Subscribe to RSS
DOI: 10.1055/s-0030-1257912
Chemo- and Regiospecific Modification of d,l-Tryptophan by Reaction with α,β-Acetylenic γ-Hydroxy Nitriles
Publication History
Publication Date:
04 August 2010 (online)
Abstract
d,l-Tryptophan reacts with α,β-acetylenic γ-hydroxy nitriles, chemo- and regiospecifically, under mild, green conditions via a hydroamination-type process involving the primary amine group. The hydroxycyanopropanyl substituent of the initial adducts undergoes cyclization to afford a 2,5-dihydro-5-iminofuranyl moiety. Several novel amino acids are obtained in almost quantitative yields (95-98%), which exist in an unusual zwitterionic form where the positive charge is located on the remote nitrogen atom of the imino group of the dihydrofuran ring.
Key words
d,l-tryptophan - α,β-acetylenic γ-hydroxy nitriles - nucleophilic addition - hydroamination - amino acids - 2,5-dihydroiminofurans
The indole ring system is a very common scaffold in Nature, [¹] indeed the large number of known biologically active indoles has led to them being employed as key structural units in many pharmaceuticals. [²] Substituted indoles can bind selectively to many receptors with high affinity. [³] The significance of the essential amino acid tryptophan in human nutrition has been widely recognized. [¹d] [4] In plants, tryptophan is used to synthesize proteins and compounds responsible for control of their growth. [5]
Derivatives of tryptophan are able to activate osteoblasts and amongst these, therapeutic agents for the treatment of osteoporosis have been found. [6] They are also recommended for the specific treatment of serotonin-producing tumors. [7] Certain tryptophan congeners exhibit matrix metalloproteinase (MMP) inhibitory activity. [8 ] Therefore, the development of new synthetic strategies for the modification of tryptophan is important. Furthermore, as tryptophan exists as a polyfunctional molecule, containing amine, carboxylic acid and indole functional groups, its chemo- and regioselective modification is an obvious challenge.
For example, the reaction of tryptophan residues of enzymes with N-halosuccinimide has been reported. [9] The complex transformations of tryptophan in foods, and the significant diversity of its derivatives, have been reviewed. Carbolines have been obtained from tryptophan and carbonyl compounds. [5a] Peptides containing two tryptophan units underwent acid-promoted macrocyclization and oxidation to afford peptides demonstrating unique fluorescent properties. [¹0] In addition, Pictet-Spengler condensation of tryptophan with quinoline or quinoline-5,8-dione aldehydes has led to the synthesis of the antibiotic, lavendamycin. [¹¹] Amino acids displaying antibacterial and antifungal properties were obtained by reaction of l-tryptophan with 2-hydroxy-1-naphthaldehydes. [¹²]
In this paper, we report on the modification of d,l-tryptophan (1) by reaction with α,β-acetylenic γ-hydroxy nitriles 2a-d. The reaction takes place in water under mild conditions (sodium hydroxide, pH ˜10, 40-45 ˚C, 4-48 hours), and proceeds via nucleophilic addition of the amino function across the triple bond, resulting in the formation of a novel family of unnatural amino acids 4a-d containing a 2,5-dihydro-5-iminofuranyl substituent. The iminofuranyl moiety is assembled by ring-closure involving the cyano and hydroxy functionalities of the initial adducts 3. The modified tryptophans 4a-d were formed chemo- and regioselectively, in almost quantitative yields (95-98%) (Table [¹] ).
![]() | |||||||||||||||||||
Product | R¹ | R² | Yield (%) | ||||||||||||||||
4a | Me | Me | 98 | ||||||||||||||||
4b | Me | Et | 96 | ||||||||||||||||
| |||||||||||||||||||
4c |
-(CH2)5- | 95 | |||||||||||||||||
| |||||||||||||||||||
4d |
-(CH2)6- | 95 |
It is clear that the true catalyst here is the sodium salt of d,l-tryptophan. The role of the base is to increase the concentration of the non-zwitterionic form of the amino acid. The latter, possessing an uncharged amino group, is able to undergo nucleophilic addition at the triple bond of the hydroxy nitrile.
It should be noted that, in this case, the amino group of the indole ring remained completely inactive towards the highly electrophilic acetylenes 2a-d. This is surprising as the latter typically undergo addition to a number of diverse NH-containing heterocycles, such as imidazole, [¹³] benzimidazole, [¹³c] [e] [¹4] pyrazole, triazole, [¹³c-e] and tetrazole, [¹5] to furnish the corresponding adducts without undergoing cyclization into iminodihydrofurans.
The amino acids 4a-d exist, both in solid and solution states, in peculiar zwitterionic forms, protonated at the remote nitrogen atom of the iminodihydrofuran residue instead of at the expected tryptophan amino group. Similar long-range proton transfer has been observed in adducts of aliphatic amino acids [¹6 ] and 2-aminobenzoic acid [¹7] with α,β-acetylenic γ-hydroxy nitriles.
The reaction time depends on the structure of the starting acetylenes 2a-d: aliphatic acetylenes 2a,b underwent the reaction in four hours, while in the case of acetylenes 2c,d possessing cycloalkyl substituents, the reaction was complete after two days. This was probably due to the steric effects of the cyclic substituents in 2c,d, and also due to the lower solubility of these acetylenes in water. Amino acids 4a-d were obtained as light-yellow powders which were highly soluble in water, methanol and ethanol, but were insoluble in most organic solvents.
The spectroscopic data of adducts 4a-d [multinuclear ¹H, ¹³C and 2D (HMBC) NMR, IR and UV] were in agreement with the proposed structures. The ¹H NMR spectra of compounds 4a-d exhibited an alkene proton (H-4) signal at 4.63-4.76 ppm (Figure [¹] ). The CH and CH2 protons of the propanoyl chain appeared as three doublet of doublets (three-spin ABX system) in the regions 4.06-4.10, 3.48-3.49 and 3.11-3.16 ppm, respectively. The aromatic protons were present as two doublets (7.61-7.67 and 7.20-7.29 ppm) and two doublet of doublets (6.99-7.06 and 6.98-7.06 ppm), or as a multiplet at 7.06 ppm (in the case of 4c), assigned to the benzene ring, and as a singlet (7.05-7.08 ppm) due to the pyrrole moiety. In the ¹H NMR spectrum of 4a in DMSO-d 6, the NH (H-15) proton of the indole and those of the =N+H2 fragment appeared at 10.78 and 8.99 ppm, respectively. In the case of 4b, doubling of the alkyl and alkene hydrogen signals, corresponding to a 1:1 [R,R(S,S):R,S(S,R)] diastereomeric mixture was observed. The ¹³C NMR spectra further confirmed the structures of amino acids 4a-d. The carbon signals of the COO-, HN-C=CH and C=N+H2 groups were assigned using ¹H-¹³C HMBC spectroscopy. The HMBC spectrum of adduct 4a showed cross peaks between the alkene proton (H-4) and the quaternary carbons at C-2 and C-5 of the iminodihydrofuran ring, and between the methyl group protons and carbon C-3 (Figure [²] ).

Figure 1 The atom numbering used for NMR assignments in compounds 4a-d

Figure 2 Diagnostic cross peaks in the HMBC (¹H-¹³C) spectrum of amino acid 4a
The zwitterionic form of amino acids 4a-d was supported by their IR (KBr) spectra in which strong, broad absorptions were apparent in the region 3500-2600 cm-¹ (with peaks at 3405-3219, 3115-3049, 2985-2930 and 2876-2865 cm-¹). These bands were attributed to the NH, =N+H2, C=CH and CH groups. The carboxylate anion was evident as a broad absorption in the region 1700-1500 cm-¹, overlapping with the stretching vibration of the C=C bond at 1611-1618 cm-¹, and the bending vibrations of the =N+H2 moiety at 1572-1535 cm-¹. Stretching vibrations due to the =N+H2 fragment were present as weak, broad absorption bands at 2205-2216 cm-¹.
The zwitterionic structures of amino acids 4a-d follow by analogy to the previously reported addition of glycine [¹6] and 2-aminobenzoic acid [¹7] to α,β-acetylenic γ-hydroxy nitrile 2a, where the transfer of positive charge to the iminodihydrofuran ring was confirmed, unambiguously, by single crystal X-ray structure analysis.
An advantage of these modified tryptophans is the combination of an indole amino acid and a 2,5-dihydro-5-iminofuranyl moiety in their structures. The dihydrofuran moiety is present in numerous biologically active compounds, for example, tetronic acids and their thiol analogs, [¹8] vitamin C, [¹9] penicillic acid, and in anti-AIDS drugs such as 1-(2′,3′-dideoxy-γ-d-glyceropent-2-enofuranosyl)thymine (d4T) and 1-[4-azido-5-(hydroxymethyl)tetrahydrofuran-2-yl]-5-methylpyrimidine-2,4-(1H,3H)-dione (AZT). [²0] The dihydrofuran structural unit also occurs in cardenolides [²¹] (cardioactive steroid lactones), dysidiolide (the only known natural inhibitor of the protein phosphatase cdc25A [²²] ), as well as in many other natural molecules such as sesquiterpenes [²³] and pulvinic acid derivatives. [²4] In strigol and its analogs, the dihydrofuranone unit is primarily responsible for the germination of seeds. [²5]
The starting α,β-acetylenic γ-hydroxy nitriles 2a-d are readily available compounds which are prepared from acetylenic alcohols in two simple steps [¹³e] [²6] (Scheme [¹] ). These powerful building blocks have attracted significant attention in organic synthesis. [¹³c] [e] [²6b] [²7]

Scheme 1 Synthesis of α,β-acetylenic γ-hydroxy nitriles 2a-d
In summary, a new synthetic strategy for the chemical modification of d,l-tryptophan into unnatural derivatives containing a 2,5-dihydro-5-iminofuranyl moiety, and displaying an unusual zwitterionic distribution (where the most distal NH basic center is protonated) has been developed. The strategy involves the chemo- and regiospecific addition of d,l-tryptophan to α,β-acetylenic γ-hydroxy nitriles in water under gentle heating. These unnatural amino acids represent potential pharmaceuticals, and promising building blocks and auxiliaries for drug design, proteomics and controlled peptide modification.
Melting points were obtained using a Kofler micro hot stage apparatus. IR spectra were recorded using a Bruker Vertex-70 instrument. ¹H and ¹³C NMR spectra were recorded on a Bruker DPX-400 spectrometer in CD3OD or DMSO-d 6 at room temperature. The NMR signals were assigned using 2D NMR techniques (HMBC ¹H-¹³C). ¹H and ¹³C NMR assignments are made according to the numbering system shown in Figure [¹] . UV/Vis spectra were measured on a Perkin-Elmer Lambda 35 spectrometer at room temperature (EtOH, d = 0.1, 1.0 cm). Elemental analyses were performed on a FLASH EA 1112 Series instrument. The reaction was monitored by TLC on neutral Al2O3 (Merck) (eluent: CHCl3-benzene-EtOH, 20:4:1). d,l-Tryptophan (1) was commercially available (Merck). α,β-Acetylenic γ-hydroxy nitriles 2a-d were prepared according to the literature. [²6]
Amino Acids 4a-d; General Procedure
A soln of NaOH (20 mg, 0.5 mmol) in H2O (2 mL) was added to a suspension of d,l-tryptophan (1) (204 mg, 1.0 mmol) in H2O (5 mL), and the mixture heated at 40-45 ˚C. The appropriate acetylene 2a-d (1.0 mmol) was added and the resulting mixture stirred for 4 h (2a,b) or 48 h (2c,d). The H2O was evaporated, the residue filtered through neutral Al2O3 [2-3 cm, eluent: 50-70 mL of hot EtOH (50-60 ˚C)] and the solvent evaporated under reduced pressure to afford amino acids 4a-d.
2-[(5-Iminio-2,2-dimethyl-2,5-dihydrofuran-3-yl)amino]-3-(1 H -indol-3-yl)propanoate (4a)
Light-yellow powder; yield: 307 mg (98%); mp 232-236 ˚C (dec.).
IR (KBr): 3500-2600 with peaks at 3272, 3226 (NH, =N+H2), 3115, 3058 (C=CH), 2985, 2932, 2871 (CH), 1700-1500 with peaks at 1698 (C=O), 1618 (C=C), 1535 (=N+H2) cm-¹.
¹H NMR (400.13 MHz, CD3OD): δ = 7.64 (d, ³ J = 7.8 Hz, 1 H, H-14), 7.20 (d, ³ J = 8.1 Hz, 1 H, H-11), 7.08 (s, 1 H, H-16), 7.05 (dd, ³ J 13-14 ˜ ³ J 13-12 = 7.8 Hz, 1 H, H-13), 7.00 (dd, ³ J 13-12 ˜ ³ J 11-12 = 8.0 Hz, 1 H, H-12), 4.65 (s, 1 H, H-4), 4.08, 3.49, 3.15 (ABX, dd, ² J AB = 14.9 Hz, ³ J AX = 4.2 Hz, ³ J BX = 9.4 Hz, 3 H, CH2CH), 1.52 and 1.29 (s, 6 H, 2 × CH3).
¹H NMR (400.13 MHz, DMSO-d 6): δ (selected resonances) = 10.78 (s, 1 H, H-15), 8.99 (br s, 2 H, =N+H2).
¹³C NMR (100.62 MHz, CD3OD): δ = 178.2 (COO-), 177.4 (HN-C=CH), 176.7 (C=N+H2), 138.0 (C-14a), 128.9 (C-10a), 124.6, 122.4, 119.8, 119.4 (C-11, C-12, C-13, C-14), 112.3 (C-16), 111.7 (C-10), 92.2 (C-2), 76.6 (C-4), 63.7 (CH2 CH), 29.5 (CH2CH), 25.0, 24.7 (2 × CH3).
UV/Vis (EtOH): λmax (log ε) = 222 (4.65), 273 (4.61), 291 (shoulder, 4.24), 372 nm (3.26).
Anal. Calcd for C17H19N3O3: C, 65.16; H, 6.11; N, 13.41. Found: C, 65.40; H, 6.33; N, 13.38.
2-[(2-Ethyl-5-iminio-2-methyl-2,5-dihydrofuran-3-yl)amino]-3-(1 H -indol-3-yl)propanoate (4b)
Light-yellow powder; yield: 314 mg (96%); mp 194-200 ˚C (dec.).
IR (KBr): 3500-2600 with peaks at 3397, 3249 (NH, =N+H2), 3056 (C=CH), 2973, 2931, 2876 (CH), 2205 (br w, =N+H2), 1700-1500 with peaks at 1680 (C=O), 1616 (C=C), 1570 (=N+H2) cm-¹.
¹H NMR (400.13 MHz, CD3OD): δ (1:1 mixture of diastereomers) = 7.67 and 7.64 (d, ³ J = 8.0 Hz, 2 H, H-14), 7.29 (d, ³ J = 8.3 Hz, 2 H, H-11), 7.08 (s, 2 H, H-16), 7.06 (dd, ³ J 13-12 ˜ ³ J 11-12 = 8.3 Hz, 2 H, H-12), 6.99 (dd, ³ J 13-14 ˜ ³ J 13-12 = 8.0 Hz, 2 H, H-13), 4.76 and 4.68 (s, 2 H, H-4), 4.09, 3.49, 3.15 (ABX, dd, ² J AB = 14.7 Hz, ³ J AX = 3.8 Hz, ³ J BX = 10.4 Hz, 3 H, CH2CH), 4.07, 3.49, 3.11 (ABX, dd, ² J AB = 14.7 Hz, ³ J AX = 4.2 Hz, ³ J BX = 9.4 Hz, 3 H, CH2CH), 1.90 and 1.74 (dq, ² J = 6.7 Hz, ³ J = 7.3 Hz, 4 H, CH 2CH3), 1.53 and 1.28 (s, 6 H, CH3), 0.77 and 0.32 (t, ³ J = 7.3 Hz, 6 H, CH2CH 3).
¹³C NMR (100.62 MHz, CD3OD): δ (1:1 mixture of diastereomers) = 177.9a (COO-), 177.0a (HN-C=CH), 176.8 and 176.7 (C=N+H2), 138.2 and 138.0 (C-14a), 128.9 and 128.7 (C-10a), 124.5, 124.4, 122.4,a 119.8,a 119.4, 119.3 (C-11, C-12, C-13, C-14), 112.3a (C-16), 111.8 and 111.7 (C-10), 94.8a (C-2), 78.0 and 77.9 (C-4), 63.9 and 63.7 (CH2 CH), 31.7 and 31.4 (CH2CH), 29.6 and 29.5 (CH3 CH2), 23.9 and 23.5 (CH3), 7.3 and 6.8 (CH3CH2). a The carbon signals for the two diastereomers are equivalent.
UV/Vis (EtOH): λmax (log ε) = 222 (4.50), 272 (4.42), 291 (shoulder, 4.06), 371 nm (3.44).
Anal. Calcd for C18H21N3O3: C, 66.04; H, 6.47; N, 12.84. Found: C, 65.95; H, 6.33; N, 13.03.
2-[(2-Iminio-1-oxaspiro[4.4]non-3-en-4-yl)amino]-3-(1 H -indol-3-yl)propanoate (4c)
Light-yellow powder; yield: 321 mg (95%); mp 164-166 ˚C (dec.).
IR (KBr): 3500-2600 with peaks at 3405, 3258 (NH, =N+H2), 3054 (C=CH), 2964, 2936, 2874 (CH), 2216 (br w, =N+H2), 1700-1500 with peaks at 1680 (C=O), 1617 (C=C), 1572 (=N+H2) cm-¹.
¹H NMR (400.13 MHz, CD3OD): δ = 7.61 (d, ³ J = 7.7 Hz, 1 H, H-14), 7.29 (d, ³ J = 8.2 Hz, 1 H, H-11), 7.06 (m, 1 H, H-13), 7.05 (s, 1 H, H-16), 6.98 (dd, ³ J 13-12 ˜ ³ J 11-12 = 8.0 Hz, 1 H, H-12), 4.72 (s, 1 H, H-4), 4.10, 3.49, 3.16 (ABX, dd, ² J AB = 15.0 Hz, ³ J AX = 4.0 Hz, ³ J BX = 9.2 Hz, 3 H, CH2CH), 2.00-1.60 [m, 8 H, (CH2)4].
¹³C NMR (100.62 MHz, CD3OD): δ = 176.0 (COO-), 175.4 (HN-C=CH), 174.3 (C=N+H2), 136.7 (C-14a), 127.6 (C-10a), 123.2, 121.1, 118.4, 118.0 (C-11, C-12, C-13, C-14), 110.9 (C-16), 110.4 (C-10), 100.7 (C-2), 76.6 (C-4), 62.3 (CH2 CH), 37.6 (CH2CH), 37.1, 28.0, 24.2, 24.1 (4 × CH2).
UV/Vis (EtOH): λmax (log ε) = 223 (4.56), 274 (4.45), 291 (shoulder, 4.12), 375 nm (3.64).
Anal. Calcd for C19H21N3O3: C, 67.24; H, 6.24; N, 12.38. Found: C, 67.40; H, 6.50; N, 12.28.
2-[(2-Iminio-1-oxaspiro[4.5]dec-3-en-4-yl)amino]-3-(1 H -indol-3-yl)propanoate (4d)
Light-yellow powder; yield: 355 mg (95%); mp 194-196 ˚C (dec.).
IR (KBr): 3500-2600 with peaks at 3371, 3219 (NH, =N+H2), 3114, 3049 (C=CH), 2930, 2865 (CH), 2212 (br w, =N+H2), 1700-1500 with peaks at 1687 (C=O), 1611 (C=C), 1562 (=N+H2) cm-¹.
¹H NMR (400.13 MHz, CD3OD): δ = 7.62 (d, ³ J = 7.7 Hz, 1 H, H-14), 7.29 (d, ³ J = 8.1 Hz, 1 H, H-11), 7.06 (dd, ³ J 13-12 ˜ ³ J 11-12 = 8.0 Hz, 1 H, H-12), 7.05 (s, 1 H, H-16), 6.99 (dd, ³ J 13-14 ˜ ³ J 13-12 = 7.7 Hz, 1 H, H-13), 4.63 (s, 1 H, H-4), 4.06, 3.48, 3.13 (ABX, dd, ² J AB = 14.9 Hz, ³ J AX = 4.0 Hz, ³ J BX = 9.3 Hz, 3 H, CHCH2), 1.80-1.20 [m, 10 H, (CH2)5].
¹³C NMR (100.62 MHz, CD3OD): δ = 176.9 (COO-), 176.3 (HN-C=CH), 175.5 (C=N+H2), 136.8 (C-14a), 127.7 (C-10a), 123.3, 121.1, 118.5, 118.2 (C-11, C-12, C-13, C-14), 111.0 (C-16), 110.4 (C-10), 92.5 (C-2), 75.6 (C-4), 62.4 (CH2 CH), 33.3 (CH2CH), 32.9, 28.2, 23.6, 21.6 (5 × CH2).
UV/Vis (EtOH): λmax (log ε) = 222 (4.64), 273 (4.54), 291 (shoulder, 4.19), 375 nm (3.70).
Anal. Calcd for C20H23N3O3: C, 67.97; H, 6.56; N, 11.89. Found: C, 67.57; H, 6.50; N, 12.18.
Acknowledgment
This work was supported by the Russian Foundation for Basic Research (Grant No. 08-03-00156), Presidium of RAS (Program 24), Presidium of the Department of Chemical Sciences and Materials RAS (Grant No. 5.1.3.) and Integration Projects No. 93, 5.9.
- 1a
Gul W.Hamann MT. Life Sci. 2005, 78: 442 - 1b
Humphrey GR.Kuethe JT. Chem. Rev. 2006, 106: 2875 - 1c
Tanimori S.Ura H.Kirihata M. Eur. J. Org. Chem. 2007, 3977 - 1d
de Sá Alves FR.Barreiro EJ.Fraga CAM. Mini Rev. Med. Chem. 2009, 9: 782 - 2a
Sundberg RJ. The Chemistry of Indoles Academic Press; New York: 1970. - 2b
Brown RK. In IndolesHoulihan WJ. Wiley-Interscience; New York: 1972. - 2c
Sundberg RJ. Pyrroles and Their Benzo Derivatives: Synthesis and Applications, In Comprehensive Heterocyclic Chemistry Vol. 4:Katritzky AR.Rees CW. Pergamon; Oxford: 1984. p.313-376 - 2d
Sundberg RJ. Indoles (Best Synthetic Methods Key Systems and Functional Groups) Academic Press; New York: 1996. p.7-11 - 2e
Sundberg RJ. In Comprehensive Heterocyclic Chemistry II Vol. 2:Katritzky AR.Rees CW.Scriven EFV.Bird CW. Pergamon Press; Oxford: 1996. p.119 - 2f
Gribble GW. In Comprehensive Heterocyclic Chemistry II Vol. 2:Katritzky AR.Rees CW.Scriven EFV.Bird CW. Pergamon Press; Oxford: 1996. p.207 - 2g
Indoles
Sundberg RJ. Academic Press; London: 1996. - 2h
Sundberg RJ. The Chemistry of Indoles Academic Press; San Diego: 1997. p.267 - 2i
Joule JA. Indole and its Derivatives, In Science of Synthesis: Houben-Weyl Methods of Molecular Transformations Vol. 10:Thomas EJ. George Thieme Verlag; Stuttgart: 2000. Chap. 10.13. - 3a
Evans BE.Rittle KE.Bock MG.DiPardo RM.Freidinger RM.Whitter WL.Lundell GF.Verber DF.Anderson PS.Chang RSL.Lotti VJ.Cerino DJ.Chen TB.Kling PJ.Kunkel KA.Springer JP.Hirshfield J. J. Med. Chem. 1988, 31: 2235 - 3b
Ohba H.Yamasaki N.Funatsu G. Agric. Biol. Chem. 1991, 55: 1579 - 3c
Carlier PR.Lam PC.-H.Wong DM. J. Org. Chem. 2002, 67: 6256 - 3d
Horton DA.Bourne GT.Smythe ML. Chem. Rev. 2003, 103: 893 ; and references cited therein - 3e
de la Herrán G.Segura A.Csákÿ AG. Org. Lett. 2007, 9: 961 - 4
Conigrave AD.Quinn SJ.Brown EM. Proc. Natl. Acad. Sci. U.S.A. 2000, 97: 4814 - 5a
Friedman M.Cug J.-L. J. Agric. Food Chem. 1988, 36: 1079 - 5b
Lee DG.Cho NJ.Choi JD. J. Biochem. Mol. Biol. 1996, 29: 321 - 5c
Murch SJ.KrishnaRaj S.Saxena PK. Plant Cell Rep. 2000, 19: 698 - 5d
Hirasawa M.Nakayama M.Kim S.-K.Hase T.Knaff DB. Photosynth. Res. 2005, 86: 325 - 5e
Bender J.Celenza JL. Phytochem Rev. 2009, 8: 25 - 6
Somei M,Hattori A, andSuzuki N. inventors; WO 2007010723, . (National University Corporation, Kanazawa University, Japan, National University Corporation, Tokyo Medical and Dental University, Japan) ; Chem. Abstr. 2007, 146, 163392 - 7
Walther D, andBader M. inventors; WO 2002074309. , (Max-Delbruck-Centrum fuer Moleculare Medizin, Germany) ; Chem. Abstr. 2002, 137, 242150 - 8
Watanabe F. inventors; US 6727266. , (Shionogi and Co., Ltd., Japan) ; Chem. Abstr. 2001, 135, 137709 - 9a
Ybarra J.Prasad ARS.Nishimura JS. Biochemistry 1986, 25: 7174 - 9b
Tsubota T.Hagiwara Y.Murakami N.Ohno T. Diamond Relat. Mater. 2009, 18: 1174 - 10
Stachel SJ.Habeeb RL.Van Vranken DL. J. Am. Chem. Soc. 1996, 118: 1225 - 11a
Seradj H.Cai W.Erasga NO.Chenault DV.Knuckles KA.Ragains JR.Behforouz M. Org. Lett. 2004, 6: 473 - 11b
Hassani M.Cai W.Holley DC.Lineswala JP.Maharjan BR.Ebrahimian GR.Seradj H.Stocksdale MG.Mohammadi F.Marvin CC.Gerdes JM.Beall HD.Behforouz M. J. Med. Chem. 2005, 48: 7733 - 11c
Liu J.Cui G.Zhao M.Cui C.Jub J.Peng S. Bioorg. Med. Chem. 2007, 15: 7773 - 12
Sakiyan I.Logoglu E.Arslan S.Sari N.Sakiyan N. BioMetals 2004, 17: 115 - 13a
Skvortsov YM.Mal’kina AG.Trofimov BA. Zh. Org. Khim. 1983, 19: 1351 - 13b
Skvortsov YM.Mal’kina AG.Trofimov BA.Kositsyna EI.Voronov VK.Baikalova LV. Zh. Org. Khim. 1984, 20: 1108 - 13c
Trofimov BA.Mal’kina AG.Skvortsov YM. Zh. Org. Khim. 1993, 29: 1268 - 13d
Mal’kina AG.Nosyreva VV.Kositsyna EI.Trofimov BA. Zh. Org. Khim. 1997, 33: 449 - 13e
Trofimov BA.Mal’kina AG. Heterocycles 1999, 51: 2485 - 14
Skvortsov YM.Mal’kina AG.Trofimov BA.Volkov AN.Glaskova NP.Proidakov AG. Zh. Org. Khim. 1982, 18: 983 - 15
Nosyreva VV.Mal’kina AG.Shemyakina OA.Kositsyna EI.Albanov AI.Trofimov BA. Zh. Org. Khim. 2005, 41: 1225 - 16a
Trofimov BA.Mal’kina AG.Shemyakina OA.Borisova AP.Nosyreva VV.Dyachenko OA.Kazheva ON.Alexandrov GG. Synthesis 2007, 2641 - 16b
Trofimov BA.Mal’kina AG.Shemyakina OA.Nosyreva VV.Borisova AP.Khutsishvili SS.Krivdin LB. Synthesis 2009, 3136 - 17
Trofimov BA.Mal’kina AG.Shemyakina OA.Nosyreva VV.Borisova AP.Albanov AI.Kazheva ON.Alexandrov GG.Chekhlov AN.Dyachenko OA. Tetrahedron 2009, 65: 2472 - 18a
Effenberger F.Syed J. Tetrahedron: Asymmetry 1998, 9: 817 - 18b
Shenoy G.Kim P.Goodwin M.Nguyen Q.-A.Barry CE.Dowd CS. Heterocycles 2004, 63: 519 - 18c
Rajaram AR.Pu L. Org. Lett. 2006, 8: 2019 - 18d
Zografos AI.Georgiadis D. Synthesis 2006, 3157 - 19
Tahir H.Hindsgaul O. J. Org. Chem. 2000, 65: 911 - 20a
Gao WY.Agbaria R.Driscoll JS.Mitsuya H.
J. Biol. Chem. 1994, 269: 12633 - 20b
Meier C. Synlett 1998, 233 - 20c
Saboulard D.Naesens L.Cahard D.Salgado A.Pathirana R.Velazquez S.McGuigan C.De Clercq E.Balzarini J. Mol. Pharm. 1999, 56: 693 - 20d
Bradshaw PC.Li J.Samuels DC. Biochem. J. 2005, 392: 363 - 21
Lichtenthaler FW.Cuny E.Sakanaka O. Angew. Chem. Int. Ed. 2005, 44: 4944 ; Angew. Chem. 2005, 117, 5024 - 22a
Gunasekera SP.McCarthy PJ.Kelly-Borges M.
J. Am. Chem. Soc. 1996, 118: 8759 - 22b
Corey EJ.Roberts BE. J. Am. Chem. Soc. 1997, 119: 12425 - 22c
Takahashi M.Dodo K.Sugimoto Y.Aoyagi Y.Yamada Y.Hashimoto Y.Shirai R. Bioorg. Med. Chem. Lett. 2000, 10: 2571 - 22d
Miyaoka H.Kajiwara Y.Hara Y.Yamada Y. J. Org. Chem. 2001, 66: 1429 - 22e
Brohm D.Philippe N.Metzger S.Bhargava A.Muller O.Lieb F.Waldmann H. J. Am. Chem. Soc. 2002, 124: 13171 - 23a
Soriente A.Crispino A.De Rosa M.De Rosa S.Scettri A.Scognamiglio G.Villano R.Sodano G. Eur. J. Org. Chem. 2000, 943 - 23b
Basabe P.Delgado S.Marcos IS.Diez D.Diego A.De Roman M.Urones JG. J. Org. Chem. 2005, 70: 9480 - 24a
Mangnus EM.Stommen PLA.Zwanenburg B.
J. Plant Growth Regul. 1992, 11: 91 - 24b
Kuad P.Borkovec M.Desage-El Murr M.Le Gall T.Mioskowski C.Spiess B. J. Am. Chem. Soc. 2005, 127: 1323 - 25a
Mangnus EM.Zwanenburg B. J. Agric. Food Chem. 1992, 40: 1066 - 25b
Thuring JWJF.van Gaal AAMA.Hornes SJ.de Kok MM.Nefkens GHL.Zwanenburg B. J. Chem. Soc., Perkin Trans. 1 1997, 767 - 26a
Landor SR.Demetriou B.Grzeskowiak R.Pavey DF. J. Organomet. Chem. 1975, 93: 129 - 26b
Hopf H.Witulski B. In Modern Acetylene ChemistryStang PJ.Diederich F. Wiley-VCH; Weinheim: 1995. Chap. 2. p.33-67 - 26c
Trofimov BA.Andriyankova LV.Shaikhudinova SI.Kazantseva TI.Mal’kina AG.Zhivet’ev SA.Afonin AV. Synthesis 2002, 853 - 27
Trofimov BA. Curr. Org. Chem. 2002, 6: 1121
References
- 1a
Gul W.Hamann MT. Life Sci. 2005, 78: 442 - 1b
Humphrey GR.Kuethe JT. Chem. Rev. 2006, 106: 2875 - 1c
Tanimori S.Ura H.Kirihata M. Eur. J. Org. Chem. 2007, 3977 - 1d
de Sá Alves FR.Barreiro EJ.Fraga CAM. Mini Rev. Med. Chem. 2009, 9: 782 - 2a
Sundberg RJ. The Chemistry of Indoles Academic Press; New York: 1970. - 2b
Brown RK. In IndolesHoulihan WJ. Wiley-Interscience; New York: 1972. - 2c
Sundberg RJ. Pyrroles and Their Benzo Derivatives: Synthesis and Applications, In Comprehensive Heterocyclic Chemistry Vol. 4:Katritzky AR.Rees CW. Pergamon; Oxford: 1984. p.313-376 - 2d
Sundberg RJ. Indoles (Best Synthetic Methods Key Systems and Functional Groups) Academic Press; New York: 1996. p.7-11 - 2e
Sundberg RJ. In Comprehensive Heterocyclic Chemistry II Vol. 2:Katritzky AR.Rees CW.Scriven EFV.Bird CW. Pergamon Press; Oxford: 1996. p.119 - 2f
Gribble GW. In Comprehensive Heterocyclic Chemistry II Vol. 2:Katritzky AR.Rees CW.Scriven EFV.Bird CW. Pergamon Press; Oxford: 1996. p.207 - 2g
Indoles
Sundberg RJ. Academic Press; London: 1996. - 2h
Sundberg RJ. The Chemistry of Indoles Academic Press; San Diego: 1997. p.267 - 2i
Joule JA. Indole and its Derivatives, In Science of Synthesis: Houben-Weyl Methods of Molecular Transformations Vol. 10:Thomas EJ. George Thieme Verlag; Stuttgart: 2000. Chap. 10.13. - 3a
Evans BE.Rittle KE.Bock MG.DiPardo RM.Freidinger RM.Whitter WL.Lundell GF.Verber DF.Anderson PS.Chang RSL.Lotti VJ.Cerino DJ.Chen TB.Kling PJ.Kunkel KA.Springer JP.Hirshfield J. J. Med. Chem. 1988, 31: 2235 - 3b
Ohba H.Yamasaki N.Funatsu G. Agric. Biol. Chem. 1991, 55: 1579 - 3c
Carlier PR.Lam PC.-H.Wong DM. J. Org. Chem. 2002, 67: 6256 - 3d
Horton DA.Bourne GT.Smythe ML. Chem. Rev. 2003, 103: 893 ; and references cited therein - 3e
de la Herrán G.Segura A.Csákÿ AG. Org. Lett. 2007, 9: 961 - 4
Conigrave AD.Quinn SJ.Brown EM. Proc. Natl. Acad. Sci. U.S.A. 2000, 97: 4814 - 5a
Friedman M.Cug J.-L. J. Agric. Food Chem. 1988, 36: 1079 - 5b
Lee DG.Cho NJ.Choi JD. J. Biochem. Mol. Biol. 1996, 29: 321 - 5c
Murch SJ.KrishnaRaj S.Saxena PK. Plant Cell Rep. 2000, 19: 698 - 5d
Hirasawa M.Nakayama M.Kim S.-K.Hase T.Knaff DB. Photosynth. Res. 2005, 86: 325 - 5e
Bender J.Celenza JL. Phytochem Rev. 2009, 8: 25 - 6
Somei M,Hattori A, andSuzuki N. inventors; WO 2007010723, . (National University Corporation, Kanazawa University, Japan, National University Corporation, Tokyo Medical and Dental University, Japan) ; Chem. Abstr. 2007, 146, 163392 - 7
Walther D, andBader M. inventors; WO 2002074309. , (Max-Delbruck-Centrum fuer Moleculare Medizin, Germany) ; Chem. Abstr. 2002, 137, 242150 - 8
Watanabe F. inventors; US 6727266. , (Shionogi and Co., Ltd., Japan) ; Chem. Abstr. 2001, 135, 137709 - 9a
Ybarra J.Prasad ARS.Nishimura JS. Biochemistry 1986, 25: 7174 - 9b
Tsubota T.Hagiwara Y.Murakami N.Ohno T. Diamond Relat. Mater. 2009, 18: 1174 - 10
Stachel SJ.Habeeb RL.Van Vranken DL. J. Am. Chem. Soc. 1996, 118: 1225 - 11a
Seradj H.Cai W.Erasga NO.Chenault DV.Knuckles KA.Ragains JR.Behforouz M. Org. Lett. 2004, 6: 473 - 11b
Hassani M.Cai W.Holley DC.Lineswala JP.Maharjan BR.Ebrahimian GR.Seradj H.Stocksdale MG.Mohammadi F.Marvin CC.Gerdes JM.Beall HD.Behforouz M. J. Med. Chem. 2005, 48: 7733 - 11c
Liu J.Cui G.Zhao M.Cui C.Jub J.Peng S. Bioorg. Med. Chem. 2007, 15: 7773 - 12
Sakiyan I.Logoglu E.Arslan S.Sari N.Sakiyan N. BioMetals 2004, 17: 115 - 13a
Skvortsov YM.Mal’kina AG.Trofimov BA. Zh. Org. Khim. 1983, 19: 1351 - 13b
Skvortsov YM.Mal’kina AG.Trofimov BA.Kositsyna EI.Voronov VK.Baikalova LV. Zh. Org. Khim. 1984, 20: 1108 - 13c
Trofimov BA.Mal’kina AG.Skvortsov YM. Zh. Org. Khim. 1993, 29: 1268 - 13d
Mal’kina AG.Nosyreva VV.Kositsyna EI.Trofimov BA. Zh. Org. Khim. 1997, 33: 449 - 13e
Trofimov BA.Mal’kina AG. Heterocycles 1999, 51: 2485 - 14
Skvortsov YM.Mal’kina AG.Trofimov BA.Volkov AN.Glaskova NP.Proidakov AG. Zh. Org. Khim. 1982, 18: 983 - 15
Nosyreva VV.Mal’kina AG.Shemyakina OA.Kositsyna EI.Albanov AI.Trofimov BA. Zh. Org. Khim. 2005, 41: 1225 - 16a
Trofimov BA.Mal’kina AG.Shemyakina OA.Borisova AP.Nosyreva VV.Dyachenko OA.Kazheva ON.Alexandrov GG. Synthesis 2007, 2641 - 16b
Trofimov BA.Mal’kina AG.Shemyakina OA.Nosyreva VV.Borisova AP.Khutsishvili SS.Krivdin LB. Synthesis 2009, 3136 - 17
Trofimov BA.Mal’kina AG.Shemyakina OA.Nosyreva VV.Borisova AP.Albanov AI.Kazheva ON.Alexandrov GG.Chekhlov AN.Dyachenko OA. Tetrahedron 2009, 65: 2472 - 18a
Effenberger F.Syed J. Tetrahedron: Asymmetry 1998, 9: 817 - 18b
Shenoy G.Kim P.Goodwin M.Nguyen Q.-A.Barry CE.Dowd CS. Heterocycles 2004, 63: 519 - 18c
Rajaram AR.Pu L. Org. Lett. 2006, 8: 2019 - 18d
Zografos AI.Georgiadis D. Synthesis 2006, 3157 - 19
Tahir H.Hindsgaul O. J. Org. Chem. 2000, 65: 911 - 20a
Gao WY.Agbaria R.Driscoll JS.Mitsuya H.
J. Biol. Chem. 1994, 269: 12633 - 20b
Meier C. Synlett 1998, 233 - 20c
Saboulard D.Naesens L.Cahard D.Salgado A.Pathirana R.Velazquez S.McGuigan C.De Clercq E.Balzarini J. Mol. Pharm. 1999, 56: 693 - 20d
Bradshaw PC.Li J.Samuels DC. Biochem. J. 2005, 392: 363 - 21
Lichtenthaler FW.Cuny E.Sakanaka O. Angew. Chem. Int. Ed. 2005, 44: 4944 ; Angew. Chem. 2005, 117, 5024 - 22a
Gunasekera SP.McCarthy PJ.Kelly-Borges M.
J. Am. Chem. Soc. 1996, 118: 8759 - 22b
Corey EJ.Roberts BE. J. Am. Chem. Soc. 1997, 119: 12425 - 22c
Takahashi M.Dodo K.Sugimoto Y.Aoyagi Y.Yamada Y.Hashimoto Y.Shirai R. Bioorg. Med. Chem. Lett. 2000, 10: 2571 - 22d
Miyaoka H.Kajiwara Y.Hara Y.Yamada Y. J. Org. Chem. 2001, 66: 1429 - 22e
Brohm D.Philippe N.Metzger S.Bhargava A.Muller O.Lieb F.Waldmann H. J. Am. Chem. Soc. 2002, 124: 13171 - 23a
Soriente A.Crispino A.De Rosa M.De Rosa S.Scettri A.Scognamiglio G.Villano R.Sodano G. Eur. J. Org. Chem. 2000, 943 - 23b
Basabe P.Delgado S.Marcos IS.Diez D.Diego A.De Roman M.Urones JG. J. Org. Chem. 2005, 70: 9480 - 24a
Mangnus EM.Stommen PLA.Zwanenburg B.
J. Plant Growth Regul. 1992, 11: 91 - 24b
Kuad P.Borkovec M.Desage-El Murr M.Le Gall T.Mioskowski C.Spiess B. J. Am. Chem. Soc. 2005, 127: 1323 - 25a
Mangnus EM.Zwanenburg B. J. Agric. Food Chem. 1992, 40: 1066 - 25b
Thuring JWJF.van Gaal AAMA.Hornes SJ.de Kok MM.Nefkens GHL.Zwanenburg B. J. Chem. Soc., Perkin Trans. 1 1997, 767 - 26a
Landor SR.Demetriou B.Grzeskowiak R.Pavey DF. J. Organomet. Chem. 1975, 93: 129 - 26b
Hopf H.Witulski B. In Modern Acetylene ChemistryStang PJ.Diederich F. Wiley-VCH; Weinheim: 1995. Chap. 2. p.33-67 - 26c
Trofimov BA.Andriyankova LV.Shaikhudinova SI.Kazantseva TI.Mal’kina AG.Zhivet’ev SA.Afonin AV. Synthesis 2002, 853 - 27
Trofimov BA. Curr. Org. Chem. 2002, 6: 1121
References


Figure 1 The atom numbering used for NMR assignments in compounds 4a-d

Figure 2 Diagnostic cross peaks in the HMBC (¹H-¹³C) spectrum of amino acid 4a

Scheme 1 Synthesis of α,β-acetylenic γ-hydroxy nitriles 2a-d