Synlett 2010(19): 2908-2912  
DOI: 10.1055/s-0030-1259041
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Silica-Supported KHSO4: An Efficient System for Activation of Aromatic Terminal Olefins

Ram Nath Das, Kuladip Sarma, Madan Gopal Pathak, Amrit Goswami*
Synthetic Organic Chemistry Division, North-East Institute of Science & Technology (A Constituent Establishment of CSIR, New Delhi), Jorhat, Assam 785006, India
Fax: +91(376)2370011; e-Mail: amritg_2007@rediffmail.com;

Further Information

Publication History

Received 21 July 2010
Publication Date:
10 November 2010 (online)

Abstract

Potassium hydrogen sulfate adsorbed on chromatography-grade silica gel activates electron-rich aromatic terminal olefins towards nucleophilic attack at the benzylic position by alcohols. Temperature plays a crucial role and facilitates suppressing nucleophilic reaction in favor of dimerization of the terminal olefin.

Activation of terminal alkenes is a challenging task in organic chemistry for preparation of industrially important higher alkenes, lubricants and detergents through homo- and co-dimerization. [¹] Effective activation of alkenes by transition metals iron, [²] copper, [³] titanium on montmorillonite support, [4] zirconium, [5] ruthenium, [¹] rhodium, [6] palladium, [7-9] gold and platinum catalysts, [¹0] sometimes in the presence of co-catalysts [¹¹] has been reported for formation of C-C or C-heteroatom bonds. Use of proton-exchanged montmorillonite as a solid Brønsted acid has been reported to be another extremely effective catalyst for direct addition of alkenes and alcohols to active methylene of 1,3-dicarbonyl compounds. [¹²] Direct formation of C-C or C-O bonds by coupling of an alkene with another or with an alcohol through functionalization of the C=C bond at the benzylic position is thus a very attractive reaction. The problem in the use of late transition metals in many processes is their high cost and toxicity. On the other hand, zeolites and other polymeric solid supports suffer from limitations of pore-size dependency and requirement for large quantities. Therefore achieving an alternative perspective on this conversion is definitely highly appealing.

Although triflic acid adsorbed unmodified chromatographic silica has been studied as effective recyclable system for alkylation of β-dicarbonyl compounds with alcohols or olefins, [¹³] formation of C-C or C-heteroatom bond through activation of alkenes by readily available and cheap alkali metal salts has not been explored. When the surface area of such metal salts is increased by supporting on a solid matrix, it constitutes an attractive hetero­genous catalyst system with improved activity and selectivity.

Thus silica-supported KHSO4 and NaHSO4 have been developed for cleavage of TBDMS ethers [¹4] and esters, [¹5] acetal preparation [¹5] and as dehydrating agents. [¹6] We have observed a novel property of this system and herein we present our experimental results for activation of aromatic terminal alkenes leading to cross-coupling with alcohols by nucleophilic attack on the benzylic carbon atom and also dimerization (Scheme  [¹] ).

Scheme 1

Deprotection [¹7] of 4-acetoxystyrene by silica-supported KHSO4 in methanol at its reflux temperature revealed that the alkenic double bond was attacked by methanol in the benzylic position to yield 1-(4-hydroxyphenyl)-1-methoxyethane in good yield (entry 1, Table  [¹] ). The reaction product was accompanied by a trace amount of head-to-tail dimerized product of 4-hydroxystyrene. Gratifyingly similar results were observed with a range of styrenes having electron-releasing group (entries 2-4, Table  [¹] ) on the benzene ring. Styrenes having electron-withdrawing groups on the benzene ring such as Cl or NO2 showed disappointing results.

Intrigued by the unusual mode of this reaction, a systematic investigation of the reaction of styrene derivatives was carried out with a range of higher alcohols in the presence of silica-supported KHSO4 at 80-115 ˚C (entries 5-9, 13 and 14, Table  [¹] ). Depending upon the alcohol, a specific reaction temperature (80-115 ˚C, Table  [¹] ) was required for nucleophilic insertion at the benzylic carbon of the substrate to occur (10-73%) along with the parallel dimerization reaction to give 4 (15-56%, Table  [¹] ). In the reaction of 4-methoxystyrene in a toluene-methanol (4:1) solvent system, it was observed that the dimerization reaction predominated over nucleophilic insertion with increase of reaction temperature (Figure  [¹] ). The reaction did not proceed with a tertiary alcohol; in the case of a secondary alcohol it was found to be sluggish (entries 7 and 9, Table  [¹] ).

Table 1 Reaction of Different Styrene Derivatives with Different Alcohols using KHSO4-SiO2 System (continued)
Entries Substrates Solvent Temp (˚C) α-Alkoxylated
productb (A)
Dimerized productb (B) Time (h) Yieldc (%)
A B
 1

MeOH 70

N.O.d 3 84 -
 2

MeOH 70

N.O.d 3 87 -
 3

MeOH 70

N.O.d 3 82 -
 4

MeOH 70

4 3 65 30
 5

EtOH 80

4 3 20 45
 6

4-phenyl-1-butanol 115

4 4 45 50
 7

2-PrOH 115

4 5 11 55
 8

n-octanol 115

4 5 15 56
 9

1-phenylethanol 115

4 5 10 35
10

toluene-MeOH (4:1) 115

4 3 25 61
11

DCE 80 - 4 3 - 63
12

toluene 115 - 4 3 - 65
13

EtOH 80

3 3 10 25
14

n-BuOH 80

3 4 73 15
15

toluene 115 - 3 3 - 66
16

DCE 80 - 3 3 - 64
17

MeOH 70

5 3 26 55
18

toluene 115 - 5 3 - 59
19

DCE 80 - 5 3 - 58

a The reactions were run with olefin (8-10 mmol) for 3-6 h. [²0] b The products were characterized from their respective IR, NMR, GC and mass spectroscopic data and by comparison with literature data. [²¹]
c Isolated yields of products.
d The products were not observed (N.O.).

Figure 1 Effect of temperature on dimerization of 4-methoxysty­rene in toluene-MeOH (4:1) solvent system

However, in aprotic solvents like dichloroethane and toluene, dimerization reaction of 4-methoxystyrene occurred exclusively to give 63-65% yield (Scheme  [²] ; entries 10-12, Table  [¹] ) of the head-to-tail dimerized product 4 along with a trace amount of another dimerized product. Such a product was reported [¹8] to be formed from styrene on reaction with trifluoroacetoxy nickel hydride in 40 hours.

Scheme 2

Styrene itself did not undergo any reaction when refluxed in methanol in the presence of silica-supported KHSO4. However, when heated in ethanol at its boiling point, styrene gave 1-phenyl diethylether (10%) and tail-to-tail dimerized product 3 (25%) having a terminal double bond (Scheme  [²] ; entry 13, Table  [¹] ), which is reported [¹9] to be formed from styrene on reaction with cyclopalladated tetrafluoroborate from N-(p-tolyl)-p-nitrobenzalidimine at 100 ˚C over 19 hours. Surprisingly, styrene on refluxing with n-butanol in the presence of silica-supported KHSO4 at 80 ˚C for three hours gave 73% of n-butyloxy-1-phenylethanol and only 15% of tail-to-tail dimerized product 3 (Scheme  [¹] ; entry 14, Table  [¹] ). On the other hand styrene or α-methylstyrene on heating with silica-supported KHSO4 in dichloroethane or in toluene, gave 58-66% yields of tail-to-tail and head-to-tail dimerized products 3 and 5. respectively (Scheme  [²] ; entries 15, 16, 18, and 19, Table  [¹] ). α-Methylstyrene on heating in methanol at its reflux temperature in the presence of KHSO4-SiO2 also gave 26% of 1-methyl-1-phenylmethoxyethane (entry 17, Table  [¹] ) and 55% of head-to-tail dimerized product 5 (Scheme  [²] ). It is postulated that the absence of any electron-releasing group on the benzene ring facilitates tail-to-tail dimerization over head-to-tail dimerization. The role of the electron-releasing substituent in both the nucleophilic addition and the dimerization is presumably to stabilize the carbonium ion generated in the benzylic position by potassium bisulfate facilitating the attack by nucleophilic methoxy group or by another styrene molecule. This is not possible in the case of substrates having electron-withdrawing groups.

The reaction was studied with other sodium and potassium salts such as NaHSO4, K2SO4, KCl and KF. However, compared to KHSO4 all other salts showed inferior or no catalytic activity (Figure  [²] ). The detailed assignment of the ¹H NMR spectra of 3-5 and comparison with the literature data established their structures (Scheme  [²] ).

Figure 2 Effect of change of metal catalyst on conversion of 4-­methoxystyrene to both types of products

In conclusion, we have described a KHSO4-catalyzed activation of styrenes which involves either nucleophilic attack by alkoxide or dimerization through head-to-tail or tail-to-tail coupling. Although several reports have appeared for such reactions using transition metal catalysts, the solid-supported acidic salt mediated catalyzed reactions described in this communications represent the first report of C-C and C-O functionalization. The advantages of the method are that it is a one-pot process, noncorrosive, the catalyst can be easily recovered for recycling and the procedure is simple.

Supporting Information for this article is available online at http://www.thieme-connect.com.accesdistant.sorbonne-universite.fr/ejournals/toc/synlett.

Acknowledgment

We gratefully acknowledge Dr. P. G. Rao, Director, NEIST, Jorhat for providing the facilities to carry out this work. The authors also gratefully acknowledge Dr. J. C. S. Kataky, Head, Synthetic Organic Chemistry Division for his help with carrying out this work and CSIR, India for the funding.

    References and Notes

  • 1a Christoffers J. Bergman RG. J. Am. Chem. Soc.  1996,  118:  4715 
  • 1b Liang Y. Yap GPA. Rheingold AL. Theopold KH. Organometallics  1996,  15:  5284 
  • 1c Hajela S. Bercaw JE. Organometallics  1994,  13:  1147 
  • 1d Aljarallah AM. Anabtawi JA. Siddiqui MAB. Aitani AM. Al-Sa’doun AW. Catal. Today  1992,  14:  1 
  • 1e Skupinska J. Chem. Rev.  1991,  91:  613 
  • 1f Piers WE. Shapiro PJ. Bunel EE. Bercaw JE. Synlett  1990,  74 
  • 1g Pillai SM. Ravindranathan M. Sivaram S. Chem. Rev.  1986,  86:  353 
  • 1h Kondo T. Takagi D. Tsujita H. Ura Y. Wada K. Mitsudo T.-A. Angew. Chem. Int. Ed.  2007,  46:  5958 
  • 2 Zhang S.-Y. Tu Y.-Q. Fan C.-A. Zhang F.-M. Shi L. Angew. Chem. Int. Ed.  2009,  48:  8761 
  • 3a Wang D. Li J. Li N. Gao T. Hou S. Chen B. Green Chem.  2010,  12:  45 
  • 3b Zaccheria F. Psaro R. Ravasio N. Tetrahedron Lett.  2009,  50:  5221 
  • 4 Motokura K., Fujita N., Mori K., Mizugaki T., Ebitani K., Kaneda K.; J. Am. Chem. Soc.; 2005, 127: 9674
  • 5 Sultanov R. M., Vasil’ev V. V., Dzhemilev U. M.; Russ. J. Org. Chem.; 2010, 46: 355
  • 6 Tobisu M., Hyodo I., Onoe M., Chetani N.; Chem. Commun.; 2008, 6013
  • 7 Tsuchimoto T. Kamiyama S. Negoro R. Shirakawa E. Kawakami Y. Chem. Commun.  2003,  862 
  • 8 Sun C.-L. Li B.-J. Shi Z.-J. Chem. Commun.  2010,  46:  677 
  • 9 Zuniga C. Moya SA. Aguirre P. Catal. Lett.  2009,  130:  373 
  • 10 Yao X. Li C.-J. J. Am. Chem. Soc.  2004,  126:  6884 
  • 11 Zhang X. Corma A. Chem. Commun.  2007,  3080 
  • 12 Motokura K. Fujita N. Mori K. Mizugaki T. Ebitani K. Kaneda K. Angew. Chem. Int. Ed.  2006,  45:  2605 
  • 13 Liu PN. Xia F. Wang QW. Ren YJ. Chen JQ. Green Chem.  2010,  12:  1049 
  • 14a Arumugam P. Kartikeyan G. Perumal PT. Chem. Lett.  2004,  33:  1146 
  • 14b Kumar RS. Nagarajan R. Perumal PT. Synthesis  2004,  949 
  • 15 Sartori G. Balini R. Bigi F. Bosica G. Maggi R. Righi P. Chem. Rev.  2004,  104:  199 
  • 16 Ramesh C. Mahender G. Ravindranath N. Das B. Tetrahedron Lett.  2003,  44:  1465 
  • 17 Goswami A. Das RN. Borthakur N. Indian J. Chem., Sect. B  2007,  46:  1893 
  • 18 Dawans F. Tetrahedron Lett.  1971,  1943 
  • 19 Wu G. Geib SJ. Rheingold AL. Heck RF. J. Org. Chem.  1988,  53:  3238 
  • 20a

    Catalyst Preparation: KHSO4 (20 g, 144 mmol) was dissolved in distilled H2O (100 mL) and silica gel (25 g, 60-120 mesh) was added. The soaked mixture was thoroughly mixed and dried in a hot oven at 150 ˚C for 24 h to give a free flowing powdery solid. The dried solid mixture was then stored in a vacuum desiccator.

  • 20b

    Typical Experimental Procedure for Alkoxylation:
    4-Methoxystyrene (1 g, 7.5 mmol) was added slowly to a round-bottomed flask containing KHSO4-SiO2 (100 mg) and 4-phenyl-1-butanol (5 mL). The mixture was then stirred for 3 h at 115 ˚C to give 1-(4-methoxyphenyl)-1-(4-phenyl-1-butoxy)ethane (0.96 g, 45%) as a liquid. ¹H NMR (300 MHz, CDCl3; Me4Si): δ = 1.33 (d, J = 6.4 Hz, 3 H, CH 3CHOCH2), 1.58 (m, 4 H, PhCH 2CH 2), 2.51 (m, 2 H, OCH2CH 2CH2), 3.20 (t, J = 6.4 Hz, 2 H, OCH 2CH2), 3.73 (s, 3 H, PhOCH 3), 4.24 (q, J = 6.4 Hz, 1 H, CH2OCHCH3), 6.80 (d, J = 6.8 Hz, 2 H, 2 × MeOAr-m-H), 7.06-7.21 (m, 7 H,
    7 × ArH). ¹³C NMR (75 MHz, CDCl3; Me4Si): δ = 24.2 (CH3CHOCH2), 28.1, 29.6, 35.8, 55.3 (4 × CH2), 68.3 (CH3 CHOCH2), 113.8 (OCH3), 125.7, 127.4, 128.3, 128.5, 136.2, 142.6, 158.9 (12 × ArC). MS: m/z (EI) = 284 [M+]. Anal. Calcd for C19H24O2: C, 80.28; H, 8.45. Found: C, 80.32; H, 8.41.

  • 20c

    Typical Procedure for Dimerization: A solution of 4-methoxystyrene (1 g, 7.5 mmol) in toluene (2 mL) was added slowly to a round-bottomed flask containing KHSO4-SiO2 (100 mg) in toluene (10 mL). The mixture was then stirred for 3 h at 115 ˚C to give the head-to-tail dimmer, 1,3-di-(4-methoxyphenyl)-1-butene (0.65 g, 65%) as a semi-liquid. ¹H NMR (300 MHz, CDCl3; Me4Si): δ = 1.40 (d, J = 6.5 Hz, 3 H, CH 3CH), 3.56 (q, J = 6.5 Hz, 1 H, CH3CHCH), 3.79 (s, 6 H, 2 × PhOCH 3), 6.23-6.36 (m, 2 H, CH=CH), 6.80-6.87 (m, 4 H, 4 × ArH), 7.17-7.29 (m, 4 H, 4 × ArH). ¹³C NMR (75 MHz, CDCl3; Me4Si): δ = 21.5 (CH3CH), 41.7 (CH3 CH), 55.3 (2 × OCH3), 113.9 (2 × ArC), 127.3, 127.6 (2 × CH=CH), 127.8, 128.2, 128.4, 129.9, 130.5, 133.5, 138.0, 157.9, 158.8 (10 × ArC). MS: m/z = (EI) 268 [M+]. Anal. Calcd for C18H20O2: C, 80.59; H, 7.46. Found: C, 80.54; H, 7.49.

  • 21a Fujii Y. Furugaki H. Tamura E. Yano S. Kita K. Bull. Chem. Soc. Jpn.  2005,  78:  456 
  • 21b Zaccheria F. Psaro R. Ravasio N. Tetrahedron Lett.  2009,  50:  5221 
  • 21c Murphy JA. Khan TA. Zhou S. Thomson DW. Mahesh M. Angew. Chem. Int. Ed.  2005,  44:  1356 
  • 21d Zhang Y. Sigman MS. Org. Lett.  2006,  8:  5557 
  • 21e Minai M, and Higashii T. inventors; Eur. Patent Appl.  EP 288297. 

    References and Notes

  • 1a Christoffers J. Bergman RG. J. Am. Chem. Soc.  1996,  118:  4715 
  • 1b Liang Y. Yap GPA. Rheingold AL. Theopold KH. Organometallics  1996,  15:  5284 
  • 1c Hajela S. Bercaw JE. Organometallics  1994,  13:  1147 
  • 1d Aljarallah AM. Anabtawi JA. Siddiqui MAB. Aitani AM. Al-Sa’doun AW. Catal. Today  1992,  14:  1 
  • 1e Skupinska J. Chem. Rev.  1991,  91:  613 
  • 1f Piers WE. Shapiro PJ. Bunel EE. Bercaw JE. Synlett  1990,  74 
  • 1g Pillai SM. Ravindranathan M. Sivaram S. Chem. Rev.  1986,  86:  353 
  • 1h Kondo T. Takagi D. Tsujita H. Ura Y. Wada K. Mitsudo T.-A. Angew. Chem. Int. Ed.  2007,  46:  5958 
  • 2 Zhang S.-Y. Tu Y.-Q. Fan C.-A. Zhang F.-M. Shi L. Angew. Chem. Int. Ed.  2009,  48:  8761 
  • 3a Wang D. Li J. Li N. Gao T. Hou S. Chen B. Green Chem.  2010,  12:  45 
  • 3b Zaccheria F. Psaro R. Ravasio N. Tetrahedron Lett.  2009,  50:  5221 
  • 4 Motokura K., Fujita N., Mori K., Mizugaki T., Ebitani K., Kaneda K.; J. Am. Chem. Soc.; 2005, 127: 9674
  • 5 Sultanov R. M., Vasil’ev V. V., Dzhemilev U. M.; Russ. J. Org. Chem.; 2010, 46: 355
  • 6 Tobisu M., Hyodo I., Onoe M., Chetani N.; Chem. Commun.; 2008, 6013
  • 7 Tsuchimoto T. Kamiyama S. Negoro R. Shirakawa E. Kawakami Y. Chem. Commun.  2003,  862 
  • 8 Sun C.-L. Li B.-J. Shi Z.-J. Chem. Commun.  2010,  46:  677 
  • 9 Zuniga C. Moya SA. Aguirre P. Catal. Lett.  2009,  130:  373 
  • 10 Yao X. Li C.-J. J. Am. Chem. Soc.  2004,  126:  6884 
  • 11 Zhang X. Corma A. Chem. Commun.  2007,  3080 
  • 12 Motokura K. Fujita N. Mori K. Mizugaki T. Ebitani K. Kaneda K. Angew. Chem. Int. Ed.  2006,  45:  2605 
  • 13 Liu PN. Xia F. Wang QW. Ren YJ. Chen JQ. Green Chem.  2010,  12:  1049 
  • 14a Arumugam P. Kartikeyan G. Perumal PT. Chem. Lett.  2004,  33:  1146 
  • 14b Kumar RS. Nagarajan R. Perumal PT. Synthesis  2004,  949 
  • 15 Sartori G. Balini R. Bigi F. Bosica G. Maggi R. Righi P. Chem. Rev.  2004,  104:  199 
  • 16 Ramesh C. Mahender G. Ravindranath N. Das B. Tetrahedron Lett.  2003,  44:  1465 
  • 17 Goswami A. Das RN. Borthakur N. Indian J. Chem., Sect. B  2007,  46:  1893 
  • 18 Dawans F. Tetrahedron Lett.  1971,  1943 
  • 19 Wu G. Geib SJ. Rheingold AL. Heck RF. J. Org. Chem.  1988,  53:  3238 
  • 20a

    Catalyst Preparation: KHSO4 (20 g, 144 mmol) was dissolved in distilled H2O (100 mL) and silica gel (25 g, 60-120 mesh) was added. The soaked mixture was thoroughly mixed and dried in a hot oven at 150 ˚C for 24 h to give a free flowing powdery solid. The dried solid mixture was then stored in a vacuum desiccator.

  • 20b

    Typical Experimental Procedure for Alkoxylation:
    4-Methoxystyrene (1 g, 7.5 mmol) was added slowly to a round-bottomed flask containing KHSO4-SiO2 (100 mg) and 4-phenyl-1-butanol (5 mL). The mixture was then stirred for 3 h at 115 ˚C to give 1-(4-methoxyphenyl)-1-(4-phenyl-1-butoxy)ethane (0.96 g, 45%) as a liquid. ¹H NMR (300 MHz, CDCl3; Me4Si): δ = 1.33 (d, J = 6.4 Hz, 3 H, CH 3CHOCH2), 1.58 (m, 4 H, PhCH 2CH 2), 2.51 (m, 2 H, OCH2CH 2CH2), 3.20 (t, J = 6.4 Hz, 2 H, OCH 2CH2), 3.73 (s, 3 H, PhOCH 3), 4.24 (q, J = 6.4 Hz, 1 H, CH2OCHCH3), 6.80 (d, J = 6.8 Hz, 2 H, 2 × MeOAr-m-H), 7.06-7.21 (m, 7 H,
    7 × ArH). ¹³C NMR (75 MHz, CDCl3; Me4Si): δ = 24.2 (CH3CHOCH2), 28.1, 29.6, 35.8, 55.3 (4 × CH2), 68.3 (CH3 CHOCH2), 113.8 (OCH3), 125.7, 127.4, 128.3, 128.5, 136.2, 142.6, 158.9 (12 × ArC). MS: m/z (EI) = 284 [M+]. Anal. Calcd for C19H24O2: C, 80.28; H, 8.45. Found: C, 80.32; H, 8.41.

  • 20c

    Typical Procedure for Dimerization: A solution of 4-methoxystyrene (1 g, 7.5 mmol) in toluene (2 mL) was added slowly to a round-bottomed flask containing KHSO4-SiO2 (100 mg) in toluene (10 mL). The mixture was then stirred for 3 h at 115 ˚C to give the head-to-tail dimmer, 1,3-di-(4-methoxyphenyl)-1-butene (0.65 g, 65%) as a semi-liquid. ¹H NMR (300 MHz, CDCl3; Me4Si): δ = 1.40 (d, J = 6.5 Hz, 3 H, CH 3CH), 3.56 (q, J = 6.5 Hz, 1 H, CH3CHCH), 3.79 (s, 6 H, 2 × PhOCH 3), 6.23-6.36 (m, 2 H, CH=CH), 6.80-6.87 (m, 4 H, 4 × ArH), 7.17-7.29 (m, 4 H, 4 × ArH). ¹³C NMR (75 MHz, CDCl3; Me4Si): δ = 21.5 (CH3CH), 41.7 (CH3 CH), 55.3 (2 × OCH3), 113.9 (2 × ArC), 127.3, 127.6 (2 × CH=CH), 127.8, 128.2, 128.4, 129.9, 130.5, 133.5, 138.0, 157.9, 158.8 (10 × ArC). MS: m/z = (EI) 268 [M+]. Anal. Calcd for C18H20O2: C, 80.59; H, 7.46. Found: C, 80.54; H, 7.49.

  • 21a Fujii Y. Furugaki H. Tamura E. Yano S. Kita K. Bull. Chem. Soc. Jpn.  2005,  78:  456 
  • 21b Zaccheria F. Psaro R. Ravasio N. Tetrahedron Lett.  2009,  50:  5221 
  • 21c Murphy JA. Khan TA. Zhou S. Thomson DW. Mahesh M. Angew. Chem. Int. Ed.  2005,  44:  1356 
  • 21d Zhang Y. Sigman MS. Org. Lett.  2006,  8:  5557 
  • 21e Minai M, and Higashii T. inventors; Eur. Patent Appl.  EP 288297. 

Scheme 1

Figure 1 Effect of temperature on dimerization of 4-methoxysty­rene in toluene-MeOH (4:1) solvent system

Scheme 2

Figure 2 Effect of change of metal catalyst on conversion of 4-­methoxystyrene to both types of products