Synthesis 2011(11): 1777-1782  
DOI: 10.1055/s-0030-1260025
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

A Facile Atom-Economic Synthesis of Imidazoles with Chalcogenophosphoryl Substituents via Free-Radical Addition of Secondary Phosphine Chalcogenides to 1-Vinylimidazoles

Nina K. Gusarova, Svetlana F. Malysheva, Nataliya A. Belogorlova, Lidiya N. Parshina, Boris A. Trofimov*
A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russian Federation
Fax: +7(3952)419346; e-Mail: boris_trofimov@irioch.irk.ru;

Further Information

Publication History

Received 13 February 2011
Publication Date:
05 May 2011 (online)

Abstract

Secondary phosphine sulfides and selenides react with 1-vinylimidazoles under radical initiation conditions to give the corresponding anti-Markovnikov adducts in up to 98% yields.

The imidazole ring is found frequently in natural products and biologically active compounds [¹] such as biotin, histamine, the essential amino acid histidine, and the pilocarpine alkaloids. Imidazole-tailored ionic liquids [¹f] [²] and organic catalysts [³] are other applications of imidazole derivatives. Significant interest has focused on the synthesis of functionalized imidazoles containing organophosphorus substituents that are used as polydentate ligands for the design of effective metal-complex catalysts. [4] Recently, we reported the synthesis of 1-substituted imidazoles possessing phosphinyl moieties via radical addition of secondary phosphines to 1-vinylimidazoles. [5]

Herein, we report a strategy for the simple and atom-economic synthesis of novel families of functionalized imidazoles. To achieve this goal we have examined, for the first time, the reaction of 1-vinylimidazoles with secondary phosphine chalcogenides. These substrates were prepared from red phosphorus, styrenes and elemental chalcogens. [6]

Our experiments revealed that secondary phosphine sulfides 1 and 2 and phosphine selenides 3-5 reacted readily with 1-vinylimidazole (6), 2-methyl-1-vinylimidazole (7) and 1-vinylbenzimidazole (8) under UV irradiation, or in the presence of 2,2′-azobis(isobutyronitrile) (AIBN) at 65-70 ˚C to form regioselectively the corresponding anti-Markovnikov adducts 9a-k in high yields (Table  [¹] ).

It is pertinent to mention that secondary phosphine oxides do not react with vinylimidazoles 6-8 under the above conditions. [5] This fact correlates well with the low reactivity of secondary phosphine oxides in the presence of radical initiators [7] due to the high P-H bond dissociation energy in the phosphoryl moiety. [8]

Analysis of the results obtained (Table  [¹] ), as well as published data, [5] showed that the reactivities of secondary phosphine sulfides and phosphine selenides were higher than those of the corresponding phosphines. Hence, the reactions with phosphine chalcogenides 1-5 (Table  [¹] ) were complete within 1.5-4 hours; in contrast, the corresponding secondary phosphines required reaction times of 2-7 hours. [5] To evaluate the comparative reactivity of these PH-adducts with vinylimidazoles under radical addition conditions, we studied the competitive reaction of bis(2-phenylethyl)phosphine (10) and bis(2-phenylethyl)phosphine sulfide (1) with 1-vinylimidazole (6). Thus, a solution of compounds 1, 6 and 10 (molar ratio = 1:1:1) in 1,4-dioxane was subjected to UV irradiation in a quartz tube under an argon atmosphere. The relative rates of conversion­ of PH-adducts 1 and 10, and formation of the corresponding imidazolylphosphine 11 and imidazolyl­phosphine sulfide 9a (Scheme  [¹] ) were monitored by ³¹P NMR spectroscopy.

Scheme 1 Competitive reaction of secondary phosphine 10 and phosphine sulfide 1 with 1-vinylimidazole (6)

The data obtained proved that phosphine sulfide 1 was more active in the reaction with 1-vinylimidazole (6) than bis(2-phenylethyl)phosphine (10). In the first 30 minutes of the reaction the concentration of the formed tertiary phosphine sulfide 9a was almost 1.80 times higher than that of tertiary phosphine 11. After 60 minutes, this ratio increased to 2.10, and after 90 minutes to 2.75; the concentration of the initial phosphine sulfide 1 being diminished faster than that of secondary phosphine 10. The higher reactivity of secondary phosphine sulfides and selenides compared to secondary phosphines in free-radical additions to the electron-rich double bond of vinyl ethers, under radical initiation, has been reported previously. [9]

To summarize, the reported free-radical addition of secondary phosphine sulfides and phosphine selenides to 1-vinylimidazoles represents a simple and atom-economic synthesis of a novel family of functionalized imidazoles possessing chalcogenophosphoryl moieties. These compounds are promising candidates for drug design and as polydentate ligands for the preparation of effective metal-complex catalysts. The reaction developed may be considered as a basic contribution to both imidazole and organo­phosphorus chemistry.

Table 1 Addition of Secondary Phosphine Chalcogenides 1-5 to Imidazoles 6-8 a (continued)

Entry PH-adduct Imidazole Product Conditions Yield (%)b
1

1

6

9a
UV, 2 h
AIBN, 4 h
98
93
2

1

7

9b
UV, 2 h 96
3

1

8

9c
UV, 2 h 91
4

2

6

9d
UV, 1.5 h 94
5

3

6

9e
UV, 1.5 h
AIBN, 3 h
98
80
6

3

7

9f
UV, 2 h 95
 7

4

6

9g
UV, 2 h 96
 8

4

7

9h
UV, 1.5 h 98
 9

4

8

9i
UV, 3 h 95
10

5

6

9j
UV, 1.5 h 95
11

5

8

9k
UV, 2 h 90

a The ratio of PH-adduct-imidazole was 1:1. All experiments were carried out under an Ar atmosphere.
b Yield of isolated product.

All reactions were carried out under an Ar atmosphere. 1,4-Dioxane was distilled and dried according to a standard procedure. Diphenylphosphine and 1-vinylimidazole (6) were obtained from Aldrich Chemical Co. Diphenylphosphine chalcogenides 2 and 5 were prepared by oxidation of diphenylphosphine with elemental S or Se powder in EtOH. 1-Vinylimidazole (6) was distilled under reduced pressure prior to use. 2-Methyl-1-vinylimidazole (7) and 1-vinylbenzylimidazole (8) were synthesized using literature methods. [¹0] AIBN was recrystallized from EtOH prior to use. UV irradiation experiments were carried out using a 200 W mercury arc lamp. Melting points were recorded on a Stuart melting point apparatus and are uncorrected. IR spectra were obtained using Bruker Vertex 70 instrumentation. ¹H, ¹³C, ³¹P and 77Se NMR spectra were recorded at 400.13, 100.62, 161.98 and 76.31 MHz, respectively, as CDCl3 solutions, on a Bruker DPX-400 spectrometer. Chemical shifts are reported in δ (ppm) relative to the residual non-deuterated (CHCl3) solvent signal (¹H, ¹³C) as the internal standard, or H3PO4 (³¹P) and Me2Se (77Se) as external standards. Elemental analyses were obtained using a ThermoFinnigan CHN Flash EA1112 analyzer.

Tertiary Phosphine Sulfides 9a-d and Phosphine Selenides 9e-k; General Procedure

A soln of phosphine chalcogenide 1-5 (1.0 mmol) and imidazole 6-8 (1.0 mmol) in 1,4-dioxane (0.5 mL) was irradiated (200 W Hg arc lamp) in a quartz ampoule (method A), or heated at 65-70 ˚C in the presence of AIBN (1% wt of the total mass of reactants) in a sealed ampoule (method B) (reaction times are given in Table  [¹] ). The reaction progress was monitored using ³¹P NMR spectroscopy; the disappearance of the signal due to the starting phosphine chalcogenides (20-24 ppm for sulfides 1-2 and 2-8 ppm for selenides 3-5), and the appearance of a new resonance at 46-48 ppm and 30-36 ppm for the tertiary phosphine sulfides 9a-d and phosphine selenides 9e-k, being indicative of completion. The mixture was dissolved in Et2O (3 mL), filtered through a layer of Al2O3 (activity level II, 0.5 cm), and the filter-bed washed with a mixture of hexane-Et2O (3 mL, 1:1). The solvents were removed by distillation under reduced pressure to give phosphine chalcogenides 9a-k.

[2-(1 H -Imidazol-1-yl)ethyl]diphenethylphosphine Sulfide (9a)

Light-yellow oil; yield (method A): 361 mg (98%); yield (method B): 343 mg (93%).

IR (film): 3086, 3062, 2933, 1603, 1497, 1454, 1403, 1359, 1288, 1230, 1181, 1108, 1078, 1030, 965, 947, 907, 818, 753, 699, 663, 622, 597, 551, 497 cm.

¹H NMR (400.13 MHz, CDCl3): δ = 1.91-2.17 (m, 6 H, CH2P), 2.83-2.88 (m, 4 H, CH2Ph), 4.23-4.30 (m, 2 H, CH2N), 6.89 and 7.03 (s, 2 H, H-4,5, imidazole), 7.13-7.27 (m, 10 H, Ph), 7.60 (s, 1H, H-2, imidazole).

¹³C NMR (100.62 MHz, CDCl3): δ = 28.45 (CH2Ph), 31.98 (d, ¹ J P-C = 47.8 Hz, PCH2CH2N), 33.30 (d, ¹ J P-C = 49.3 Hz, CH2P), 41.10 (CH2N), 118.82 (C-4, imidazole), 126.77 (p-C, Ph), 128.24 (o-C, Ph), 128.77 (m-C, Ph), 129.27 (C-5, imidazole), 137.08 (C-2, imidazole), 139.97 (d, ³ J P-C = 12.7 Hz, i-C, Ph).

³¹P NMR (161.98 MHz, CDCl3): δ = 46.21.

Anal. Calcd for C21H25N2PS: C, 68.45; H, 6.84; N, 7.60; P, 8.41; S, 8.70. Found: C, 68.40; H, 6.89; N, 7.45; P, 8.13; S, 8.32.

[2-(2-Methyl-1 H -imidazol-1-yl)ethyl]diphenethylphosphine Sulfide (9b)

Colorless crystalline solid; yield (method A): 367 mg (96%); mp 128-130 ˚C (hexane).

IR (KBr): 3064, 3026, 2997, 2931, 2868, 1602, 1523, 1497, 1453, 1424, 1357, 1286, 1271, 1230, 1142, 1110, 1072, 1020, 967, 944, 915, 803, 775, 729, 699, 676, 603, 552, 496 cm.

¹H NMR (400.13 MHz, CDCl3): δ = 2.01-2.10 (m, 6 H, PCH2), 2.40 (s, 3 H, Me), 2.87-2.89 (m, 4 H, CH2Ph), 4.16-4.23 (m, 2 H, CH2N), 6.81 and 6.89 (s, 2 H, H-4,5, imidazole), 7.14-7.23 (m, 10 H, Ph).

¹³C NMR (100.62 MHz, CDCl3): δ = 12.84 (Me), 28.31 (CH2Ph), 31.35 (d, ¹ J P-C = 47.8 Hz, PCH2CH2N), 33.10 (d, ¹ J P-C = 48.2 Hz, CH2P), 39.85 (CH2N), 118.96 (C-4, imidazole), 126.57 (p-C, Ph), 128.0 (o-C, Ph), 128.45 (C-5, imidazole), 128.60 (m-C, Ph), 139.76 (d, ³ J P-C = 13.6 Hz, i-C, Ph), 144.06 (C-2, imidazole).

³¹P NMR (161.98 MHz, CDCl3): δ = 46.10.

Anal. Calcd for C22H27N2PS: C, 69.08; H, 7.11; N, 7.32; P, 8.10; S, 8.38. Found: C, 69.04; H, 7.09; N, 7.45; P, 8.30; S, 8.35.

[2-(1 H -Benzo[ d ]imidazol-1-yl)ethyl]diphenethylphosphine Sulfide (9c)

Colorless crystalline solid; yield (method A): 381 mg (91%); mp 50-51 ˚C (hexane).

IR (KBr): 3085, 3062, 3005, 2931, 2859, 1614, 1496, 1454, 1403, 1366, 1332, 1284, 1242, 1217, 1161, 1009, 946, 872, 864, 750, 699, 666, 612, 551, 496, 427 cm.

¹H NMR (400.13 MHz, CDCl3): δ = 1.97-2.03 (m, 4 H, PCH2), 2.23-2.28 (m, 2 H, PCH 2CH2N), 2.75-2.84 (m, 4 H, CH2Ph), 4.51-4.59 (m, 2 H, CH2N), 7.03 and 7.05 (m, 2 H, H-5,6, imidazole), 7.14-7.32 (m, 10 H, Ph), 7.43, 7.79 and 8.09 (m, 3 H, H-4,7,2, imidazole).

¹³C NMR (100.62 MHz, CDCl3): δ = 28.59 (CH2Ph), 30.01 (d, ¹ J P-C = 49.6 Hz, PCH2CH2N), 33.62 (d, ¹ J P-C = 52.4 Hz, CH2P), 39.38 (CH2N), 109.75 (C-7, imidazole), 120.54, 122.89 and 123.62 (C-4, 6, 5, imidazole), 126.80 (p-C, Ph), 128.31 (o-C, Ph), 128.83 (m-C, Ph), 133.05 (C-8, imidazole), 140.02 (d, ³ J P-C = 12.0 Hz, i-C, Ph), 143.25 and 143.36 (C-2,9, imidazole).

³¹P NMR (161.98 MHz, CDCl3): δ = 47.57.

Anal. Calcd for C25H27N2PS: C, 71.74; H, 6.50; N, 6.69; P, 7.40; S, 7.66. Found: C, 71.69; H, 6.49; N, 6.65; P, 7.36; S 7.54.

[2-(1 H -Imidazol-1-yl)ethyl]diphenylphosphine Sulfide (9d)

Light-yellow oil; yield (method A): 294 mg (94%).

IR (film): 3139, 3054, 2923, 2852, 1672, 1586, 1509, 1481, 1437, 1400, 1181, 1105, 1035, 1021, 997, 845, 747, 709, 694, 628, 611, 560, 509, 492 cm.

¹H NMR (400.13 MHz, CDCl3): δ = 2.88-2.95 (m, 2 H, CH2P), 4.36-4.42 (m, 2 H, CH2N), 6.84 and 6.87 (s, 2 H, H-4,5, imidazole), 7.42-7.78 and 7.75-7.80 (m, 10 H, Ph), 7.87 (s, 1 H, H-2, imidazole).

¹³C NMR (100.62 MHz, CDCl3): δ = 33.79 (d, ¹ J P-C = 53.8 Hz, CH2P), 42.49 (CH2N), 120.00 (C-4, imidazole), 128.77 (d,² J P-C = 12.5 Hz, o-C, Ph), 130.00 (C-5, imidazole), 130.80 (d,³ J P-C = 11.3 Hz, m-C, Ph), 131.13 (d, ¹ J P-C = 87.4 Hz, i-C, Ph), 131.94 (p-C, Ph), 136.81 (C-2, imidazole).

³¹P NMR (161.98 MHz, CDCl3): δ = 39.17.

Anal. Calcd for C17H17N2PS: C, 65.37; H, 5.49; N, 8.97; P, 9.92; S, 10.27. Found: C, 65.31; H, 5.48; N, 8.90; P, 9.90; S, 10.20.

[2-(1 H -Imidazol-1-yl)ethyl]diphenethylphosphine Selenide (9e)

Light-yellow oil; yield (method A): 407 mg (98%); yield (method B): 332 mg (80%).

IR (film): 3107, 3062, 3003, 2932, 1602, 1497, 1454, 1402, 1359, 1323, 1230, 1150, 1108, 1077, 1030, 965, 907, 818, 753, 699, 662, 621, 573, 495, 470, 454 cm.

¹H NMR (400.13 MHz, CDCl3): δ = 2.02-2.23 (m, 6 H, CH2P), 2.82-2.91 (m, 4 H, CH2Ph), 4.27-4.31 (m, 2 H, CH2N), 6.90 and 7.03 (s, 2 H, H-4,5, imidazole), 7.14-7.30 (m, 10 H, Ph), 7.56 (s, 1 H, H-2, imidazole).

¹³C NMR (100.62 MHz, CDCl3): δ = 29.22 (CH2Ph), 31.30 (d, ¹ J P-C = 40.5 Hz, PCH2CH2N), 32.85 (d, ¹ J P-C = 41.7 Hz, CH2P), 41.98 (CH2N), 118.75 (C-4, imidazole), 126.77 (p-C, Ph), 128.23 (o-C, Ph), 128.78 (m-C, Ph), 129.64 (C-5, imidazole), 137.13 (C-2, imidazole), 139.69 (d, ³ J P-C = 13.1 Hz, i-C, Ph).

³¹P NMR (161.98 MHz, CDCl3): δ = 35.28 (s + d satellites, ¹ J P-Se = 710 Hz).

77Se NMR (76.31 MHz, CDCl3): δ = -392.10 (d, ¹ J P-Se = 710 Hz).

Anal. Calcd for C21H25N2PSe: C, 60.72; H, 6.07; N, 6.74; P, 7.46; Se, 19.01. Found: C, 60.60; H, 6.09; N, 6.45; P, 7.30; Se, 18.92.

[2-(1 H -Benzo[ d ]imidazol-1-yl)ethyl]diphenethylphosphine Selenide­ (9f)

Colorless crystalline solid; yield (method A): 442 mg (95%); mp 105-106 ˚C (hexane).

IR (KBr): 3084, 3057, 2919, 2862, 1601, 1496, 1453, 1444, 1383, 1362, 1331, 1282, 1251, 1220, 1197, 1162, 1010, 956, 866, 842, 770, 761, 741, 699, 653, 626, 570, 452 cm.

¹H NMR (400.13 MHz, CDCl3): δ = 2.04-2.10 (m, 4 H, PCH2), 2.27-2.34 (m, 2 H, PCH 2CH2N), 2.72-2.82 (m, 4 H, CH2Ph), 4.49-4.56 (m, 2 H, CH2N), 7.00 and 7.02 (s, 2 H, H-5,6, imidazole), 7.16-7.27 (m, 10 H, Ph), 7.40, 7.77 and 8.00 (m, 3 H, H-4,7,2, imidazole).

¹³C NMR (100.62 MHz, CDCl3): δ = 29.14 (d, ¹ J P-C = 40.7 Hz, PCH2CH2N), 29.16 (CH2Ph), 33.87 (d, ¹ J P-C = 41.4 Hz, CH2P), 40.09 (CH2N), 109.49 (C-7, imidazole), 120.54, 122.55 and 123.29 (C-4, 6, 5, imidazole), 126.66 (p-C, Ph), 128.17 (o-C, Ph), 128.71 (m-C, Ph), 132.87 (C-8, imidazole), 139.55 (d, ³ J P-C = 13.2 Hz, i-C, Ph), 143.05 and 143.62 (C-2, 9, imidazole).

³¹P NMR (161.98 MHz, CDCl3): δ = 35.59 (s + d satellites, ¹ J P-Se = 715 Hz).

77Se NMR (76.31 MHz, CDCl3): δ = -388.10 (d, ¹ J P-Se = 715 Hz).

Anal. Calcd for C25H27N2PSe: C, 64.51; H, 5.85; N, 6.02; P, 6.65; Se, 16.96. Found: C, 64.50; H, 5.82; N, 6.00; P, 6.63; Se, 16.92.

[2-(1 H -Imidazol-1-yl)ethyl]bis[4-( tert -butyl)phenethyl]phosphine Selenide (9g)

Light-yellow oil; yield (method A): 506 mg (96%).

IR (film): 3095, 3055, 2963, 2867, 1709, 1509, 1463, 1444, 1404, 1394, 1364, 1269, 1219, 1140, 1108, 1079, 1019, 963, 817, 756, 663, 622, 564, 484 cm.

¹H NMR (400.13 MHz, CDCl3): δ = 1.26 (s, 18 H, Me), 2.07-2.25 (m, 6 H, CH2P), 2.80-2.86 (m, 4 H, CH 2Ph), 4.25-4.32 (m, 2 H, CH2N), 6.88 and 7.02 (s, 2 H, H-4,5, imidazole), 7.09 and 7.27 (m, 8 H, Ph), 7.57 (s, 1 H, H-2, imidazole).

¹³C NMR (100.62 MHz, CDCl3): δ = 28.66 (CH2Ph), 31.14 (d, ¹ J P-C = 40.0 Hz, PCH2CH2N), 31.24 (Me), 32.63 (d, ¹ J P-C = 40.7 Hz, CH2P), 34.34 (CMe), 41.95 (CH2N), 118.76 (C-4, imidazole), 125.61 (o-C, Ph), 127.87 (m-C, Ph), 129.42 (C-5, imidazole), 136.54 (d, ³ J P-C = 15.9 Hz, i-C, Ph), 137.03 (C-2, imidazole), 149.61 (p-C, Ph).

³¹P NMR (161.98 MHz, CDCl3): δ = 35.58 (s + d satellites, ¹ J P-Se = 708 Hz).

77Se NMR (76.31 MHz, CDCl3): δ = -392.1 (d, ¹ J P-Se = 708 Hz).

Anal. Calcd for C29H41N2PSe: C, 66.02; H, 7.83; N, 5.31; P, 5.87; Se, 14.97. Found: C, 66.00; H, 7.80; N, 5.32; P, 5.56; Se 14.72.

Bis[4-( tert -butyl)phenethyl][2-(2-methyl-1 H -imidazol-1-yl)ethyl]phosphine Selenide (9h)

Colorless crystalline solid; yield (method A): 531 mg (98%); mp 95-96 ˚C (hexane).

IR (KBr): 3092, 3054, 2963, 2904, 2865, 1577, 1501, 1454, 1426, 1363, 1269, 1214, 1145, 1108, 1073, 1021, 1000, 977, 871, 854, 840, 773, 734, 677, 571, 560, 523, 482, 462 cm.

¹H NMR (400.13 MHz, CDCl3): δ = 1.27 (s, 18 H, Me), 2.13-2.22 (m, 6 H, CH2P), 2.41 (s, 3 H, Me), 2.81-2.88 (m, 4 H, CH2Ar), 4.15-4.22 (m, 2 H, CH2N), 6.79 and 6.89 (s, 2 H, H-4,5, imidazole), 7.08 and 7.30 (m, 8 H, Ph).

¹³C NMR (100.62 MHz, CDCl3): δ = 13.06 (Me), 28.65 (CH2Ph), 30.46 (d, ¹ J P-C = 42.5 Hz, PCH2CH2N), 31.19 (Me), 32.68 (d, ¹ J P-C = 44.5 Hz, CH2P), 34.29 (CMe), 40.92 (CH2N), 118.88 (C-4, imidazole), 125.53 (o-C, Ph), 127.27 (C-5, imidazole), 127.75 (m-C, Ph), 136.44 (d, ³ J P-C = 13.6 Hz, i-C, Ph), 144.17 (C-2, imidazole), 149.70 (p-C, Ph).

³¹P NMR (161.98 MHz, CDCl3): δ = 34.90 (s + d satellites, ¹ J P-Se = 705 Hz).

77Se NMR (76.31 MHz, CDCl3): δ = -388.9 (d, ¹ J P-Se = 706 Hz).

Anal. Calcd for C30H43N2PSe: C, 66.53; H, 8.00; N, 5.17; P, 5.72; Se, 14.58. Found: C, 66.47; H, 8.04; N, 5.15; P, 5.43; Se, 14.50.

[2-(1 H -Benzo[ d ]imidazol-1-yl)ethyl]bis[4-( tert -butyl)phenethyl]phosphine Selenide (9i)

Colorless crystalline solid; yield (method A): 549 mg (95%); mp 170-173 ˚C (hexane).

IR (KBr): 3093, 3054, 2962, 2865, 1615, 1493, 1461, 1363, 1283, 1268, 1247, 1199, 1163, 1142, 1108, 1009, 928, 865, 827, 811, 768, 745, 563, 430, 416 cm.

¹H NMR (400.13 MHz, CDCl3): δ = 1.25 (s, 18 H, Me), 2.04-2.12 (m, 4 H, CH2P), 2.28-2.39 (m, 2 H, PCH 2CH2N), 2.68-2.87 (m, 4 H, CH2Ph), 4.51-4.61 (m, 2 H, CH2N), 6.10-7.43 (m, 10 H, H-5,6, imidazole, Ph), 7.44, 7.80 and 7.96 (m, 3 H, H-4,7,2, imidazole).

¹³C NMR (100.62 MHz, CDCl3): δ = 28.36 (CH2Ph), 28.90 (d, ¹ J P-C = 41.9 Hz, PCH2CH2N), 30.90 (Me), 32.53 (d, ¹ J P-C = 41.9 Hz, CH2P), 34.04 (CMe), 39.84 (CH2N), 109.08, 120.38 and 122.20 (C-7, 6, 5, imidazole), 125.25 (o-C, Ph), 127.52 (m-C, Ph), 132.70 (C-8, imidazole), 136.11 (d, ³ J P-C = 13.6 Hz, i-C, Ph), 142.62 and 143.58 (C-2, 9, imidazole), 149.35 (p-C, Ph).

³¹P NMR (161.98 MHz, CDCl3): δ = 35.42 (s + d satellites, ¹ J P-Se = 709 Hz).

77Se NMR (76.31 MHz, CDCl3): δ = -391.8 (d, ¹ J P-Se = 709 Hz).

Anal. Calcd for C33H43N2PSe: C, 68.62; H, 7.50; N, 4.85; P, 5.36; Se, 13.67. Found: C, 68.59; H, 7.49; N, 4.79; P, 5.31; Se, 13.58.

[2-(1 H -Imidazol-1-yl)ethyl]diphenylphosphine Selenide (9j)

Light-yellow oil; yield (method A): 340 mg (95%).

IR (film): 3110, 3053, 2923, 2851, 1607, 1587, 1574, 1507, 1481, 1436, 1395, 1359, 1309, 1290, 1231, 1101, 1026, 997, 907, 845, 747, 692, 662, 623, 559, 541, 514, 495 cm.

¹H NMR (400.13 MHz, CDCl3): δ = 2.97-3.04 (m, 2 H, CH2P), 4.35-4.41 (m, 2 H, CH2N), 6.85 and 6.87 (s, 2 H, H-4,5, imidazole), 7.40-7.75 (m, 10 H, Ph), 7.94 (m, 1 H, H-2, imidazole).

¹³C NMR (100.62 MHz, CDCl3): δ = 33.87 (d, ¹ J P-C = 47.5 Hz, CH2P), 42.45 (CH2N), 119.04 (C-4, imidazole), 128.90 (d, ³ J P-C = 12.5 Hz, o-C, Ph), 130.27 (d, ¹ J P-C = 79.6 Hz, i-C, Ph), 130.54 (C-5, imidazole), 131.30 (d, ² J P-C = 10.7 Hz, m-C, Ph), 136.02 (d, 4 J P-C = 2.1 Hz, p-C, Ph), 136.64 (C-2, imidazole).

³¹P NMR (161.98 MHz, CDCl3): δ = 30.50 (s + d satellites, ¹ J P-Se = 735 Hz).

77Se NMR (76.31 MHz, CDCl3): δ = -357.1 (d, ¹ J P-Se = 735 Hz).

Anal. Calcd for C17H17N2PSe: C, 56.83; H, 4.77; N, 7.80; P, 8.62; Se, 21.98. Found: C, 56.79; H, 4.72; N, 7.79; P, 8.59; Se, 21.93.

[2-(1 H -Benzo[ d ]imidazol-1-yl)ethyl]diphenylphosphine Selenide­ (9k)

Light-yellow oil; yield (method A): 368 mg (90%).

IR (film): 3054, 2988, 2916, 1647, 1614, 1587, 1495, 1459, 1436, 1383, 1369, 1333, 1311, 1284, 1241, 1200, 1159, 1100, 997, 910, 843, 800, 741, 692, 534, 493, 427 cm.

¹H NMR (400.13 MHz, CDCl3): δ = 3.04-3.11 (m, 2 H, CH2P), 4.58-4.65 (m, 2 H, CH2N), 6.85 and 6.87 (s, 2 H, H-5,6, imidazole), 7.31-7.36 and 7.64-7.70 (m, 11 H, H-4, imidazole, Ph), 7.72 and 7.92 (s, 2 H, H-7,2, imidazole).

¹³C NMR (100.62 MHz, CDCl3): δ = 32.23 (d, ¹ J P-C = 48.7 Hz, CH2P), 40.14 (CH2N), 109.62 (C-7, imidazole), 120.13 (C-4, imidazole), 122.56 (C-6, imidazole), 123.24 (C-5, imidazole), 128.75 (d, ² J P-C = 12.4 Hz, o-C, Ph), 130.27 (d, ¹ J P-C = 79.8 Hz, i-C, Ph), 131.21 (d, ³ J P-C = 10.9 Hz, m-C, Ph), 131.94 (d, 4 J P-C = 2.5 Hz, p-C, Ph), 132.82, 142.73 and 142.92 (C-8, 2, 9, imidazole).

³¹P NMR (161.98 MHz, CDCl3): δ = 30.69, (s + d satellites, ¹ J P-Se = 738 Hz).

77Se NMR (76.31 MHz, CDCl3): δ = -357.1 (d, ¹ J P-Se = 738 Hz).

Anal. Calcd for C21H19N2PSe: C, 61.62; H, 4.68; N, 6.84; P, 7.57; Se, 19.29. Found: C, 61.56; H, 4.66; N, 6.81; P, 7.53; Se, 19.21.

Acknowledgment

This work was carried out with financial support of leading scientific schools by the President of the Russian Foundation (grant NSH-3230.2010.3).

    References

  • 1a Grimmett MR. In Comprehensive Heterocyclic Chemistry II   Vol. 3:  Katritzky AR. Rees CW. Scriven EFV. Pergamon; Oxford: 1996.  p.77-220  
  • 1b Hoffmann H. Lindel T. Synthesis  2003,  1753 
  • 1c De Luca L. Curr. Med. Chem.  2006,  13:  1 
  • 1d Jin Z. Nat. Prod. Rep.  2006,  23:  464 
  • 1e Sivappa R. Hernandez NM. He Y. Lovely CJ. Org. Lett.  2007,  9:  3861 
  • 1f Bellina F. Cauteruccio S. Rossi R. Tetrahedron  2007,  63:  4571 
  • 2a Welton T. Chem. Rev.  1999,  99:  2071 
  • 2b Wasserscheid P. Keim W. Angew. Chem. Int. Ed.  2000,  39:  3772 
  • 2c Forsyth SA. Pringle JM. MacFarlane DR. Aust. J. Chem.  2004,  57:  113 
  • 2d Chiappe C. Pieraccini D. J. Phys. Org. Chem.  2005,  18:  275 
  • 2e Rahman T. Fukuyama T. Ryu I. Suzuki K. Yonemura K. Hughes PF. Nokihara K. Tetrahedron Lett.  2006,  47:  2703 
  • 2f Xu J.-M. Liu B.-K. Wu W.-B. Qian C. Wu Q. Lin X.-F. J. Org. Chem.  2006,  71:  3991 
  • 2g Greaves TL. Drummond CJ. Chem. Rev.  2008,  108:  206 
  • 2h Plaquevent J.-C. Levillain J. Guillen F. Malhiac C. Gaumont A.-C. Chem. Rev.  2008,  108:  5035 
  • 3a Ding H. Ma C. Yang Y. Wang Y. Org. Lett.  2005,  7:  2125 
  • 3b Pathan MY. Paike VV. Pachmase PR. More SP. Ardhapure SS. Pawar RP. ARKIVOC  2006,  (xv):  205 
  • 4a Jalil MA. Yamada T. Fujinami S. Hojo T. Nishikawa H. Polyhedron  2001,  20:  627 
  • 4b Grotjahn DB. Incarvito CD. Rheingold AL. Angew. Chem. Int. Ed.  2001,  40:  3884 
  • 4c Harkal S. Rataboul F. Zapf A. Fuhrmann C. Riermeier T. Monsees A. Beller M. Adv. Synth. Catal.  2004,  346:  1742 
  • 4d Grotjahn DB. Gong Y. Zakharov L. Golen JA. Rheingold AL. J. Am. Chem. Soc.  2006,  128:  438 
  • 4e Debono N. Canac Y. Duhayon C. Chauvin R. Eur. J. Inorg. Chem.  2008,  2991 
  • 4f Canac Y. Debono N. Vendier L. Chauvin R. Inorg. Chem.  2009,  48:  5562 
  • 4g Schulz T. Torborg C. Schäffner B. Huang J. Zapf A. Kadyrov R. Börner A. Beller M. Angew. Chem. Int. Ed.  2009,  48:  918 ; Angew. Chem. 2009, 121, 936
  • 4h Field LD. Messerle BA. Vuong KQ. Turner P. Dalton Trans.  2009,  3599 
  • 5 Trofimov BA. Malysheva SF. Parshina LN. Gusarova NK. Belogorlova NA. Synlett  2011,  94 
  • 6a Gusarova NK. Bogdanova MV. Ivanova NI. Chernysheva NA. Sukhov BG. Sinegovskaya LM. Kazheva ON. Alexandrov GG. D’yachenko OA. Trofimov BA. Synthesis  2005,  3103 
  • 6b Sukhov BG. Gusarova NK. Ivanova NI. Bogdanova MV. Kazheva ON. Alexandrov GG. D’yachenko OA. Sinegovskaya LM. Malysheva SF. Trofimov BA.
    J. Struct. Chem.  2005,  46:  1066 
  • 6c Gusarova NK. Malysheva SF. Kuimov VA. Belogorlova NA. Mikhailenko VL. Trofimov BA. Mendeleev Commun.  2008,  18:  260 
  • 6d Trofimov BA. Gusarova NK. Mendeleev Commun.  2009,  19:  295 
  • 6e Malysheva SF. Artem’ev AV. Gusarova NK. Timokhin BV. Tatarinova AA. Trofimov BA. Russ. J. Gen. Chem.  2009,  79:  1617 
  • 6f Gusarova NK. Malysheva SF. Belogorlova NA. Kazheva ON. Chekhlov AN. Alexandrov GG. D’yachenko OA. Sinegovskaya LM. Trofimov BA. J. Struct. Chem.  2010,  51:  120 
  • 7a Leca D. Fensterbank L. Lacôte E. Malakria M. Chem. Soc. Rev.  2005,  34:  858 
  • 7b Coudray L. Montchamp J.-L. Eur. J. Org. Chem.  2008,  3601 
  • 7c Trofimov BA. Gusarova NK. Chernysheva NA. Yas’ko SV. Kazantseva TI. Ushakov IA. Synthesis  2008,  2743 
  • 8 Jessop CM. Parsons AF. Routledge A. Irvine DJ. Eur. J. Org. Chem.  2006,  1547 
  • 9a Gusarova NK. Malysheva SF. Oparina LA. Belogorlova NA. Tantsyrev AP. Parshina LN. Sukhov BG. Tlegenov RT. Trofimov BA. ARKIVOC  2009,  (vii):  260 
  • 9b Oparina LA. Malysheva SF. Gusarova NK. Vysotskaya OV. Stepanov AV. Belogorlova NA. Albanov AI. Trofimov BA. Synthesis  2009,  3427 
  • 10a Shostakovskii MF. Skvortsova GG. Glazkova NP. Domnina ES. Chem. Heterocycl. Compd.  1969,  1070 
  • 10b Mamashvili TN. Keiko NA. Kalikhman ID. Domnina ES. Glazkova NP. Voronkov MG. Russ. Chem. Bull.  1987,  2122 

    References

  • 1a Grimmett MR. In Comprehensive Heterocyclic Chemistry II   Vol. 3:  Katritzky AR. Rees CW. Scriven EFV. Pergamon; Oxford: 1996.  p.77-220  
  • 1b Hoffmann H. Lindel T. Synthesis  2003,  1753 
  • 1c De Luca L. Curr. Med. Chem.  2006,  13:  1 
  • 1d Jin Z. Nat. Prod. Rep.  2006,  23:  464 
  • 1e Sivappa R. Hernandez NM. He Y. Lovely CJ. Org. Lett.  2007,  9:  3861 
  • 1f Bellina F. Cauteruccio S. Rossi R. Tetrahedron  2007,  63:  4571 
  • 2a Welton T. Chem. Rev.  1999,  99:  2071 
  • 2b Wasserscheid P. Keim W. Angew. Chem. Int. Ed.  2000,  39:  3772 
  • 2c Forsyth SA. Pringle JM. MacFarlane DR. Aust. J. Chem.  2004,  57:  113 
  • 2d Chiappe C. Pieraccini D. J. Phys. Org. Chem.  2005,  18:  275 
  • 2e Rahman T. Fukuyama T. Ryu I. Suzuki K. Yonemura K. Hughes PF. Nokihara K. Tetrahedron Lett.  2006,  47:  2703 
  • 2f Xu J.-M. Liu B.-K. Wu W.-B. Qian C. Wu Q. Lin X.-F. J. Org. Chem.  2006,  71:  3991 
  • 2g Greaves TL. Drummond CJ. Chem. Rev.  2008,  108:  206 
  • 2h Plaquevent J.-C. Levillain J. Guillen F. Malhiac C. Gaumont A.-C. Chem. Rev.  2008,  108:  5035 
  • 3a Ding H. Ma C. Yang Y. Wang Y. Org. Lett.  2005,  7:  2125 
  • 3b Pathan MY. Paike VV. Pachmase PR. More SP. Ardhapure SS. Pawar RP. ARKIVOC  2006,  (xv):  205 
  • 4a Jalil MA. Yamada T. Fujinami S. Hojo T. Nishikawa H. Polyhedron  2001,  20:  627 
  • 4b Grotjahn DB. Incarvito CD. Rheingold AL. Angew. Chem. Int. Ed.  2001,  40:  3884 
  • 4c Harkal S. Rataboul F. Zapf A. Fuhrmann C. Riermeier T. Monsees A. Beller M. Adv. Synth. Catal.  2004,  346:  1742 
  • 4d Grotjahn DB. Gong Y. Zakharov L. Golen JA. Rheingold AL. J. Am. Chem. Soc.  2006,  128:  438 
  • 4e Debono N. Canac Y. Duhayon C. Chauvin R. Eur. J. Inorg. Chem.  2008,  2991 
  • 4f Canac Y. Debono N. Vendier L. Chauvin R. Inorg. Chem.  2009,  48:  5562 
  • 4g Schulz T. Torborg C. Schäffner B. Huang J. Zapf A. Kadyrov R. Börner A. Beller M. Angew. Chem. Int. Ed.  2009,  48:  918 ; Angew. Chem. 2009, 121, 936
  • 4h Field LD. Messerle BA. Vuong KQ. Turner P. Dalton Trans.  2009,  3599 
  • 5 Trofimov BA. Malysheva SF. Parshina LN. Gusarova NK. Belogorlova NA. Synlett  2011,  94 
  • 6a Gusarova NK. Bogdanova MV. Ivanova NI. Chernysheva NA. Sukhov BG. Sinegovskaya LM. Kazheva ON. Alexandrov GG. D’yachenko OA. Trofimov BA. Synthesis  2005,  3103 
  • 6b Sukhov BG. Gusarova NK. Ivanova NI. Bogdanova MV. Kazheva ON. Alexandrov GG. D’yachenko OA. Sinegovskaya LM. Malysheva SF. Trofimov BA.
    J. Struct. Chem.  2005,  46:  1066 
  • 6c Gusarova NK. Malysheva SF. Kuimov VA. Belogorlova NA. Mikhailenko VL. Trofimov BA. Mendeleev Commun.  2008,  18:  260 
  • 6d Trofimov BA. Gusarova NK. Mendeleev Commun.  2009,  19:  295 
  • 6e Malysheva SF. Artem’ev AV. Gusarova NK. Timokhin BV. Tatarinova AA. Trofimov BA. Russ. J. Gen. Chem.  2009,  79:  1617 
  • 6f Gusarova NK. Malysheva SF. Belogorlova NA. Kazheva ON. Chekhlov AN. Alexandrov GG. D’yachenko OA. Sinegovskaya LM. Trofimov BA. J. Struct. Chem.  2010,  51:  120 
  • 7a Leca D. Fensterbank L. Lacôte E. Malakria M. Chem. Soc. Rev.  2005,  34:  858 
  • 7b Coudray L. Montchamp J.-L. Eur. J. Org. Chem.  2008,  3601 
  • 7c Trofimov BA. Gusarova NK. Chernysheva NA. Yas’ko SV. Kazantseva TI. Ushakov IA. Synthesis  2008,  2743 
  • 8 Jessop CM. Parsons AF. Routledge A. Irvine DJ. Eur. J. Org. Chem.  2006,  1547 
  • 9a Gusarova NK. Malysheva SF. Oparina LA. Belogorlova NA. Tantsyrev AP. Parshina LN. Sukhov BG. Tlegenov RT. Trofimov BA. ARKIVOC  2009,  (vii):  260 
  • 9b Oparina LA. Malysheva SF. Gusarova NK. Vysotskaya OV. Stepanov AV. Belogorlova NA. Albanov AI. Trofimov BA. Synthesis  2009,  3427 
  • 10a Shostakovskii MF. Skvortsova GG. Glazkova NP. Domnina ES. Chem. Heterocycl. Compd.  1969,  1070 
  • 10b Mamashvili TN. Keiko NA. Kalikhman ID. Domnina ES. Glazkova NP. Voronkov MG. Russ. Chem. Bull.  1987,  2122 

Scheme 1 Competitive reaction of secondary phosphine 10 and phosphine sulfide 1 with 1-vinylimidazole (6)