Synthesis 2011(11): 1783-1791  
DOI: 10.1055/s-0030-1260018
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Palladium-Catalyzed Peripheral Arylation of 5-Pyrazolones via Enolizable Bond Protection

Hye-Rin Bina,b, Yun Soo Bae*c, Guncheol Kimb, Kee-In Lee*a
a Green Chemistry Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yusong, Taejon 305-600, Korea
Fax: +82(42)8607160; e-Mail: kilee@krict.re.kr;
b Department of Chemistry, College of Natural Science, Chungnam National University, Taejon 305-764, Korea
c Center for Cell Signaling Research, Division of Molecular Life Sciences, Ewha Womans University, Seoul 120-750, Korea

Further Information

Publication History

Received 17 February 2011
Publication Date:
28 April 2011 (online)

Abstract

Peripheral cross-coupling of the enol form of the 5-pyrazolone scaffold with arylboronic acids promoted by [PdCl2(dppf)] afforded the arylated products in good yields. In this coupling, the protection of the enolizable hydroxyl group of pyrazolone is a prerequisite for ensuring the Suzuki-Miyaura cross-coupling. A particular feature of this process is that it enables the synthesis of 5-hydroxy-3-biphenyl and -terphenylpyrazole derivatives with structural diversity.

Pyrazoles are structural units that are frequently found in natural products and pharmaceuticals, and there has been a growing interest in new synthetic methods for their preparation. Such heterocyclic frameworks serve as important core structures that are required for a wide range of biological activities, such as antibacterial/antitumor, anti-inflammatory, analgesic, and anti-hyperglycemic activity­, [¹] and are interesting templates that can be used to access­ highly functionalized pyrazole derivatives. In particular, many arylated pyrazoles have been synthesized and have proven to be effective inhibitors of COX-2, p38 MAP kinase, and CDK2/Cyclin A. [²] As part of pyrazole diversity-oriented syntheses, [³] we were interested in an efficient method for incorporating an aryl group onto a peripheral site on enolizable pyrazolone derivatives.

Decades of progress in transition-metal-catalyzed arylation of pyrazoles has provided an indispensable method for the construction of a number of diversely arylated pyrazoles. [4] Substantial effort has focused on the use of pyrazole halides or triflates derived from pyrazolones through enolizable bond activation (Scheme  [¹] , route I). [5] These approaches are rather limited to the use of tautomerizable heterocycles as synthetic precursors for halides or pseudohalides. However, palladium-catalyzed peripheral arylation of the pyrazolone fragment keeping the structure intact has not been widely explored to date (Scheme  [¹] , route II). [6] Herein, we wish to report Suzuki-Miyaura cross-coupling of the peripheral haloaryl group of enolizable 1-(2-pyridinyl)pyrazolone derivatives with arylboronic acids promoted by [PdCl2(dppf)] [dppf = 1,1"-bis(diphenylphosphino)ferrocene], resulting in good yields of arylated products.

Scheme 1 Strategies for the utilization of the tautomeric pyrazolone scaffold

To examine the feasibility of peripheral arylation of the tautomeric pyrazolone scaffold, we initiated Suzuki-Miyaura cross-coupling of 1-(2-pyridinyl)-5-hydroxypyrazole (1a) and 1-phenyl-5-pyrazolone (1b) as substrates. Based on NMR analysis (CDCl3, r.t.), it was noted that 1a exists exclusively in enol form, whereas 1b remains as it stands. [7] Despite employing various conditions reported in literature, we failed to accomplish the Suzuki coupling of 1a with phenylboronic acid (Table  [¹] , entries 1-3). It is assumed that the palladium catalyst is stabilized and inactivated through chelation with the substrate bearing a bidentate ligand. [8] On the other hand, the Suzuki cross-coupling of 1b furnished the corresponding 3-(3-biphenyl)pyrazolone 1c in 71% yield within one hour (entry 4). The observed difference indicates that initial oxidative addition of palladium(0) to bromide 1a may hamper or compete with substantial complexation, with the substrate leading to the formation of inactive species 1a′ (Figure  [¹] ). [8a-c] We rule out a plausible alternative Pd complex with the two nitrogen atoms of the pyridine-pyrazole ligand, [8d] [e] because 1-(2-pyridinyl)pyrazole 1d also exists in the enol form, and the X-ray crystal structure clearly shows that the carbonyl oxygen and pyridine nitrogen adopt an almost syn-periplanar arrangement that is capable of accommodating intramolecular hydrogen bonding (Figure  [²] ).

Table 1 Suzuki Cross-Coupling of 5-Pyrazolone/5-Hydroxypyrazole Derivatives with Phenylboronic Acida

Entry Bromide Reagents Solvent Time (h) Product [yield (%)b]
1 1a [Pd(PPh3)4], Na2CO3 DME 72 -c
2 1a [Pd(PPh3)4], CsCO3 DME 72 -c
3 1a [PdCl2(dppf)], dppf, K3PO4 1,4-dioxane 20 -c,d
4 1b [PdCl2(dppf)], dppf, K3PO4 1,4-dioxane  0.5 1c (71)
5 2a [Pd(PPh3)4], Na2CO3 DME 30 1a (23)
6 3a [PdCl2(dppf)], dppf, K3PO4 1,4-dioxane  1 3b (5), 6a (24)
7 4a [PdCl2(dppf)], dppf, K3PO4 1,4-dioxane  0.5 5a (90)

a Reaction conditions: phenylboronic acid (2-3 equiv), Pd (5-8 mol%), dppf (4 mol%), base (2-3 equiv), 85-100 ˚C.
b Isolated yield.
c No reaction observed; the starting material decomposed.
d Trace amounts of two unidentified byproducts were isolated.

Figure 1 Proposed structure for inactive palladium complex 1a′ (Ar = 4-BrC6H4)

Figure 2 X-ray crystal structure of 1-(2-pyridinyl)-3-phenyl-5-hydroxypyrazole (1d)

These results led to further investigations into whether protection of the enolizable ketone could influence the outcome of the Suzuki reaction. Suzuki coupling with acetate­ 2a was unsuccessful, [4b] and only led to liberation of the parent molecule (entry 5). Protection of 1a with TIPS-Cl and imidazole in N,N-dimethylformamide (DMF) smoothly afforded the corresponding silyl enol ether 3a. However, even when the TIPS group was used, the Suzuki coupling gave the two arylated pyrazoles 3b and 6a in poor yields (entry 6). We reasoned that a pentacoordinated silicon species, which was brought about by coordination with the adjacent pyridine nitrogen, was presumably responsible for the unusual basic hydrolysis of the TIPS group. [9] The hydrolytic susceptibility of this moiety eventually forced us to find protecting groups that were more stable towards base-mediated hydrolysis. A survey of protecting groups revealed that the tert-butoxycarbonyl (Boc) group allows facile Suzuki coupling to take place within one hour in excellent yield (entry 7). Thus, this strategy was subsequently employed for all substrates.

The 5-hydroxypyrazole derivatives 1e-k were conveniently prepared by treatment of the corresponding benzoylacetates with 2-hydrazinopyridines, respectively, in refluxing acetic acid. [7] Benzoylacetates were available from commercial sources and α-alkylated derivatives were prepared according to a previous procedure. [¹0] Consequently, the 5-hydroxypyrazole derivatives were readily protected to provide their Boc-derivatives 4b-h using di-tert-butyldicarbonate (Boc2O) in the presence of catalytic amount of 4-(N,N-dimethylamino)pyridine (DMAP) in dichloromethane. [¹¹] The Boc-protected pyrazoles were sufficiently stable to allow chromatographic separation and isolation in excellent yields, as shown in Table  [²] .

Table 2 Boc-Protection of 5-Hydroxypyrazole Derivatives

Entry 1 A X Y 4 Yield (%)
1 1a CH 4-Br H 4a 97
2 1e CH 4-I H 4b 99
3 1f CH 3-I H 4c 99
4 1g CH 2-I H 4d 98
5 1h CH 4-Br n-Pr 4e 89
6 1i CH 4-Br Bn 4f 94
7 1j CCl 3-I H 4g 95
8 1k N 4-I H 4h 97

With substrates in hand, we wished to demonstrate the scope of this protocol for the palladium-catalyzed peripheral arylation of 3-haloarylpyrazole derivatives with electronic and steric variations on both coupling partners, and to secure synthesis of biphenyl and terphenylpyrazole analogues with structural diversity. Coupling of the Boc-protected pyrazoles with arylboronic acids was accomplished with [PdCl2(dppf)] in 1,4-dioxane, with K3PO4 as the base, to provide the coupling products within one hour. The reaction with electron-rich arylboronic acids generally tolerates differing substitution patterns on the peripheral aryl group, as shown in Table  [³] . In addition, reaction of sterically hindered 2-phenoxyphenylboronic acid with either p- or m-iodide-substituted starting materials 4b and 4c, respectively, provided the corresponding products in moderate yields (entries 6 and 8). However, the reaction failed with electron-poor arylboronic acids. Although the coupling of o-isomers showed a decreased reactivity compared to those of the corresponding m-congeners, the yields were still acceptable (Table  [³] , entries 9 and 10 vs. entries 13 and 14).

A higher degree of substitution, for example in 4e and 4f, ultimately led to a drop in yields although the reactions proceeded smoothly (Table  [³] , entries 15 and 16). Variation at the pyridine moiety did not affect the yield or reaction times (entries 17 and 18). Therefore, the Boc group protecting strategy was suitable for the Suzuki cross-coupling­ of 3-haloarylpyrazoles and prevented problems caused by the pyridine nitrogen.

The Boc group is widely used in organic synthesis as both an amine and a phenol protecting group, and cleavage is usually achieved by treatment with an acid such as tri­fluoroacetic acid (TFA) or HCl. In a typical procedure, Boc-protected 3-biphenylpyrazole 5a was thus treated with TFA at ambient temperature in dichloromethane to release the desired product 6a in 93% yield. [¹¹] All the Boc-protected derivatives were deprotected within five hours, to produce 5-hydroxy-3-biphenyl and -terphenylpyrazole analogues 6b-s in good yields (Table  [³] ). Again, all the products existed exclusively in the enol form.

Table 3 Pd-Catalyzed Arylation of 5-(tert-Butoxycarbonyl­oxy)pyrazole Derivatives 4 and TFA-Mediated Boc-Deprotection
(continued)

Entry 4 ArB(OH)2 5 (% yield) 6 (% yield)
1 4a

5b (70) 6b (70)
2 4a

5c (95) 6c (58)
3 4a

5d (98) 6d (71)
4 4a

5e (81) 6e (99)
5 4b

5f (98) 6f (85)
6 4b

5g (63) 6g (86)
7 4c

5h (66) 6h (84)
8 4c

5i (56) 6i (80)
 9 4c

5j (99) 6j (98)
10 4c

5k (90) 6k (85)
11 4c

5l (84) 6l (97)
12 4c

5m (90) 6m (99)
13 4d

5n (84) 6n (84)
14 4d

6o (82)a
15 4e

5p (74) 6p (91)
16 4f

5q (87) 6q (96)
17 4g

5r (95) 6r (90)
18 4h

5s (90) 6s (93)

a The deprotected product 6o was obtained in 82% yield.

In summary, transition-metal-catalyzed arylation of pyrazoles provides a powerful method for the construction of a number of diversely arylated pyrazoles. However, approaches have mainly been based on the use of pyrazole halides and triflates derived from pyrazolones through enolizable bond activation. In this study, we revealed that the peripheral cross-coupling of the enol form of the 5-pyrazolone scaffold with arylboronic acids promoted by [PdCl2(dppf)] afforded the arylated products in good yields. To ensure the Suzuki-Miyaura cross-coupling, protection of the enolizable hydroxyl group of pyrazolone is crucial. The advantage of this process is the ability to secure the synthesis of 5-hydroxy-3-biphenyl and -terphenylpyrazole derivatives with structural diversity.

The reactions were monitored by TLC with Merck silica gel 60 F254 TLC glass plates, and the products were purified by flash chromatography with Merck Kiesel 60 silica gel (particles size 0.040-0.063 mm) using a glass column. ¹H (300 MHz) and ¹³C (75 MHz) NMR spectra were recorded with a Jeol Eclipse FT 300 MHz spectrometer. Mass spectra were recorded with an Agilent 1100 Series VLL or a JEOL the MStation JMS 700 mass Spectrometer.

Preparation of 5-Pyrazolone/5-Hydroxypyrazole; General Procedure

The starting 5-pyrazolone (keto form) and 5-hydroxypyrazole (enol form) were obtained in 65-88% yields after chromatographic separation, by the treatment of the appropriate hydrazines with β-keto ­esters in refluxing acetic acid according to the procedure described by Huang et al. [7]

1-(2-Pyridinyl)-3-(4-bromophenyl)-5-hydroxypyrazole (1a)

Yield: 81%.

¹H NMR (300 MHz, CDCl3): δ = 12.86-12.84 (br s, 1 H), 8.30-8.28 (m, 1 H), 8.03 (d, J = 8.4 Hz, 1 H), 7.94-7.88 (m, 1 H), 7.74 (d, J = 8.5 Hz, 2 H), 7.54 (d, J = 8.4 Hz, 2 H), 7.21-7.16 (m, 1 H), 5.91 (s, 1 H).

¹³C NMR (75 MHz, CDCl3): δ = 157.5, 154.6, 151.6, 145.3, 140.1, 132.1, 131.8, 127.5, 122.6, 120.2, 112.4, 85.7.

HRMS (EI): m/z calcd for C14H10BrN3O: 315.0007; found: 314.9998.

1-Phenyl-3-(3-bromophenyl)-5-pyrazolone (1b)

Yield: 88%.

¹H NMR (300 MHz, CDCl3): δ = 7.97-7.93 (m, 3 H), 7.67-7.56 (m, 2 H), 7.46-7.40 (m, 2 H), 7.33 (t, J = 7.9 Hz, 1 H), 7.25-7.20 (m, 1 H), 3.81 (s, 2 H).

¹³C NMR (75 MHz, CDCl3): δ = 170.0, 153.2, 138.0, 133.6, 132.9, 130.5, 129.0, 128.9, 125.6, 124.7, 123.3, 119.2, 39.5.

HRMS (EI): m/z calcd for C15H11BrN2O: 314.0055; found: 314.0056.

1-(2-Pyridinyl)-3-(phenyl)-5-hydroxypyrazole (1d)

Yield: 87%.

¹H NMR (300 MHz, CDCl3): δ = 12.83 (br s, 1 H), 8.28-8.27 (m, 1 H), 8.05 (d, J = 8.4 Hz, 1 H), 7.92-7.85 (m, 3 H), 7.48-7.32 (m, 3 H), 7.19-7.14 (m, 1 H), 5.94 (s, 1 H).

¹³C NMR (75 MHz, CDCl3): δ = 157.3, 154.7, 152.7, 145.2, 140.0, 133.2, 128.7, 128.6, 125.9, 120.0, 112.4, 85.8.

EIMS (70 eV): m/z (%) = 237 (100) [M]+, 209 (28), 196 (77), 180 (17), 160 (28), 102 (31), 79 (65).

X-ray Crystallographic Data (1d)

Empirical formula: C14H11N3O; Formula weight: 237.26; Crystal system: monoclinic; Space group: P2(1)/c; Unit cell dimensions: a = 9.8059(4) Å, α = 90˚, b = 10.6374(5) Å, β = 104.000(2)˚, c = 11.4730(5) Å, γ = 90˚; Density (calculated): 1.357 Mg/m³; Reflections collected: 11635; Final R indices [I > 2σ(I)], R1 = 0.0451, wR2 = 0.1206; R indices (all data), R1 = 0.0594, wR2 = 0.1316. Atomic coordinates and crystallographic parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC 805262). These data can be obtained free of charge from the Cambridge­ Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Pd-Catalyzed Direct Arylation of 5-Pyrazolone: Preparation of 1-Phenyl-3-(3-biphenyl)-5-pyrazolone (1c)

To a stirred solution of 1b (120 mg, 0.38 mmol), phenylboronic acid (139 mg, 1.14 mmol), K3PO4 (242 mg, 1.14 mmol), [PdCl2(dppf)] (25 mg, 0.03 mmol), and dppf (8.4 mg, 0.015 mmol) in 1,4-dioxane (6 mL) was heated at 100 ˚C for 1 h. The reaction mixture was cooled to r.t., filtered through Celite, and the filtrate was concentrated to dryness. The residue was taken up with EtOAc (20 mL), and the organic layer was washed with H2O (3 × 10 mL), dried over anhydrous MgSO4, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (hexane-EtOAc, 10:1) to afford 1c.

Yield: 85 mg (72%).

¹H NMR (300 MHz, CDCl3): δ = 8.00-7.97 (m, 3 H), 7.73-7.62 (m, 4 H), 7.55-7.40 (m, 6 H), 7.25-7.20 (m, 1 H), 3.89 (s, 2 H).

¹³C NMR (75 MHz, CDCl3): δ = 170.3, 154.7, 142.2, 140.4, 138.2, 131.5, 129.6, 129.5, 129.1, 129.0, 127.3, 127.3, 125.5, 125.0, 124.7, 119.2, 39.8.

HRMS (EI): m/z calcd for C21H16N2O: 312.1263; found: 312.1263.

Boc-Protection of 5-Hydroxypyrazoles: tert -Butyl 1-(2-Pyridinyl)-3-(4-bromophenyl)-5-pyrazolyl Carbonate (4a); Typical Procedure

To a solution of 1a (272 mg, 0.86 mmol) and di-tert-butyldicarbonate (0.24 mL, 1.03 mmol) in CH2Cl2 (7 mL), DMAP (5 mg, 0.04 mmol) was added. When the reaction was complete (1 h as judged by TLC), the mixture was washed with H2O (3 × 5 mL), dried over anhydrous MgSO4, and concentrated to dryness. The crude material was purified by column chromatography on silica gel (hexane-EtOAc, 10:1) to afford 4a.

Yield: 347 mg (97%).

¹H NMR (300 MHz, CDCl3): δ = 8.43-8.41 (m, 1 H), 7.99-7.96 (m, 1 H), 7.85-7.80 (m, 1 H), 7.75 (d, J = 8.5 Hz, 2 H), 7.55 (d, J = 8.5 Hz, 2 H), 7.22-7.18 (m, 1 H), 6.49 (s, 1 H), 1.57 (s, 9 H).

¹³C NMR (75 MHz, CDCl3): δ = 152.2, 150.1, 149.6, 147.8, 146.6, 138.6, 131.9, 131.8, 127.3, 122.6, 121.7, 115.2, 96.0, 85.0, 27.7.

MS (CI+): m/z (%) = 418 (3) [M]+, 416 (2) [M]+, 358 (26), 356 (17), 317 (100), 315 (87), 79 (16).

tert -Butyl 1-(2-Pyridinyl)-3-(4-iodophenyl)-5-pyrazolyl Carbonate (4b)

¹H NMR (300 MHz, CDCl3): δ = 8.42-8.40 (m, 1 H), 7.99-7.96 (m, 1 H), 7.85-7.80 (m, 1 H), 7.76 (d, J = 8.5 Hz, 2 H), 7.61 (d, J = 8.5 Hz, 2 H), 7.22-7.18 (m, 1 H), 6.50 (s, 1 H), 1.57 (s, 9 H).

¹³C NMR (75 MHz, CDCl3): δ = 152.1, 150.2, 149.6, 147.8, 146.6, 138.6, 137.8, 132.4, 127.5, 121.7, 115.2, 96.0, 94.3, 85.0, 27.7.

MS (CI+): m/z (%) = 465 (1) [M]+, 464 (43) [M]+, 420 (12), 406 (12), 365 (15), 364 (100), 363 (29), 238 (2), 237 (1).

tert -Butyl 1-(2-Pyridinyl)-3-(3-iodophenyl)-5-pyrazolyl Carbonate (4c)

¹H NMR (300 MHz, CDCl3): δ = 8.43-8.41 (m, 1 H), 8.26-8.25 (m, 1 H), 8.01-7.98 (m, 1 H), 7.86-7.78 (m, 2 H), 7.70-7.66 (m, 1 H), 7.23-7.18 (m, 1 H), 7.15-7.13 (m, 1 H), 6.50 (s, 1 H), 1.57 (s, 9 H).

¹³C NMR (75 MHz, CDCl3): δ = 152.1, 149.6, 149.5, 147.8, 146.5, 138.6, 137.5, 134.9, 134.6, 130.4, 125.0, 121.7, 115.2, 96.1, 94.7, 85.0, 27.7.

MS (CI+): m/z (%) = 465 (5) [M]+, 464 (25) [M]+, 420 (9), 406 (10), 365 (15), 364 (100), 363 (26), 238 (3), 237 (1).

tert -Butyl 1-(2-Pyridinyl)-3-(2-iodophenyl)-5-pyrazolyl Carbonate (4d)

¹H NMR (300 MHz, CDCl3): δ = 8.42-8.41 (m, 1 H), 7.97 (d, J = 8.1 Hz, 2 H), 7.83-7.78 (m, 1 H), 7.63-7.61 (m, 1 H), 7.41 (t, J = 7.6 Hz, 1 H), 7.21-7.17 (m, 1 H), 7.08-7.02 (m, 1 H), 6.58 (m, 1 H), 1.57 (s, 9 H).

¹³C NMR (75 MHz, CDCl3): δ = 153.0, 152.2, 149.7, 147.8, 145.3, 140.3, 138.6, 138.0, 130.8, 130.0, 128.2, 121.7, 115.3, 99.6, 96.8, 84.9, 27.7.

MS (CI+): m/z (%) = 465 (12) [M]+, 464 (54) [M]+, 420 (8), 419 (6), 406 (11), 404 (6), 365 (15), 364 (100), 363 (26), 238 (3), 237 (1).

tert -Butyl 1-(2-Pyridinyl)-3-(4-bromophenyl)-4-propyl-5-pyrazolyl Carbonate (4e)

¹H NMR (300 MHz, CDCl3): δ = 8.39-8.37 (m, 1 H), 7.96 (d, J = 8.3 Hz, 1 H), 7.81-7.15 (m, 1 H), 7.59 (dd, J = 14.8, 8.8 Hz, 4 H), 7.18-7.14 (m, 1 H), 2.56 (t, J = 7.7 Hz, 2 H), 1.59-1.54 (m, 2 H), 1.52 (s, 9 H), 0.92 (t, J = 7.4 Hz, 3 H).

¹³C NMR (75 MHz, CDCl3): δ = 152.3, 149.9, 149.4, 147.7, 143.6, 138.5, 132.8, 131.7, 129.3, 122.4, 121.3, 114.6, 110.6, 84.7, 27.7, 24.6, 22.8, 14.0.

MS (CI+): m/z (%) = 460 (50) [M]+, 458 (49) [M]+, 402 (14), 400 (20), 398 (9), 361 (17), 360 (96), 359 (57), 358 (100), 357 (40), 328 (13).

tert -Butyl 1-(2-Pyridinyl)-3-(4-bromophenyl)-4-benzyl-5-pyrazolyl Carbonate (4f)

¹H NMR (300 MHz, CDCl3): δ = 8.40-8.38 (m, 1 H), 8.01-7.98 (m, 1 H), 7.83-7.77 (m, 1 H), 7.48 (s, 4 H), 7.24-7.15 (m, 6 H), 3.94 (s, 2 H), 1.48 (s, 9 H).

¹³C NMR (75 MHz, CDCl3): δ = 152.3, 149.9, 149.6, 147.7, 144.5, 139.3, 138.6, 132.2, 131.7, 129.4, 128.6, 128.3, 126.3, 122.6, 121.4, 114.6, 108.8, 84.9, 28.5, 27.6.

MS (CI+): m/z (%) = 508 (40) [M]+, 506 (38) [M]+, 450 (17), 448 (22), 446 (9), 409 (21), 408 (98), 407 (62), 406 (100), 405 (40), 328 (4), 318 (1).

tert -Butyl 1-[2-(3-Chloro)pyridinyl]-3-(3-iodophenyl)-5-pyrazolyl Carbonate (4g)

¹H NMR (300 MHz, CDCl3): δ = 8.57-8.55 (m, 1 H), 7.94 (d, J = 8.0 Hz, 1 H), 7.86 (d, J = 7.7 Hz, 1 H), 7.66-7.63 (m, 2 H), 7.58-7.56 (m, 1 H), 7.50-7.34 (m, 1 H), 6.71 (s, 1 H), 1.52 (s, 9 H).

¹³C NMR (75 MHz, CDCl3): δ = 150.7, 148.3, 147.3, 147.0, 146.9, 139.8, 137.4, 134.9, 134.7, 130.3, 128.9, 125.4, 125.1, 94.6, 92.4, 85.6, 27.5.

MS (CI+): m/z (%) = 500 (25) [M]+, 499 (16) [M]+, 498 (74) [M]+, 454 (7), 440 (14), 400 (32), 399 (22), 398 (100), 397 (21), 364 (6), 363 (2), 362 (1), 306 (1), 272 (1).

tert -Butyl 1-(2-Pyrimidinyl)-3-(4-iodophenyl)-5-pyrazolyl Carbonate (4h)

¹H NMR (300 MHz, CDCl3): δ = 8.79 (d, J = 4.8 Hz, 2 H), 7.76 (d, J = 8.4 Hz, 2 H), 7.67 (d, J = 8.4 Hz, 2 H), 7.26-7.22 (m, 1 H), 6.55 (s, 1 H), 1.58 (s, 9 H).

¹³C NMR (75 MHz, CDCl3): δ = 158.7, 156.2, 151.7, 149.5, 147.5, 137.7, 131.7, 127.9, 118.9, 97.2, 94.9, 85.2, 27.7.

MS (CI+): m/z (%) = 465 (15) [M+ + 1], 421 (6), 407 (7), 405 (5), 366 (15), 365 (100), 364 (25), 273 (5), 239 (2).

Pd-Catalyzed Arylation of Boc-Protected 5-Hydroxypyrazoles: tert -Butyl 1-(2-Pyridinyl)-3-[4-(3′,4′-methylenedioxy)biphenyl]-5-pyrazolyl Carbonate (5b); Typical Procedure

A stirred solution of 4a (624 mg, 1.50 mmol), 3,4-(methylenedioxy)phenylboronic acid (747 mg, 4.50 mmol), K3PO4 (955 mg, 4.49 mmol), [PdCl2(dppf)] (98 mg, 0.12 mmol), and dppf (33 mg, 0.06 mmol) in 1,4-dioxane (20 mL) was heated at 100 ˚C for 1 h. The reaction mixture was cooled to r.t., filtered through Celite, and the filtrate was concentrated to dryness. The residue was taken up with EtOAc (50 mL), and the organic layer was washed with H2O (3 × 10 mL), dried over anhydrous MgSO4, and concentrated in vacuo. The crude material was purified by column chromatography on silica gel (hexane-EtOAc, 8:1) to afford 5b.

Yield: 481 mg (70%).

¹H NMR (300 MHz, CDCl3): δ = 8.43-8.40 (m, 1 H), 8.03-8.00 (m, 1 H), 7.92-7.89 (m, 2 H), 7.85-7.80 (m, 1 H), 7.59-7.56 (m, 2 H), 7.21-7.17 (m, 1 H), 7.13-7.10 (m, 2 H), 6.91-6.88 (m, 1 H), 6.54 (s, 1 H), 6.01 (s, 1 H), 1.57 (s, 9 H).

¹³C NMR (75 MHz, CDCl3): δ = 152.3, 150.9, 149.7, 148.3, 147.8, 147.3, 146.5, 141.1, 138.5, 135.2, 131.4, 127.1, 126.2, 121.1, 120.7, 115.2, 108.7, 108.2, 106.7, 101.3, 98.4, 96.1, 84.9, 27.7.

MS (CI+): m/z (%) = 458 (4) [M]+, 415 (2), 414 (12), 400 (12), 364 (4), 358 (100), 69 (1).

tert -Butyl 1-(2-Pyridinyl)-3-(4-biphenyl)-5-pyrazolyl Carbonate (5a)

¹H NMR (300 MHz, CDCl3): δ = 8.44-8.41 (m, 1 H), 8.05-8.02 (m, 1 H), 7.97-7.93 (m, 2 H), 7.87-7.81 (m, 1 H), 7.69-7.64 (m, 4 H), 7.49-7.44 (m, 2 H), 7.39-7.34 (m, 1 H), 7.22-7.18 (m, 1 H), 6.56 (s, 1 H), 1.58 (s, 9 H).

¹³C NMR (75 MHz, CDCl3): δ = 152.3, 150.9, 149.7, 147.8, 146.5, 141.3, 140.8, 138.5, 131.8, 128.9, 127.5, 127.4, 127.1, 126.2, 121.5, 115.1, 96.1, 84.9, 27.7.

MS (CI+): m/z (%) = 414 (19) [M]+, 371 (2), 370 (8), 356 (13), 354 (5), 315 (21), 314 (100), 313 (38).

tert -Butyl 1-(2-Pyridinyl)-3-[4-(3′-phenyl)biphenyl]-5-pyrazolyl Carbonate (5c)

¹H NMR (300 MHz, CDCl3): δ = 8.44-8.41 (m, 1 H), 8.04-7.95 (m, 3 H), 7.86-7.80 (m, 2 H), 7.73-7.27 (m, 11 H), 7.22-7.17 (m, 1 H), 6.57 (s, 1 H), 1.58 (s, 9 H).

¹³C NMR (75 MHz, CDCl3): δ = 156.1, 152.3, 150.9, 149.7, 147.8, 146.5, 142.0, 141.4, 140.9, 138.6, 131.9, 130.0, 129.3, 128.9, 128.8, 127.5, 127.4, 127.2, 126.4, 126.3, 126.1, 121.5, 119.8, 115.2, 114.3, 114.2, 96.2, 85.0, 27.7.

MS (CI+): m/z (%) = 446 (8), 432 (12), 392 (4), 390 (100), 358 (8).

tert -Butyl 1-(2-Pyridinyl)-3-[4-(1-naphthyl)phenyl]-5-pyrazolyl Carbonate (5d)

¹H NMR (300 MHz, CDCl3): δ = 8.44-8.42 (m, 1 H), 8.06-7.81 (m, 7 H), 7.58-7.42 (m, 6 H), 7.22-7.18 (m, 1 H), 6.59 (s, 1 H).

¹³C NMR (75 MHz, CDCl3): δ = 152.3, 151.0, 149.7, 147.8, 146.5, 141.1, 140.0, 138.6, 133.9, 131.8, 131.7, 130.5, 128.4, 127.9, 127.0, 126.2, 126.1, 125.9, 125.7, 125.5, 121.5, 115.1, 96.2, 84.9, 27.8.

MS (CI+): m/z (%) = 464 (4) [M]+, 420 (10), 406 (13), 390 (6), 364 (100), 363 (29), 283 (13), 69 (7).

tert -Butyl 1-(2-Pyridinyl)-3-[4-(3′-dimethylamino)biphenyl]-5-pyrazolyl Carbonate (5e)

¹H NMR (300 MHz, CDCl3): δ = 8.43-8.41 (m, 1 H), 8.04-8.01 (m, 1 H), 7.93 (d, J = 8.2 Hz, 2 H), 7.86-7.80 (m, 1 H), 7.66 (d, J = 8.2 Hz, 2 H), 7.35-7.30 (m, 1 H), 7.21-7.17 (m, 1 H), 7.00-6.98 (m, 2 H), 6.78-6.75 (m, 1 H), 6.55 (s, 1 H), 3.02 (s, 6 H), 1.57 (s, 9 H).

¹³C NMR (75 MHz, CDCl3): δ = 152.3, 151.1, 151.0, 149.7, 147.8, 146.5, 142.4, 141.8, 138.5, 131.6, 129.6, 127.6, 126.1, 121.5, 116.0, 115.1, 112.0, 111.5, 96.1, 84.9, 40.9, 27.7.

MS (CI+): m/z (%) = 457 (5) [M]+, 456 (2), 413 (10), 399 (9), 364 (8), 357 (100), 356 (36), 283 (11), 69 (7).

tert -Butyl 1-(2-Pyridinyl)-3-[4-(4′-benzyloxy)biphenyl]-5-pyrazolyl Carbonate (5f)

¹H NMR (300 MHz, CDCl3): δ = 8.43-8.41 (m, 1 H), 8.03-8.01 (m, 1 H), 7.92 (d, J = 8.3 Hz, 2 H), 7.86-7.80 (m, 1 H), 7.63-7.56 (m, 4 H), 7.48-7.33 (m, 5 H), 7.21-7.17 (m, 1 H), 7.09-7.05 (m, 2 H), 6.54 (s, 1 H), 1.57 (s, 9 H).

¹³C NMR (75 MHz, CDCl3): δ = 158.6, 152.3, 150.9, 149.7, 147.8, 146.5, 140.9, 138.5, 137.1, 133.6, 131.2, 128.7, 128.2, 127.6, 126.9, 126.2, 121.5, 116.1, 115.3, 115.1, 96.1, 84.9, 70.2, 27.7.

MS (EI, 70 eV): m/z (%) = 519 (1) [M]+, 460 (2), 329 (24), 328 (100), 300 (5), 91 (48).

tert -Butyl 1-(2-Pyridinyl)-3-[4-(2′-phenoxy)biphenyl]-5-pyrazolyl Carbonate (5g)

¹H NMR (300 MHz, CDCl3): δ = 8.41-8.39 (m, 1 H), 8.00 (d, J = 8.28 Hz, 1 H), 7.87-7.78 (m, 3 H), 7.62 (d, J = 8.1 Hz, 2 H), 7.52-7.49 (m, 1 H), 7.34-7.15 (m, 5 H), 7.04-6.91 (m, 4 H), 6.51 (s, 1 H), 1.56 (s, 9 H).

¹³C NMR (75 MHz, CDCl3): δ = 158.1, 156.2, 151.0, 149.8, 147.7, 138.5, 138.0, 131.8, 131.3, 129.7, 129.6, 129.0, 128.5, 126.1, 125.6, 125.0, 124.3, 122.7, 121.5, 120.5, 118.1, 115.1, 84.9, 27.7.

MS (CI+): m/z (%) = 462 (5), 448 (13), 446 (3), 407 (27), 406 (100), 405 (30).

tert -Butyl 1-(2-Pyridinyl)-3-[3-(4′-bromo)biphenyl]-5-pyrazolyl Carbonate (5h)

¹H NMR (300 MHz, CDCl3): δ = 8.43-8.42 (m, 1 H), 8.06-8.00 (m, 2 H), 7.86-7.81 (m, 2 H), 7.60-7.49 (m, 6 H), 7.22-7.18 (m, 1 H), 6.57 (s, 1 H), 1.57 (s, 9 H).

¹³C NMR (75 MHz, CDCl3): δ = 152.2, 150.9, 149.7, 147.8, 146.5, 140.6, 140.1, 138.6, 133.5, 132.0, 129.3, 129.0, 127.2, 125.2, 124.4, 121.8, 121.6, 115.2, 96.2, 85.0, 27.7.

MS (CI+): m/z (%) = 494 (5) [M]+, 492 (6) [M]+, 450 (10), 448 (11), 434 (16), 432 (7), 394 (100), 392 (98), 314 (6).

tert -Butyl 1-(2-Pyridinyl)-3-[3-(2′-phenoxy)biphenyl]-5-pyrazolyl Carbonate (5i)

¹H NMR (300 MHz, CDCl3): δ = 8.40-8.39 (m, 1 H), 8.03 (s, 1 H), 7.95-7.92 (m, 2 H), 7.82-7.77 (m, 2 H), 7.56-7.52 (m, 2 H), 7.42-7.15 (m, 6 H), 7.05-6.93 (m, 3 H), 6.44 (s, 1 H), 1.56 (s, 9 H).

¹³C NMR (75 MHz, CDCl3): δ = 158.1, 153.6, 152.3, 151.1, 149.7, 147.7, 146.4, 138.5, 138.2, 133.7, 132.7, 131.4, 129.7, 129.5, 128.9, 128.5, 126.7, 124.7, 124.3, 122.6, 121.4, 120.6, 118.1, 115.1, 96.1, 84.8, 27.7.

MS (CI+): m/z (%) = 506 (3) [M]+, 462 (12), 448 (14), 407 (28), 406 (100), 405 (32), 69 (1).

tert -Butyl 1-(2-Pyridinyl)-3-[3-(3′,4′-methylenedioxy)biphenyl]-5-pyrazolyl Carbonate (5j)

¹H NMR (300 MHz, CDCl3): δ = 8.43-8.41 (m, 1 H), 8.04-8.01 (m, 2 H), 7.86-7.78 (m, 2 H), 7.52-7.43 (m, 2 H), 7.21-7.11 (m, 3 H), 6.91-6.89 (m, 1 H), 6.56 (s, 1 H), 6.01 (s, 2 H), 1.57 (s, 9 H).

¹³C NMR (75 MHz, CDCl3): δ = 152.3, 151.1, 149.7, 148.2, 147.8, 147.3, 146.5, 141.4, 138.5, 135.5, 133.3, 129.1, 127.2, 124.5, 124.3, 121.5, 120.9, 115.2, 108.7, 107.9, 101.3, 96.2, 84.9, 27.7.

MS (CI+): m/z (%) = 456 (1) [M]+, 415 (3), 414 (11), 400 (13), 359 (23), 358 (100), 357 (35), 299 (6), 145 (2), 69 (2).

tert -Butyl 1-(2-Pyridinyl)-3-[3-(3′-phenyl)biphenyl]-5-pyrazolyl Carbonate (5k)

¹H NMR (300 MHz, CDCl3): δ = 8.43-8.41 (m, 1 H), 8.15 (s, 1 H), 8.04 (d, J = 8.3 Hz, 1 H), 7.88-7.80 (m, 3 H), 7.69-7.45 (m, 9 H), 7.40-7.35 (m, 1 H), 7.22-7.17 (m, 1 H), 6.59 (s, 1 H), 1.58 (s, 9 H).

¹³C NMR (75 MHz, CDCl3): δ = 152.3, 151.1, 149.7, 147.8, 146.5, 141.9, 141.8, 141.3, 138.5, 133.4, 129.3, 129.2, 128.9, 127.6, 127.5, 127.4, 126.4, 124.9, 124.7, 121.5, 115.2, 96.3, 84.9, 27.7.

MS (CI+): m/z (%) = 446 (5), 433 (4), 432 (12), 430 (4), 392 (4), 391 (28), 390 (100), 389 (33), 215 (7).

tert -Butyl 1-(2-Pyridinyl)-3-[3-(1-naphthyl)phenyl]-5-pyrazolyl Carbonate (5l)

¹H NMR (300 MHz, CDCl3): δ = 8.41-8.39 (m, 1 H), 8.01-7.87 (m, 6 H), 7.82-7.76 (m, 1 H), 7.57-7.41 (m, 6 H), 7.19-7.15 (m, 1 H), 6.55 (s, 1 H), 1.56 (s, 9 H).

¹³C NMR (75 MHz, CDCl3): δ = 152.3, 151.0, 149.7, 147.7, 146.5, 141.3, 140.1, 138.5, 133.9, 132.9, 131.8, 130.3, 128.7, 128.3, 127.9, 127.5, 127.0, 126.2, 126.2, 125.9, 125.5, 124.7, 121.5, 115.1, 96.3, 84.9, 27.7.

MS (CI+): m/z (%) = 464 (2) [M]+, 420 (9), 406 (12), 390 (10), 364 (100), 363 (33), 272 (3), 144 (1), 69 (6).

tert -Butyl 1-(2-Pyridinyl)-3-[3-(3′-dimethylamino)biphenyl]-5-pyrazolyl carbonate (5m)

¹H NMR (300 MHz, CDCl3): δ = 8.42-8.40 (m, 1 H), 8.07-8.01 (m, 2 H), 7.86-7.79 (m, 2 H), 7.59-7.56 (m, 1 H), 7.50-7.45 (m, 1 H), 7.36-7.30 (m, 1 H), 7.20-7.16 (m, 1 H), 7.01-6.97 (m, 2 H), 6.78-6.75 (m, 1 H), 6.56 (s, 1 H), 3.02 (s, 6 H), 1.57 (s, 9 H).

¹³C NMR (75 MHz, CDCl3): δ = 152.3, 151.2, 151.0, 149.7, 147.7, 146.5, 142.8, 142.3, 138.5, 133.1, 129.5, 129.5, 127.7, 124.9, 124.6, 121.5, 116.2, 115.1, 112.0, 111.9, 96.3, 84.9, 40.9, 27.7.

MS (CI+): m/z (%) = 457 (4) [M]+, 456 (2) [M]+, 413 (9), 399 (10), 397 (3), 364 (5), 358 (23), 357 (100), 356 (43), 138 (4), 69 (2).

tert -Butyl 1-(2-Pyridinyl)-3-[2-(3′,4′-methylenedioxy)biphenyl]-5-pyrazolyl Carbonate (5n)

¹H NMR (300 MHz, CDCl3): δ = 8.38-8.36 (m, 1 H), 7.94-7.88 (m, 2 H), 7.82-7.76 (m, 1 H), 7.41-7.31 (m, 3 H), 7.17-7.13 (m, 1 H), 6.78 (m, 3 H), 5.96 (s, 2 H), 5.55 (s, 1 H), 1.51 (s, 9 H).

¹³C NMR (75 MHz, CDCl3): δ = 152.3, 151.4, 149.5, 147.6, 147.4, 146.9, 145.1, 140.8, 138.5, 135.4, 131.8, 130.5, 129.2, 128.5, 127.5, 123.1, 121.3, 114.9, 110.3, 108.2, 101.1, 99.8, 84.7, 27.6.

MS (CI+): m/z (%) = 459 (18), 458 (62) [M]+, 457 (6), 419 (3), 415 (5), 414 (20), 400 (13), 359 (22), 358 (100), 357 (32), 183 (4), 138 (3), 123 (1).

1-(2-Pyridinyl)-3-[2-(3′-phenyl)biphenyl]-5-hydroxypyrazole (6o)

¹H NMR (300 MHz, CDCl3): δ = 8.10-8.06 (m, 2 H), 7.67 (s, 1 H), 7.56-7.47 (m, 5 H), 7.40-7.26 (m, 9 H), 6.04 (s, 1 H).

¹³C NMR (75 MHz, CDCl3): δ = 159.4, 155.7, 147.1, 143.3, 142.3, 142.2, 140.4, 140.4, 138.0, 132.4, 131.9, 130.6, 128.8, 128.1, 127.4, 126.9, 126.3, 119.8, 113.7, 96.6, 90.5.

HRMS (EI): m/z calcd for C26H19N3O: 389.1528; found: 389.1523.

tert -Butyl 1-(2-Pyridinyl)-3-(4-biphenyl)-4-propyl-5-pyrazolyl Carbonate (5p)

¹H NMR (300 MHz, CDCl3): δ = 8.40-8.37 (m, 1 H), 8.00 (d, J = 8.3 Hz, 1 H), 7.84-7.75 (m, 3 H), 7.70-7.63 (m, 4 H), 7.48-7.43 (m, 2 H), 7.38-7.33 (m, 1 H), 7.17-7.12 (m, 1 H), 2.63 (t, J = 7.7 Hz, 2 H), 1.65-1.60 (m, 2 H), 1.57 (s, 9 H), 0.95 (t, J = 7.4 Hz, 3 H).

¹³C NMR (75 MHz, CDCl3): δ = 152.4, 150.2, 150.0, 147.6, 146.8, 143.6, 140.9, 140.8, 138.4, 132.8, 131.7, 129.3, 128.9, 128.1, 127.4, 127.3, 127.1, 121.1, 114.5, 110.7, 85.2, 27.7.

MS (CI+): m/z (%) = 457 (10), 456 (33) [M]+, 412 (9), 398 (13), 396 (3), 357 (24), 356 (100), 355 (40), 326 (16).

tert -Butyl 1-(2-Pyridinyl)-3-(4-biphenyl)-4-benzyl-5-pyrazolyl Carbonate (5q)

¹H NMR (300 MHz, CDCl3): δ = 8.40-8.38 (m, 1 H), 8.05 (d, J = 8.3 Hz, 1 H), 7.84-7.78 (m, 1 H), 7.71 (d, J = 8.3 Hz, 2 H), 7.62-7.58 (m, 4 H), 7.46-7.41 (m, 2 H), 7.36-7.31 (m, 1 H), 7.27-7.25 (m, 4 H), 7.20-7.15 (m, 2 H), 4.01 (s, 2 H), 1.48 (s, 9 H).

¹³C NMR (75 MHz, CDCl3): δ = 152.3, 150.5, 149.5, 147.6, 146.6, 144.3, 141.0, 140.7, 139.5, 138.4, 132.1, 128.8, 128.5, 128.3, 128.1, 127.4, 127.2, 127.0, 126.2, 121.2, 114.5, 108.8, 85.2, 27.4.

MS (CI+): m/z (%) = 504 (5) [M]+, 447 (5), 446 (16), 405 (28), 404 (100), 403 (38), 356 (9), 326 (4).

tert -Butyl 1-[2-(3-Chloro)pyridinyl]-3-[3-(3′,4′-methylenedioxy)biphenyl]-5-pyrazolyl Carbonate (5r)

¹H NMR (300 MHz, CDCl3): δ = 8.55-8.53 (m, 1 H), 8.02 (s, 1 H), 7.94 (d, J = 8.0 Hz, 1 H), 7.82 (d, J = 7.2 Hz, 1 H), 7.48-7.37 (m, 3 H), 7.13-7.10 (m, 2 H), 6.88 (d, J = 7.8 Hz, 1 H), 6.70 (s, 1 H), 5.99 (s, 2 H), 1.52 (s, 9 H).

¹³C NMR (75 MHz, CDCl3): δ = 152.2, 148.4, 148.1, 147.3, 137.2, 146.8, 141.3, 139.8, 135.5, 133.4, 129.0, 128.9, 127.0, 125.3, 124.6, 124.5, 120.9, 108.6, 107.9, 101.2, 92.5, 85.5, 27.6.

MS (CI+): m/z (%) = 492 (1) [M]+, 463 (1), 447 (4), 419 (27), 392 (26), 391 (100), 279 (36), 205 (69), 111 (24), 69 (13).

tert -Butyl 1-(2-Pyrimidinyl)-3-[4-(3′-phenyl)biphenyl]-5-pyrazolyl Carbonate (5s)

¹H NMR (300 MHz, CDCl3): δ = 8.80 (d, J = 4.8 Hz, 2 H), 8.03 (d, J = 8.5 Hz, 2 H), 7.85-7.84 (m, 1 H), 7.73-7.44 (m, 9 H), 7.40-7.35 (m, 1 H), 7.25-7.21 (m, 1 H), 6.62 (s, 1 H), 1.59 (s, 9 H).

¹³C NMR (75 MHz, CDCl3): δ = 158.7, 156.3, 152.5, 149.6, 147.5, 142.0, 141.8, 141.3, 131.4, 129.3, 128.9, 127.5, 127.4, 126.8, 126.5, 126.1, 118.8, 97.4, 85.2, 27.8.

MS (CI+): m/z (%) = 447 (1), 419 (2), 391 (6), 373 (20), 329 (4), 275 (32), 274 (19), 273 (100), 272 (13), 239 (16), 111 (2), 69 (7).

Boc-Deprotection: 1-(2-Pyridinyl)-3-[4-(3′,4′-methylenedioxy)biphenyl]-5-hydroxypyrazole (6b); Typical Procedure

To a solution of 5b (286 mg, 0.62 mmol) in CH2Cl2 (10 mL), TFA (707 mg, 6.2 mmol) was added. When the reaction was complete (3 h as judged by TLC), the mixture was washed with H2O (3 × 5 mL), dried over anhydrous MgSO4, and concentrated to dryness. The crude material was purified by column chromatography on silica gel (hexane-EtOAc, 10:1) to afford 6b.

Yield: 155 mg (70%).

¹H NMR (300 MHz, CDCl3): δ = 8.29-8.27 (m, 1 H), 8.08-8.05 (m, 1 H), 7.93-7.87 (m, 3 H), 7.59-7.55 (m, 2 H), 7.19-7.14 (m, 1 H), 7.12-7.09 (m, 2 H), 6.90-6.88 (m, 1 H), 6.00 (s, 2 H), 5.96 (s, 1 H).

¹³C NMR (75 MHz, CDCl3): δ = 157.5, 152.4, 148.3, 147.3, 145.2, 141.1, 140.0, 135.2, 131.7, 127.1, 126.3, 120.7, 120.0, 112.4, 108.7, 108.2, 107.6, 106.7, 101.3, 101.2, 85.9.

HRMS (EI): m/z calcd for C21H15N3O3: 357.1113; found: 357.1121.

1-(2-Pyridinyl)-3-(4-biphenyl)-5-hydroxypyrazole (6a)

¹H NMR (300 MHz, CDCl3): δ = 8.31-8.28 (m, 1 H), 8.10-8.07 (m, 1 H), 7.96-7.89 (m, 3 H), 7.69-7.63 (m, 4 H), 7.49-7.44 (m, 2 H), 7.39-7.33 (m, 1 H), 7.20-7.16 (m, 1 H), 5.99 (s, 1 H).

¹³C NMR (75 MHz, CDCl3): δ = 157.5, 154.6, 152.4, 145.2, 141.4, 140.8, 140.0, 132.1, 129.7, 128.9, 127.5, 127.4, 127.1, 126.3, 120.0, 112.4, 86.07.

HRMS (EI): m/z calcd for C20H15N3O: 313.1215; found: 313.1218.

1-(2-Pyridinyl)-3-[4-(3′-phenyl)biphenyl]-5-hydroxypyrazole (6c)

¹H NMR (300 MHz, CDCl3): δ = 12.84-12.83 (br s, 1 H), 8.30-8.28 (m, 1 H), 8.09-8.06 (m, 1 H), 7.97-7.85 (m, 4 H), 7.73-7.45 (m, 9 H), 7.40-7.36 (m, 1 H), 7.20-7.16 (m, 1 H), 6.00 (s, 1 H).

¹³C NMR (75 MHz, CDCl3): δ = 157.4, 154.7, 152.4, 145.2, 142.0, 141.4, 141.3, 140.1, 132.3, 129.3, 128.9, 127.5, 127.5, 127.4, 126.4, 126.1, 120.1, 112.4, 85.9.

HRMS (EI): m/z calcd for C26H19N3O: 389.1528; found: 389.1533.

1-(2-Pyridinyl)-3-[4-(1-naphthyl)phenyl]-5-hydroxypyrazole (6d)

¹H NMR (300 MHz, CDCl3): δ = 12.89 (br s, 1 H), 8.31-8.29 (m, 1 H), 8.10-8.08 (m, 1 H), 8.00-7.86 (m, 6 H), 7.58-7.41 (m, 6 H), 7.21-7.17 (m, 1 H), 6.03 (s, 1 H).

¹³C NMR (75 MHz, CDCl3): δ = 157.5, 154.7, 152.6, 145.2, 141.1, 140.1, 140.0, 133.9, 132.2, 131.7, 130.4, 128.4, 127.8, 127.7, 127.0, 126.5, 126.2, 126.1, 125.9, 125.5, 125.2, 120.0, 112.4, 108.7, 85.9.

HRMS (EI): m/z calcd for C24H17N3O: 363.1372; found: 363.1372.

1-(2-Pyridinyl)-3-[4-(3′-dimethylamino)biphenyl]-5-hydroxypyrazole (6e)

¹H NMR (300 MHz, CDCl3): δ = 10.26 (br s, 1 H), 8.31-8.30 (m, 1 H), 8.10-8.07 (m, 1 H), 7.98-7.90 (m, 3 H), 7.75-7.50 (m, 5 H), 7.50-7.49 (m, 1 H), 7.22-7.18 (m, 1 H), 5.99 (s, 1 H), 3.27 (s, 6 H).

¹³C NMR (75 MHz, CDCl3): δ = 157.6, 154.4, 151.9, 145.3, 144.4, 143.6, 140.2, 139.1, 133.2, 131.0, 127.8, 127.4, 126.7, 120.2, 118.7, 118.5, 112.5, 86.1, 46.2.

HRMS (EI): m/z calcd for C22H20N4O: 356.1637; found: 356.1644.

1-(2-Pyridinyl)-3-[4-(4′-benzyloxy)biphenyl]-5-hydroxypyrazole (6f)

¹H NMR (300 MHz, CDCl3): δ = 12.85-12.83 (br s, 1 H), 8.30-8.28 (m, 1 H), 8.08-8.05 (m, 1 H), 7.93-7.89 (m, 3 H), 7.63-7.56 (m, 4 H), 7.50-7.29 (m, 5 H), 7.19-7.15 (m, 1 H), 7.08-7.05 (m, 2 H), 5.97 (s, 1 H), 5.12 (s, 1 H).

¹³C NMR (75 MHz, CDCl3): δ = 158.6, 157.5, 155.8, 152.5, 145.2, 140.0, 137.1, 133.7, 131.9, 128.7, 128.2, 128.1, 127.6, 126.9, 126.3, 120.0, 116.2, 115.3, 112.4, 84.2, 70.2.

HRMS (EI): m/z calcd for C27H21N3O2: 419.1634; found: 419.1635.

1-(2-Pyridinyl)-3-[4-(2′-phenoxy)biphenyl]-5-hydroxypyrazole (6g)

¹H NMR (300 MHz, CDCl3): δ = 12.78 (br s, 1 H), 8.26-8.25 (m, 1 H), 8.04-7.83 (m, 4 H), 7.62-7.48 (m, 3 H), 7.33-6.92 (m, 9 H), 5.93 (m, 1 H).

¹³C NMR (75 MHz, CDCl3): δ = 157.9, 157.4, 154.9, 153.7, 152.5, 145.2, 140.0, 138.0, 133.6, 132.0, 131.2, 129.7, 129.5, 128.9, 125.7, 124.2, 122.7, 120.4, 120.0, 118.1, 112.4, 85.8.

HRMS (EI): m/z calcd for C26H19N3O2: 405.1477; found: 405.1476.

1-(2-Pyridinyl)-3-[3-(4′-bromo)biphenyl]-5-hydroxypyrazole (6h)

¹H NMR (300 MHz, CDCl3): δ = 12.85-12.83 (br s, 1 H), 8.30-8.28 (m, 1 H), 8.08-8.06 (m, 2 H), 7.94-7.88 (m, 1 H), 7.84-7.81 (m, 1 H), 7.60-7.46 (m, 6 H), 7.20-7.16 (m, 1 H), 5.99 (s, 1 H).

¹³C NMR (75 MHz, CDCl3): δ = 157.5, 154.7, 152.4, 145.3, 140.5, 140.2, 140.1, 133.9, 132.0, 129.2, 129.0, 127.2, 125.3, 124.5, 121.8, 120.1, 112.5, 85.9.

HRMS (EI): m/z calcd for C20H14BrN3O: 391.0320; found: 391.0294.

1-(2-Pyridinyl)-3-[3-(2′-phenoxy)biphenyl]-5-hydroxypyrazole (6i)

¹H NMR (300 MHz, CDCl3): δ = 12.76 (br s, 1 H), 8.27-8.25 (m, 1 H), 8.03-7.77 (m, 4 H), 7.55-6.93 (m, 12 H), 5.86 (s, 1 H).

¹³C NMR (75 MHz, CDCl3): δ = 158.1, 157.3, 154.7, 153.6, 152.6, 145.2, 140.0, 138.1, 133.8, 133.0, 131.4, 129.7, 129.5, 128.9, 128.4, 126.9, 124.8, 124.3, 122.6, 120.5, 119.9, 118.1, 112.4, 85.8.

HRMS (EI): m/z calcd for C26H19N3O2: 405.1477; found: 405.1475.

1-(2-Pyridinyl)-3-[3-(3′,4′-methylenedioxy)biphenyl]-5-hydroxy­pyrazole (6j)

¹H NMR (300 MHz, CDCl3): δ = 8.30-8.28 (m, 1 H), 8.09 (d, J = 8.4 Hz, 1 H), 8.03-8.02 (m, 1 H), 7.94-7.88 (m, 1 H), 7.80-7.76 (m, 1 H), 7.52-7.46 (m, 2 H), 7.20-7.12 (m, 3 H), 6.92-6.89 (m, 1 H), 6.02 (s, 2 H), 5.99 (s, 1 H).

¹³C NMR (75 MHz, CDCl3): δ = 157.5, 154.6, 152.6, 148.2, 147.3, 145.2, 141.4, 140.1, 135.6, 133.6, 129.1, 127.2, 124.7, 124.5, 120.9, 120.1, 112.5, 108.7, 107.9, 101.3, 86.0.

HRMS (EI): m/z calcd for C21H15N3O3: 357.1113; found: 357.1107.

1-(2-Pyridinyl)-3-[3-(3′-phenyl)biphenyl]-5-hydroxypyrazole (6k)

¹H NMR (300 MHz, CDCl3): δ = 8.31-8.28 (m, 1 H), 8.6-8.15 (m, 1 H), 8.10 (d, J = 8.4 Hz, 1 H), 7.94-7.84 (m, 3 H), 7.70-7.45 (m, 9 H), 7.41-7.36 (m, 1 H), 7.20-7.16 (m, 1 H), 6.02 (s, 1 H).

¹³C NMR (75 MHz, CDCl3): δ = 157.5, 154.6, 152.6, 145.2, 141.9, 141.8, 141.7, 141.3, 140.1, 133.7, 129.3, 129.1, 128.9, 127.6, 127.5, 127.4, 127.2, 126.4, 125.1, 124.8, 120.1, 112.5, 86.0, 29.8.

HRMS (EI): m/z calcd for C26H19N3O: 389.1528; found: 389.1525.

1-(2-Pyridinyl)-3-[3-(1-naphthyl)phenyl]-5-hydroxypyrazole (6l)

¹H NMR (300 MHz, CDCl3): δ = 12.81 (s, 1 H), 8.27-8.25 (m, 1 H), 8.03-8.00 (m, 2 H), 7.95-7.83 (m, 5 H), 7.57-7.40 (m, 6 H), 7.17-7.12 (m, 1 H), 5.97 (s, 1 H).

¹³C NMR (75 MHz, CDCl3): δ = 157.4, 154.7, 152.6, 145.2, 141.2, 140.2, 140.0, 133.9, 133.3, 131.8, 130.3, 128.6, 128.3, 127.8, 127.6, 127.0, 126.2, 125.9, 125.5, 124.9, 120.0, 112.4, 85.9.

HRMS (EI): m/z calcd for C24H17N3O: 363.1372; found: 363.1367.

1-(2-Pyridinyl)-3-[3-(3′-dimethylamino)biphenyl]-5-hydroxypyrazole (6m)

¹H NMR (300 MHz, CDCl3): δ = 13.09 (s, 1 H), 8.31-8.29 (m, 1 H), 8.10-8.07 (m, 2 H), 7.95-7.84 (m, 2 H), 7.69-7.44 (m, 6 H), 7.22-7.17 (m, 1 H), 6.00 (s, 1 H), 3.23 (s, 6 H).

¹³C NMR (75 MHz, CDCl3): δ = 157.6, 154.5, 152.2, 145.4, 145.3, 143.7, 140.2, 140.1, 133.9, 130.8, 129.4, 127.5, 126.5, 126.0, 124.6, 120.2, 118.1, 117.9, 112.5, 45.4, 86.1.

HRMS (EI): m/z calcd for C22H20N4O: 356.1637; found: 356.1629.

1-(2-Pyridinyl)-3-[2-(3′,4′-methylenedioxy)biphenyl]-5-hydroxy­pyrazole (6n)

¹H NMR (300 MHz, CDCl3): δ = 12.58 (s, 1 H), 8.26-8.24 (m, 1 H), 7.98-7.95 (m, 1 H), 7.90-7.84 (m, 2 H), 7.42-7.30 (m, 3 H), 7.16-7.12 (m, 1 H), 6.78 (s, 3 H), 5.97 (s, 2 H), 5.05 (s, 1 H).

¹³C NMR (75 MHz, CDCl3): δ = 156.0, 154.7, 153.2, 147.3, 146.8, 145.2, 140.9, 140.0, 135.7, 132.3, 130.7, 129.3, 128.4, 127.4, 123.0, 119.9, 112.4, 110.3, 108.1, 101.1, 89.6.

HRMS (EI): m/z calcd for C21H15N3O3: 357.1113; found: 357.1105.

1-(2-Pyridinyl)-3-(4-biphenyl)-4-propyl-5-hydroxypyrazole (6p)

¹H NMR (300 MHz, CDCl3): δ = 12.55 (s, 1 H), 8.28-8.27 (m, 1 H), 8.03 (d, J = 8.3 Hz, 1 H), 7.89-7.79 (m, 3 H), 7.69-7.64 (m, 4 H), 7.46 (m, 2 H), 7.38-7.36 (m, 1 H), 7.16-7.12 (m, 1 H), 2.61-2.55 (m, 2 H), 1.68-1.60 (m, 2 H), 0.97 (t, J = 7.1 Hz, 3 H).

¹³C NMR (75 MHz, CDCl3): δ = 154.6, 154.2, 152.1, 145.3, 140.9, 139.9, 133.2, 128.9, 128.2, 127.4, 127.3, 127.2, 119.8, 112.3, 100.4, 24.4, 23.1, 14.1.

HRMS (EI): m/z calcd for C23H21N3O: 355.1685; found: 355.1686.

1-(2-Pyridinyl)-3-(4-biphenyl)-4-benzyl-5-hydroxypyrazole (6q)

¹H NMR (300 MHz, CDCl3): δ = 12.61 (br s, 1 H), 8.29-8.27 (m, 1 H), 8.06 (d, J = 8.4 Hz, 1 H), 7.92-7.86 (m, 1 H), 7.72 (d, J = 8.4 Hz, 2 H), 7.62-7.60 (m, 4 H), 7.46-7.41 (m, 2 H), 7.36-7.25 (m, 5 H), 7.20-7.14 (m, 2 H), 3.97 (s, 2 H).

¹³C NMR (75 MHz, CDCl3): δ = 154.7, 154.6, 152.4, 145.3, 141.0, 141.0, 140.8, 140.0, 132.6, 128.9, 128.5, 128.3, 127.5, 127.2, 127.1, 126.0, 120.0, 112.3, 98.6, 29.8, 22.83.

HRMS (EI): m/z calcd for C27H21N3O: 403.1685; found: 403.1676.

1-[2-(3-Chloro)pyridinyl]-3-[3-(3′,4′-methylenedioxy)biphenyl]-5-hydroxypyrazole (6r)

¹H NMR (300 MHz, CDCl3): δ = 8.57-8.54 (m, 1 H), 7.93-7.90 (m, 2 H), 7.67-7.57 (m, 2 H), 7.49-7.44 (m, 1 H), 7.38-7.34 (m, 1 H), 7.09-7.05 (m, 2 H), 6.89 (d, J = 8.5 Hz, 1 H), 6.00 (s, 2 H), 3.90 (s, 2 H).

¹³C NMR (75 MHz, CDCl3): δ = 170.4, 156.0, 148.3, 147.5, 147.0, 141.8, 139.7, 134.6, 131.2, 131.0, 129.4, 128.9, 128.8, 124.9, 124.8, 124.5, 120.9, 108.7, 107.8, 101.4, 38.4.

HRMS (EI): m/z calcd for C21H14ClN3O3: 391.0724; found: 391.0720.

1-(2-Pyrimidinyl)-3-[4-(3′-phenyl)biphenyl]-5-hydroxypyrazole (6s)

¹H NMR (300 MHz, CDCl3): δ = 8.78 (d, J = 4.9 Hz, 2 H), 8.01 (d, J = 8.3 Hz, 2 H), 7.85-7.83 (m, 1 H), 7.73-7.44 (m, 9 H), 7.39-7.34 (m, 1 H), 7.23-7.22 (m, 1 H), 6.06 (s, 1 H).

¹³C NMR (75 MHz, CDCl3): δ = 158.3, 157.4, 157.4, 154.2, 141.9, 141.7, 141.2, 131.5, 129.3, 128.9, 127.5, 127.3, 126.9, 126.4, 126.1, 117.6, 86.7.

HRMS (EI): m/z calcd for C25H18N4O: 390.1481; found: 390.1488.

Acknowledgment

This work was supported by the Seoul R&BD program (10527) from the Seoul Development Institute, Seoul, Korea.

    References

  • 1a Penning TD. Talley JJ. Bertenshaw SR. Carter JS. Collins PW. Docter S. Graneto MJ. Lee LF. Malecha JW. Miyashiro JM. Rogers RS. Rogier DJ. Yu SS. Anderson GD. Burton EG. Cogburn JN. Gregory SA. Koboldt CM. Perkins WE. Seibert K. Veenhuizen AW. Zhang YY. Isakson PC. J. Med. Chem.  1997,  40:  1347 
  • 1b Terrett NK. Bell AS. Brown D. Ellis P. Bioorg. Med. Chem. Lett.  1996,  6:  1819 
  • 1c Lv P.-C. Li H.-Q. Sun J. Zhou Y. Zhu H.-L. Bioorg. Med. Chem.  2010,  18:  4606 ; and many references cited therein
  • 2a Patel MV. Bell R. Majest S. Henry R. Kolasa T. J. Org. Chem.  2004,  69:  7058 
  • 2b Walker JK. Selness SR. Devraj RV. Hepperle ME. Naing W. Shieh H. Kurambail R. Yang S. Flynn DL. Benson AG. Messing DM. Dice T. Kim T. Lindmark RJ. Monahan JB. Portanova J. Bioorg. Med. Chem. Lett.  2010,  20:  2634 
  • 2c Berta D. Villa M. Vulpetti A. Felder ER. Tetrahedron  2005,  61:  10801 
  • 3a Park M.-S. Park H.-J. Park KH. Lee K.-I. Synth. Commun.  2004,  34:  1541 
  • 3b Park H.-J. Lee K. Park S.-J. Ahn B. Lee J.-C. Cho HY. Lee K.-I. Bioorg. Med. Chem. Lett.  2005,  15:  3307 
  • 4a Fall Y. Doucet H. Santelli M. Synthesis  2010,  127 
  • 4b Arbačiauskiené E. Vilkauskaité G. Eller GA. Holzer W. Šačkus A. Tetrahedron  2009,  65:  7817 
  • 4c Goikhman R. Jacques TL. Sames D. J. Am. Chem. Soc.  2009,  131:  3042 
  • 4d Clapham KM. Batsanov AS. Bryce MR. Tarbit B. Org. Biomol. Chem.  2009,  7:  2155 
  • 4e Khera RA. Ali A. Hussain M. Tatar J. Villinger A. Langer P. Synlett  2010,  1923 
  • 5a Dragovich PS. Bertolini TM. Ayida BK. Li L.-S. Murphy DE. Ruebsam F. Sun Z. Zhou Y. Tetrahedron  2007,  63:  1154 
  • 5b Wang X.-j. Tan J. Grozinger K. Tetrahedron Lett.  2000,  41:  4713 
  • 5c Dvorak CA. Rudolph DA. Ma S. Carruthers NI. J. Org. Chem.  2005,  70:  4188 
  • 5d Bourrain S. Ridgill M. Collins I. Synlett  2004,  795 
  • For peripheral arylation of 2-pyridone derivatives, see:
  • 6a Heo J.-N. Song YS. Kim BT. Tetrahedron Lett.  2005,  46:  4621 
  • 6b Siddle JS. Batsanov AS. Caldwell ST. Cooke G. Bryce MR. Tetrahedron  2010,  66:  6138 
  • 7 Huang Y.-Y. Lin H.-C. Cheng K.-M. Su W.-N. Sung K.-C. Lin T.-P. Huang J.-J. Lin S.-K. Wong FF. Tetrahedron  2009,  65:  9592 
  • 8a Patil SA. Weng C.-M. Huang P.-C. Hong F.-E. Tetrahedron  2009,  65:  2889 
  • 8b Lai Y.-C. Chen H.-Y. Hung W.-C. Lin C.-C. Hong F.-E. Tetrahedron  2005,  61:  9484 
  • 8c Kealey S. Long NJ. Miller PW. White AJP. Hitchcock PB. Gee A. J. Chem. Soc., Dalton Trans.  2007,  2823 
  • 8d Ojwach SO. Darkwa J. Inorg. Chim. Acta  2010,  369:  1947 
  • 8e Budzisz E. Miernicka M. Lorenz I.-P. Mayer P. Krajewska U. Polyhedron  2009,  28:  637 
  • 9 Maryanoff BE. Greco MN. Zhang HC. Andrade-Gordon P. Kauffman JA. Nicolaou KC. Liu A. Brungs PH. J. Am. Chem. Soc.  1995,  117:  1225 
  • 10 Best WM. Cook APF. Russell JJ. Widdowson DA. J. Chem. Soc., Perkin Trans. 1  1984,  1139 
  • 11 Hansen MM. Riggs JR. Tetrahedron Lett.  1998,  39:  2705 

    References

  • 1a Penning TD. Talley JJ. Bertenshaw SR. Carter JS. Collins PW. Docter S. Graneto MJ. Lee LF. Malecha JW. Miyashiro JM. Rogers RS. Rogier DJ. Yu SS. Anderson GD. Burton EG. Cogburn JN. Gregory SA. Koboldt CM. Perkins WE. Seibert K. Veenhuizen AW. Zhang YY. Isakson PC. J. Med. Chem.  1997,  40:  1347 
  • 1b Terrett NK. Bell AS. Brown D. Ellis P. Bioorg. Med. Chem. Lett.  1996,  6:  1819 
  • 1c Lv P.-C. Li H.-Q. Sun J. Zhou Y. Zhu H.-L. Bioorg. Med. Chem.  2010,  18:  4606 ; and many references cited therein
  • 2a Patel MV. Bell R. Majest S. Henry R. Kolasa T. J. Org. Chem.  2004,  69:  7058 
  • 2b Walker JK. Selness SR. Devraj RV. Hepperle ME. Naing W. Shieh H. Kurambail R. Yang S. Flynn DL. Benson AG. Messing DM. Dice T. Kim T. Lindmark RJ. Monahan JB. Portanova J. Bioorg. Med. Chem. Lett.  2010,  20:  2634 
  • 2c Berta D. Villa M. Vulpetti A. Felder ER. Tetrahedron  2005,  61:  10801 
  • 3a Park M.-S. Park H.-J. Park KH. Lee K.-I. Synth. Commun.  2004,  34:  1541 
  • 3b Park H.-J. Lee K. Park S.-J. Ahn B. Lee J.-C. Cho HY. Lee K.-I. Bioorg. Med. Chem. Lett.  2005,  15:  3307 
  • 4a Fall Y. Doucet H. Santelli M. Synthesis  2010,  127 
  • 4b Arbačiauskiené E. Vilkauskaité G. Eller GA. Holzer W. Šačkus A. Tetrahedron  2009,  65:  7817 
  • 4c Goikhman R. Jacques TL. Sames D. J. Am. Chem. Soc.  2009,  131:  3042 
  • 4d Clapham KM. Batsanov AS. Bryce MR. Tarbit B. Org. Biomol. Chem.  2009,  7:  2155 
  • 4e Khera RA. Ali A. Hussain M. Tatar J. Villinger A. Langer P. Synlett  2010,  1923 
  • 5a Dragovich PS. Bertolini TM. Ayida BK. Li L.-S. Murphy DE. Ruebsam F. Sun Z. Zhou Y. Tetrahedron  2007,  63:  1154 
  • 5b Wang X.-j. Tan J. Grozinger K. Tetrahedron Lett.  2000,  41:  4713 
  • 5c Dvorak CA. Rudolph DA. Ma S. Carruthers NI. J. Org. Chem.  2005,  70:  4188 
  • 5d Bourrain S. Ridgill M. Collins I. Synlett  2004,  795 
  • For peripheral arylation of 2-pyridone derivatives, see:
  • 6a Heo J.-N. Song YS. Kim BT. Tetrahedron Lett.  2005,  46:  4621 
  • 6b Siddle JS. Batsanov AS. Caldwell ST. Cooke G. Bryce MR. Tetrahedron  2010,  66:  6138 
  • 7 Huang Y.-Y. Lin H.-C. Cheng K.-M. Su W.-N. Sung K.-C. Lin T.-P. Huang J.-J. Lin S.-K. Wong FF. Tetrahedron  2009,  65:  9592 
  • 8a Patil SA. Weng C.-M. Huang P.-C. Hong F.-E. Tetrahedron  2009,  65:  2889 
  • 8b Lai Y.-C. Chen H.-Y. Hung W.-C. Lin C.-C. Hong F.-E. Tetrahedron  2005,  61:  9484 
  • 8c Kealey S. Long NJ. Miller PW. White AJP. Hitchcock PB. Gee A. J. Chem. Soc., Dalton Trans.  2007,  2823 
  • 8d Ojwach SO. Darkwa J. Inorg. Chim. Acta  2010,  369:  1947 
  • 8e Budzisz E. Miernicka M. Lorenz I.-P. Mayer P. Krajewska U. Polyhedron  2009,  28:  637 
  • 9 Maryanoff BE. Greco MN. Zhang HC. Andrade-Gordon P. Kauffman JA. Nicolaou KC. Liu A. Brungs PH. J. Am. Chem. Soc.  1995,  117:  1225 
  • 10 Best WM. Cook APF. Russell JJ. Widdowson DA. J. Chem. Soc., Perkin Trans. 1  1984,  1139 
  • 11 Hansen MM. Riggs JR. Tetrahedron Lett.  1998,  39:  2705 

Scheme 1 Strategies for the utilization of the tautomeric pyrazolone scaffold

Figure 1 Proposed structure for inactive palladium complex 1a′ (Ar = 4-BrC6H4)

Figure 2 X-ray crystal structure of 1-(2-pyridinyl)-3-phenyl-5-hydroxypyrazole (1d)