.2 Hz, 1 H), 6.94 (dd, J = 1.9, 8.3 Hz, 1 H), 7.0 (d, J = 1.8 Hz, 1 H), 7.10 (d, J = 8.2 Hz, 1 H), 7.26-7.39 (m, 6 H), 7.74 (d, J = 8.3 Hz, 2 H).

¹³C NMR (100 MHz, CDCl3): δ = 15.2, 21.6, 40.1, 50.0, 55.5, 63.2, 74.1, 78.6, 111.6, 119.9, 123.1, 127.2-129.3, 137.9, 138.9, 140.3, 144.9, 151.4, 168.5.

HRMS (ESI): m/z [M] calcd for C27H29NO7S: 511.1665; found: 511.1684.

(+)-(2 R )-2-{( R )-[3-Methoxy-4-(tosyloxy)phenyl]hydroxymethyl}-4-[( S )-1-phenylethyl]morpholin-3-one (31b)

Yield: 0.098 mmol (39%); R f  = 0.06 (EtOAc-PE, 50:50).

[α]D ²0 +4.2 (c 1.0, CH2Cl2).

IR (KBr): 3450, 1643, 1271, 1177, 700 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.52 (d, J = 7.0 Hz, 3 H), 2.43 (s, 3 H), 2.8 (ddd, J = 4.3, 10.0, 12.6 Hz, 1 H), 2.97 (dt, J = 2.6, 12.6 Hz, 1 H), 3.53 (s, 3 H), 3.61 (m, 2 H), 3.82 (ddd, J = 2.6, 4.1, 11.8 Hz, 1 H), 4.19 (d, J = 7.5 Hz, 1 H), 4.94 (d, J = 7.3 Hz, 1 H), 5.98 (q, J = 7.0 Hz, 1 H), 6.93 (dd, J = 1.8, 8.3 Hz, 1 H), 6.90 (d, J = 1.8 Hz, 1 H), 7.08-7.15 (m, 3 H), 7.26-7.36 (m, 5 H), 7.74 (d, J = 8.3 Hz, 1 H).

¹³C NMR (100 MHz, CDCl3): δ = 15.1, 21.6, 40.5, 50.1, 55.5, 63.0, 73.9, 78.7, 111.8, 120.0, 123.2, 127.2-129.3, 140.3, 144.9, 151.4, 168.3.

HRMS (ESI): m/z [M] calcd for C27H29NO7S: 511.1665; found: 511.1687.

(-)-2 S )-2-[( S )-1-Hydroxybutyl]-4-[( S )-1-phenylethyl)morpholin-3-one (32a)

Yield: 0.15 mmol (46%); R f  = 0.80 (EtOAc-PE, 50:50).

[α]D ²0 -194.2 (c 1.0, CH2Cl2).

IR (KBr): 3415, 2955, 1626 cm.

¹H NMR (400 MHz, CDCl3): δ = 0.94 (t, J = 7.0 Hz, 3 H), 1.44 (m, 2 H), 1.53 (d, J = 7.2 Hz, 3 H), 1.60 (m, 2 H), 2.78 (dt, J = 1.9, 11.8 Hz, 1 H), 3.41 (td, J = 4.2, 11.1 Hz, 1 H), 3.56 (td, J = 2.9, 11.1 Hz, 1 H), 3.70 (s, 1 H), 3.93-4.0 (m, 2 H), 4.35 (s, 1 H), 6.06 (q, J = 7.2 Hz, 1 H), 7.27-7.37 (m, 5 H).

¹³C NMR (100 MHz, CDCl3): δ = 14.0, 15.2, 18.1, 34.5, 40.1, 49.6, 63.0, 71.7, 78.8, 127.1, 127.6, 128.5, 139.1, 169.0.

HRMS (ESI): m/z [M] calcd for C16H23NO3: 277.1678; found: 277.1680.

(-)-(2 R )-2-[( R )-1-Hydroxybutyl]-4-[( S )-1-phenylethyl]morpholin-3-one (32b)

Yield: 0.126 mmol (49%); R f  = 0.58 (EtOAc-PE, 50:50).

[α]D ²0 -71.25 (c 1.0, CH2Cl2).

IR (KBr): 3415, 2955, 1626 cm.

¹H NMR (400 MHz, CDCl3): δ = 0.94 (t, J = 7.1 Hz, 3 H), 1.39-1.51 (m, 2 H), 1.53 (d, J = 7.0 Hz, 3 H), 1.55-1.67 (m, 2 H), 2.94 (td, J = 4.3, 12.5 Hz, 1 H), 3.03 (dt, J = 2.9, 12.3 Hz, 1 H), 3.71 (ddd, J = 3.4, 10.1, 11.7 Hz, 1 H), 3.92 (ddd, J = 2.6, 4.2, 11.8 Hz, 1 H), 3.97 (dd, J = 7 Hz, 1 H), 4.32 (br, 1 H), 6.0 (q, J = 7.0 Hz, 1 H), 7.27-7.38 (m, 5 H).

¹³C NMR (100 MHz, CDCl3): δ = 14.0, 15.0, 18.1, 34.7, 40.4, 49.8, 62.9, 71.7, 78.7, 127.3, 127.7, 128.5, 138.7, 169.1.

HRMS (ESI): m/z [M] calcd for C16H23NO3: 277.1678; found: 277.1680.

(-)-(2 S )-2-[( S )-1-Hydroxypentyl)-4-[( S )-1-phenylethyl]morpholin-3-one (33a)

Yield: 0.153 mmol (44%); R f  = 0.76 (EtOAc-PE, 50:50).

[α]D ²0 -162.2 (c 1.0, CH2Cl2).

IR (KBr): 3415, 2955, 1626 cm.

¹H NMR (400 MHz, CDCl3): δ = 0.91 (t, J = 7.3 Hz, 3 H), 1.35 (m, 4 H), 1.53 (d, J = 7.2 Hz, 3 H), 1.69 (m, 1 H), 2.78 (dt, J = 2.0, 12.0 Hz, 1 H), 3.4 (td, J = 4.2, 11.4 Hz, 1 H), 3.56 (td, J = 2.9, 11.4 Hz, 1 H), 3.69 (s, 1 H), 3.96 (m, 3 H), 4.35 (s, 1 H), 6.06 (q, J = 7.2 Hz, 1 H), 7.26-7.37 (m, 5 H).

¹³C NMR (100 MHz, CDCl3): δ = 13.9, 15.2, 22.6, 27.0, 32.1, 40.21, 49.6, 63.0, 71.9, 78.8, 127.1, 127.6, 128.5, 139.1, 169.0.

HRMS (ESI): m/z [M] calcd for C17H25NO3: 291.1834; found: 291.1838.

(-)-(2 R )-2-[( R )-1-Hydroxypentyl]-4-[( S )-1-phenylethyl]morpholin-3-one (33b)

Yield: 0.125 mmol (36%); R f  = 0.54 (EtOAc-PE, 50:50).

[α]D ²0 -98.75 (c 1.0, CH2Cl2).

IR (KBr): 3415, 2955, 1626 cm.

¹H NMR (400 MHz, CDCl3): δ = 0.91 (t, J = 7.2 Hz, 3 H), 1.35 (m, 4 H), 1.53 (d, J = 7.1 Hz, 3 H), 1.67 (m, 1 H), 2.94 (td, J = 4.3, 10.0 Hz, 1 H), 3.03 (dt, J = 2.6, 12.4 Hz, 1 H), 3.71 (td, J = 3.4, 10.0 Hz, 1 H), 3.90-3.99 (m, 3 H), 4.31 (br, 1 H), 6.0 (q, J = 7.1 Hz, 1 H), 7.27-7.32 (m, 5 H).

¹³C NMR (100 MHz, CDCl3): δ = 14.0, 14.9, 22.7, 27.0, 32.3, 40.4, 49.7, 62.9, 71.9, 78.7, 127.3, 127.7, 128.5, 138.7, 169.1.

HRMS (ESI): m/z [M] calcd for C17H25NO3: 291.1834; found: 291.1838.

(+)-(6 S ,7 R )-7-Phenyl-4-[( S )-1-phenylethyl]-1,4-oxazepan-6-ol (34)

To a stirred soln of 1,4-oxazepan-5-one 14a (0.138 g, 0.443 mmol) in anhyd THF (6 mL) at 0 ˚C, under N2, was added BH3˙SMe2 (0.084 g, 1.10 mmol). The mixture was stirred at r.t. for 12 h. Later, the reaction was quenched with MeOH (6 mL) and stirred for 1 h. Finally, the solvent was evaporated under reduced pressure, and the crude was purified via flash chromatography column giving the desired compound 34 (0.120 g, 0.403 mmol, 91%) as a white oil; R f  = 0.7 (EtOAc-PE, 50:50).

[α]D ²0 +12.0 (c 1.0, CH2Cl2).

IR (KBr): 3416, 2930, 1451, 700 cm.

¹H NMR (400 MHz, CDCl3): δ = 1.42 (d, J = 6.8 Hz, 3 H), 2.71 (m, 2 H), 2.86 (m, 2 H), 3.78-3.91 (m, 3 H), 4.0 (dt, J = 2.6, 13.0 Hz, 1 H), 4.70 (d, J = 2.0 Hz, 1 H), 7.17-7.35 (m, 10 H).

¹³C NMR (100 MHz, CDCl3): δ = 16.4, 50.9, 55.0, 63.4, 69.4, 74.7, 87.4, 125.8, 127.0, 127.2, 127.5, 128.1, 128.2, 141.5, 142.2.

HRMS (ESI): m/z [M] calcd for C19H23NO2: 297.1729; found: 297.1731.

(-)-(6 S ,7 R )-7-Phenyl-1,4-oxazepan-6-ol (35)

To a stirred suspension of 10% Pd-C (0.08 g) in abs EtOH (6 mL) at r.t. was added 1,4-oxazepan-6-ol 34 (0.08 g, 0.286 mmol). To the resulting mixture, ammonium formate (0.09 g, 1.42 mmol) was added and the mixture was refluxed for 5 min. Finally, the mixture was filtered through a path of diatomite and the solvent was eliminated in vacuo giving the desired compound 35 (0.252 mmol, 90%); R f  = 0.31 (EtOAc-MeOH, 50:50).

[α]D ²0 -14.7 (c 1.0, CH2Cl2).

IR (KBr): 3381, 2924, 1597, 1130, 1070, 1020 cm.

¹H NMR (400 MHz, CDCl3): δ = 3.11 (m, 1 H), 3.2 (m, 2 H), 3.97-4.03 (m, 1 H), 4.13 (m, 2 H), 4.70 (d, J = 3.2, Hz, 1 H), 6.29 (br, 2 H), 7.23-7.38 (m, 5 H).

¹³C NMR (100 MHz, CDCl3): δ = 48.9, 49.8, 68.4, 74.5, 86.9, 125.8, 127.6, 128.4, 140.7.

HRMS (ESI): m/z [M] calcd for C11H15NO2: 193.1103; found: 193.1105.

Acknowledgment

We are grateful to CONACyT (Project 83185) for financial support, D.M.A.S. thanks CONACyT for the scholarship (169011).

13

When sodium was changed to lithium, the corresponding morpholin-3-one was obtained; however, prolonged reaction times were required.

13

When sodium was changed to lithium, the corresponding morpholin-3-one was obtained; however, prolonged reaction times were required.

Scheme 1 Divergent synthesis of nitrogen heterocycles from epoxyamide 1

Scheme 2   Reagents and conditions: (a) ethylene oxide, H2O, sonication, 20 min, 91%; (b) bromoacetyl bromide, Et3N, CH2Cl2, -10 ˚C; (c) Me2S, CH2Cl2, r.t., 77% from (S)-phenylethylamine (2).

Figure 1 X-ray ORTEP diagram of compound 16a

Figure 2 X-ray ORTEP diagram of compound 24a

Scheme 3