Subscribe to RSS
DOI: 10.1055/s-0029-1218633
Noncatalytic Electrophilic Oxyalkylation of Some Five-Membered Heterocycles with 2-(Trifluoroacetyl)-1,3-azoles
Publication History
Publication Date:
04 January 2010 (online)
Abstract
A set of electrophilic 2-(trifluoroacetyl)-1,3-azoles demonstrated excellent activity in the C-oxyalkylation of pyrrole, furan, thiophene, 1,3-thiazole, and 1,2-oxazole derivatives. The reaction conditions and the yields of the corresponding trifluoromethyl-substituted alcohols depend strongly on both the electronic and steric nature of the 1,3-azole unit.
Key words
Friedel-Crafts alkylation - trifluoromethyl alcohols - heterocycles - pyrroles - furans
The substitution of fluorine for hydrogen is widely used to improve the pharmacological characteristics of organic compounds. [¹] Moreover, many commercially available pharmaceuticals are fluorine-containing, although fluorine scarcely occurs in organic matter. [²] The trifluoromethyl group, in particular, is one of the most attractive functional groups in organic chemistry, and incorporation of this group into organic compounds is still a topic of growing interest. [³] The commercially available trifluoromethyl ketones hexafluoroacetone (1) and trifluoropyruvate (2) are highly valuable building blocks commonly used to prepare trifluoromethyl-containing compounds. [4] However, despite the great potential of both 1 and 2, the chemistry of other trifluoroacetyl ketones has received much less attention so far. [5]
Recently, we started a project aimed at the synthesis and application of various trifluoromethyl hetaryl ketones 3 (some representative examples are given in Scheme [¹] ). [6] We have already shown that indole smoothly reacts with 3 to form the corresponding trifluoromethyl-substituted alcohols (Scheme [¹] , reaction d). [6d] We report here on the extension of this strategy to other electron-rich heterocycles, namely pyrroles 4-8, furans 9 and 10, thiophenes 11-13, 1,3-thiazoles 14-18, and 1,2-oxazole 19 (Figure [¹] ).
Among the many available representatives of 3 [6a] (Scheme [¹] ), we chose highly reactive 2-(trifluoroacetyl)-1,3-benzothiazole (3a) as a model compound to test the potential of 4-19 in C-oxyalkylation reactions (Scheme 2).

Scheme 1 Reagents and conditions: (a) TFAA, Et3N; (b) NCCH2CO2H, py, heat; (c) H2C=CHCN, DABCO; (d) indole, toluene, heat.

Figure 1 Derivatives of pyrrole (4-8), furan (9,10), thiophene (11-13), 1,3-thiazole (14-18), and 1,2-oxazole (19)

Scheme 2 Synthesis of trifluoromethyl-substituted alcohols 4a-19a from 2-(trifluoroacetyl)-1,3-benzothiazole (3a)
As shown in Table [¹] , all compounds 4-19 smoothly react with 3a under heating in toluene to provide the corresponding tertiary alcohols 4a-19a in moderate to excellent yields. The reaction conditions and the yields of the products depend strongly on both the electronic and steric nature of the starting heterocycles 4-19.
For example, the reaction of pyrrole derivative 4 with 3a was already completed after 30 minutes of heating in toluene at 60 ˚C (Table [¹] ). However, pyrroles 5 and 6 bearing electron-accepting substituents and pyrroles 7 and 8 substituted at the α-positions required harsher conditions (100-120 ˚C, 2-4 h) (Table [¹] ). Interestingly, the addition of 3a to thiazole 15 occurred more easily than the addition to thiazole 14 (Table [¹] ). The presence of the methyl group adjacent to the reaction center in 14 hampers the reaction and deactivates the substrate. The reactions of 15-18 with 3a also illustrate the importance of steric effects. The yields of the alkylamino-substituted thiazoles 16a and 17a (99% and 76%, respectively) are significantly higher than those of amino-substituted product 15a (64%) and dialkylamino-substituted product 18a (52%) (Table [¹] ). Obviously, incorporation of an electron-donating alkyl group instead of a hydrogen atom increases the reactivity of thiazoles 16 and 17 compared to 15. However, incorporation of a second bulky alkyl group already reduces the reactivity of 18 compared to 16 and 17.
Incorporation of the 3a moiety into 4-19 follows the general pattern of aromatic electrophilic substitution in the abovementioned heterocyclic systems. In pyrroles 4-6, furans 9 and 10, and thiophenes 11 and 12 the substitution occurs at the 2-position. However, if the 2-position is blocked (7,8,13), the substitution proceeds at the 3-position. The substitution in 15-18 occurs at the 5-position.
To demonstrate the applicability of this reaction to a wide variety of 2-(trifluoroacetyl)-1,3-azoles 3, we performed several syntheses with diverse ketones 3b-j (Figure [²] ) with the electron-rich heterocycles 16 and 19 (Table [²] ). The reaction was just as efficient as in the case of 3a (Table [¹] ), and the corresponding products were obtained in 53-85% yield.
In summary, we have developed a very simple and efficient one-step procedure to prepare novel trifluoromethyl-substituted tertiary alcohols from various 2-(trifluoroacetyl)-1,3-azoles and derivatives of pyrrole, furan, thiophene, 1,3-thiazole, and 1,2-oxazole.

Figure 2 2-(Trifluoroacetyl)-1,3-azoles 3b-j
2-(Trifluoroacetyl)-1,3-azoles 3 were prepared as described previously. [6a] ¹H, ¹³C, and ¹9F NMR spectra were recorded on a Bruker Avance 500 spectrometer (at 499.9 MHz, 124.9 and 470.3 MHz, respectively). Chemical shifts are reported in ppm downfield from TMS (¹H, ¹³C) or CFCl3 (¹9F) as internal standards. Mass spectra (CI) were recorded on an Agilent 1100 LCMSD SL instrument.
Alcohols 4a-19a, 16b,c, and 19d-f,j; General Procedure
A mixture of the appropriate trifluoromethyl ketone 3 (1 mmol), the appropriate heterocycle 4-19 (1 mmol), and toluene (2 mL) was stirred under the corresponding conditions given in Table [¹] or 2. The reaction mixture was cooled to r.t., and the crystalline solid that had formed was collected by filtration. The product was washed with CCl4 on the filter, and recrystallized from i-PrOH.
1-(1,3-Benzothiazol-2-yl)-2,2,2-trifluoro-1-(1-methyl-1 H -pyrrol-2-yl)ethanol (4a)
Yield: 61%; colorless solid; mp 133 ˚C.
¹H NMR (500 MHz, DMSO-d 6): δ = 3.28 (s, 3 H), 6.02 (s, 1 H), 6.33 (s, 1 H), 6.79 (s, 1 H), 7.42 (dd, J = 8.0, 7.0 Hz, 1 H), 7.52 (dd, J = 7.5, 7.0 Hz, 1 H), 8.02 (d, J = 8.0 Hz, 1 H), 8.15 (d, J = 7.5 Hz, 1 H), 8.40 (s, 1 H).
¹³C NMR (125 MHz, DMSO-d 6): δ = 35.74, 76.53 (q, ² J CF = 30.2 Hz), 106.64, 110.65, 122.43, 123.87, 124.55 (q, ¹ J CF = 288.0 Hz), 126.21, 126.32, 126.44, 126.88, 135.72, 153.18, 170.75.
¹9F NMR (470 MHz, DMSO-d 6): δ = -74.58.
MS (CI): m/z = 313 [M + 1].
1-{5-[1-(1,3-Benzothiazol-2-yl)-2,2,2-trifluoro-1-hydroxyethyl]-2,4-dimethyl-1 H -pyrrol-3-yl}ethanone (5a)
Yield: 64%; colorless solid; mp 194-195 ˚C.
¹H NMR (500 MHz, DMSO-d 6): δ = 1.81 (s, 3 H), 2.29 (s, 3 H), 2.49 (s, 3 H), 7.52 (dd, J = 8.0, 7.5 Hz, 1 H), 7.58 (dd, J = 8.0, 7.5 Hz, 1 H), 8.11-8.17 (m, 2 H), 8.50 (s, 1 H), 11.18 (s, 1 H).
¹³C NMR (125 MHz, DMSO-d 6): δ = 12.18, 14.83, 31.54, 75.79 (q, ² J CF = 30.2 Hz), 120.08, 121.68, 122.25, 122.81, 124.11, 124.91 (q, ¹ J CF = 288.0 Hz), 126.60, 126.95, 135.45, 135.63, 152.31, 170.77, 194.58.
¹9F NMR (470 MHz, DMSO-d 6): δ = -75.13.
MS (CI): m/z = 369 [M + 1].
Ethyl 5-[1-(1,3-Benzothiazol-2-yl)-2,2,2-trifluoro-1-hydroxyethyl]-2,4-dimethyl-1 H -pyrrole-3-carboxylate (6a)
Yield: 84%; colorless solid; mp 168-169 ˚C.
¹H NMR (500 MHz, DMSO-d 6): δ = 1.21 (t, J = 7.0 Hz, 3 H), 1.80 (s, 3 H), 2.43 (s, 3 H), 4.11 (q, J = 7.0 Hz, 2 H), 7.52 (dd, J = 7.5 Hz, 1 H), 7.58 (dd, J = 7.5 Hz, 1 H), 8.10-8.17 (m, 2 H), 8.48 (s, 1 H), 11.19 (s, 1 H).
¹³C NMR (125 MHz, DMSO-d 6): δ = 11.50, 13.85, 14.80, 58.97, 75.55 (q, ² J CF = 30.6 Hz), 111.73, 120.43, 121.55, 122.80, 124.10, 124.89 (q, ¹ J CF = 288.0 Hz), 126.57, 126.93, 135.61, 135.98, 152.35, 165.46, 170.82.
¹9F NMR (470 MHz, DMSO-d 6): δ = -75.22.
MS (CI): m/z = 399 [M + 1].
1-(1,3-Benzothiazol-2-yl)-1-(1-cyclohexyl-2,5-dimethyl-1 H -pyrrol-3-yl)-2,2,2-trifluoroethanol (7a)
Yield: 95%; colorless solid; mp 148-149 ˚C.
¹H NMR (500 MHz, DMSO-d 6): δ = 1.16 (m, 1 H), 1.35 (m, 2 H), 1.63 (m, 1 H), 1.71 (m, 2 H), 1.79 (m, 2 H), 1.87 (m, 2 H), 2.06 (s, 3 H), 2.25 (s, 3 H), 3.91 (m, 1 H), 5.87 (s, 1 H), 7.47 (dd, J = 8.0, 7.5 Hz, 1 H), 7.52 (dd, J = 7.5 Hz, 1 H), 7.73 (s, 1 H), 8.02 (d, J = 7.5 Hz, 1 H), 8.12 (d, J = 8.0 Hz, 1 H).
¹³C NMR (125 MHz, DMSO-d 6): δ = 12.66, 14.76, 25.45, 26.46, 32.24, 56.08, 77.00 (q, ² J CF = 28.9 Hz), 107.57, 114.88, 122.65, 123.65, 125.28 (q, ¹ J CF = 288.0 Hz), 125.93, 126.62, 127.53, 135.38, 153.37, 173.51.
¹9F NMR (470 MHz, DMSO-d 6): δ = -74.79.
MS (CI): m/z = 409 [M + 1].
1-(1,3-Benzothiazol-2-yl)-1-[2,5-dimethyl-1-(4-tolyl)-1 H -pyrrol-3-yl]-2,2,2-trifluoroethanol (8a)
Yield: 85%; colorless solid; mp 148-149 ˚C.
¹H NMR (500 MHz, DMSO-d 6): δ = 1.77 (s, 3 H), 1.91 (s, 3 H), 2.34 (s, 3 H), 6.06 (s, 1 H), 7.06 (d, J = 7.5 Hz, 2 H), 7.28 (d, J = 7.5 Hz, 2 H), 7.46 (dd, J = 8.0, 7.0 Hz, 1 H), 7.52 (dd, J = 8.0, 7.0 Hz, 1 H), 7.85 (s, 1 H), 8.04 (d, J = 8.0 Hz, 1 H), 8.11 (d, J = 8.0 Hz, 1 H).
¹³C NMR (125 MHz, DMSO-d 6): δ = 12.44, 12.99, 21.09, 77.01 (q, ² J CF = 28.9 Hz), 106.58, 115.48, 122.67, 123.71, 125.34 (q, ¹ J CF = 288.0 Hz), 125.97, 126.67, 127.08, 128.03, 128.34, 130.37, 135.30, 135.37, 138.11, 153.44, 173.32.
¹9F NMR (470 MHz, DMSO-d 6): δ = -76.15.
MS (CI): m/z = 417 [M + 1].
1-(1,3-Benzothiazol-2-yl)-2,2,2-trifluoro-1-(5-methyl-2-furyl)ethanol (9a)
Yield: 64%; yellowish oil.
¹H NMR (500 MHz, DMSO-d 6): δ = 2.23 (s, 3 H), 6.14 (d, J = 2.4 Hz, 1 H), 6.49 (d, J = 2.4 Hz, 1 H), 7.50 (t, J = 7.6 Hz, 1 H), 7.55 (7, J = 7.6 Hz, 1 H), 8.06 (d, J = 7.6 Hz, 1 H), 8.17 (d, J = 7.6 Hz, 1 H), 8.61 (s, 1 H).
¹³C NMR (125 MHz, DMSO-d 6): δ = 13.77, 75.55 (q, ² J CF = 30.2 Hz), 107.38, 112.10, 122.81, 123.87, 124.05 (q, ¹ J CF = 288.0 Hz), 126.29, 126.93, 135.25, 147.09, 153.44, 153.67, 169.81.
¹9F NMR (470 MHz, DMSO-d 6): δ = -76.66.
MS (CI): m/z = 314 [M + 1].
5-[1-(1,3-Benzothiazol-2-yl)-2,2,2-trifluoro-1-hydroxyethyl]furan-2-carbaldehyde Dimethylhydrazone (10a)
Yield: 34%; colorless solid; mp 87-88 ˚C.
¹H NMR (500 MHz, DMSO-d 6): δ = 2.86 (s, 6 H), 6.46 (d, J = 3.2 Hz, 1 H), 6.64 (d, J = 3.2 Hz, 1 H), 7.09 (s, 1 H), 7.50 (dd, J = 7.6, 7.2 Hz, 1 H), 7.55 (dd, J = 7.6, 7.6 Hz, 1 H), 8.06 (d, J = 7.6 Hz, 1 H), 8.17 (d, J = 7.2 Hz, 1 H), 8.72 (s, 1 H).
¹³C NMR (125 MHz, DMSO-d 6): δ = 42.74, 42.75, 75.77 (q, ² J CF = 30.2 Hz), 106.76, 113.05, 122.03, 122.80, 123.89, 124.01 (q, ¹ J CF = 288.0 Hz), 126.34, 126.95, 135.34, 147.40, 153.40, 154.18, 169.64.
¹9F NMR (470 MHz, DMSO-d 6): δ = -76.30.
MS (CI): m/z = 370 [M + 1].
2-Amino-5-[1-(1,3-benzothiazol-2-yl)-2,2,2-trifluoro-1-hydroxyethyl]thiophene-3-carboxamide (11a)
Yield: 71%; colorless solid; mp 173-174 ˚C.
¹H NMR (500 MHz, DMSO-d 6): δ = 6.65-6.85 (br, 1 H), 7.10-7.60 (br, 3 H), 7.30 (s, 1 H), 7.49 (dd, J = 8.0, 7.0 Hz, 1 H), 7.56 (dd, J = 8.5, 7.0 Hz, 1 H), 8.07 (d, J = 8.5 Hz, 1 H), 8.15 (d, J = 8.0 Hz, 1 H), 8.57 (s, 1 H).
¹³C NMR (125 MHz, DMSO-d 6): δ = 77.03 (q, ² J CF = 30.2 Hz), 107.03, 117.57, 122.82, 123.87, 124.36 (q, ¹ J CF = 288.0 Hz), 126.30, 126.38, 126.94, 135.23, 153.38, 163.42, 167.87, 171.44.
¹9F NMR (470 MHz, DMSO-d 6): δ = -76.14.
MS (CI): m/z = 374 [M + 1].
Ethyl 2-Amino-5-[1-(1,3-benzothiazol-2-yl)-2,2,2-trifluoro-1-hydroxyethyl]thiophene-3-carboxylate (12a)
Yield: 80%; colorless solid; mp 161-162 ˚C.
¹H NMR (500 MHz, DMSO-d 6): δ = 1.23 (t, J = 7.0 Hz, 3 H), 4.16 (q, J = 7.0 Hz, 3 H), 7.09 (s, 1 H), 7.40 (br, 2 H), 7.51 (dd, J = 7.6, 7.2 Hz, 1 H), 7.57 (dd, J = 8.0, 7.2 Hz, 1 H), 8.09 (d, J = 8.0 Hz, 1 H), 8.17 (d, J = 7.6 Hz, 1 H), 8.71 (s, 1 H).
¹³C NMR (125 MHz, DMSO-d 6): δ = 14.90, 59.64, 76.90 (q, ² J CF = 30.2 Hz), 103.80, 118.12, 122.91, 123.80, 124.20 (q, ¹ J CF = 288.0 Hz), 126.36, 126.40, 127.08, 135.03, 153.34, 164.60, 165.43, 171.17.
¹9F NMR (470 MHz, DMSO-d 6): δ = -76.65.
MS (CI): m/z = 403 [M + 1].
Ethyl 5-Amino-4-[1-(1,3-benzothiazol-2-yl)-2,2,2-trifluoro-1-hydroxyethyl]-3-methylthiophene-2-carboxylate (13a)
Yield: 83%; colorless solid; mp >250 ˚C.
¹H NMR (500 MHz, DMSO-d 6): δ = 1.17 (m, 3 H), 1.73 (s, 3 H), 4.08 (m, 2 H), 6.96 (br, 2 H), 7.51 (m, 1 H), 7.57 (m, 1 H), 8.13 (m, 2 H), 8.64 (s, 1 H).
¹³C NMR (125 MHz, DMSO-d 6): δ = 14.80, 14.82, 59.96, 78.96 (q, ² J CF = 29.8 Hz), 106.62, 110.33, 122.92, 124.22, 125.75 (q, ¹ J CF = 288.0 Hz), 126.81, 127.06, 135.73, 146.99, 151.49, 161.27, 162.38, 170.90.
¹9F NMR (470 MHz, DMSO-d 6): δ = -75.43.
MS (CI): m/z = 417 [M + 1].
1-(2-Amino-4-methyl-1,3-thiazol-5-yl)-1-(1,3-benzothiazol-2-yl)-2,2,2-trifluoroethanol (14a)
Yield: 49%; colorless solid; mp 189-190 ˚C.
¹H NMR (500 MHz, DMSO-d 6): δ = 1.95 (s, 3 H), 6.98 (s, 2 H), 7.51 (m, 1 H), 7.57 (m, 1 H), 8.09 (m, 1 H), 8.16 (m, 1 H), 8.50 (s, 1 H).
¹³C NMR (125 MHz, DMSO-d 6): δ = 17.23, 76.54 (q, ² J CF = 30.6 Hz), 112.81, 122.86, 123.89, 124.89 (q, ¹ J CF = 288.0 Hz), 126.47, 127.00, 135.40, 148.74, 152.85, 167.97, 172.15.
¹9F NMR (470 MHz, DMSO-d 6): δ = -75.95.
MS (CI): m/z = 346 [M + 1].
1-(2-Amino-1,3-thiazol-5-yl)-1-(1,3-benzothiazol-2-yl)-2,2,2-trifluoroethanol (15a)
Yield: 64%; colorless solid; mp 168-169 ˚C.
¹H NMR (500 MHz, DMSO-d 6): δ = 7.10 (s, 1 H), 7.16 (s, 2 H), 7.51 (dd, J = 8.5, 6.5 Hz, 1 H), 7.57 (dd, J = 8.0, 6.5 Hz, 1 H), 8.08 (d, J = 8.5 Hz, 1 H), 8.17 (d, J = 8.0 Hz, 1 H), 8.65 (s, 1 H).
¹³C NMR (125 MHz, DMSO-d 6): δ = 76.37 (q, ² J CF = 31.0 Hz), 120.11, 122.89, 123.79, 124.27 (q, ¹ J CF = 288.0 Hz), 126.35, 127.02, 135.09, 139.60, 153.35, 171.13, 171.43.
¹9F NMR (470 MHz, DMSO-d 6): δ = -76.75.
MS (CI): m/z = 332 [M + 1].
1-(1,3-Benzothiazol-2-yl)-2,2,2-trifluoro-1-[2-(methylamino)-1,3-thiazol-5-yl]ethanol (16a)
Yield: 99%; colorless solid; mp 139-140 ˚C.
¹H NMR (500 MHz, DMSO-d 6): δ = 2.79 (d, J = 4.5 Hz, 3 H), 7.20 (s, 1 H), 7.51 (dd, J = 8.0, 7.0 Hz, 1 H), 7.57 (dd, J = 8.0, 7.0 Hz, 1 H), 7.69 (q, J = 4.5 Hz, 1 H), 8.09 (d, J = 8.0 Hz, 1 H), 8.17 (d, J = 8.0 Hz, 1 H), 8.69 (s, 1 H).
¹³C NMR (125 MHz, DMSO-d 6): δ = 31.22, 76.38 (q, ² J CF = 31.4 Hz), 119.69, 122.87, 123.82, 124.26 (q, ¹ J CF = 288.0 Hz), 126.36, 127.02, 135.09, 139.88, 153.34, 171.35, 171.89.
¹9F NMR (470 MHz, DMSO-d 6): δ = -76.73.
MS (CI): m/z = 346 [M + 1].
1-(1,3-Benzothiazol-2-yl)-1-[2-(cyclohexylamino)-1,3-thiazol-5-yl]-2,2,2-trifluoroethanol (17a)
Yield: 76%; colorless solid; mp 193-194 ˚C.
¹H NMR (500 MHz, DMSO-d 6): δ = 2.79 (d, J = 1.0 Hz, 3 H), 3.81 (s, 3 H), 6.80 (s, 1 H), 7.70 (q, J = 1.0 Hz, 1 H), 7.99 (s, 1 H), 8.21 (s, 1 H).
¹³C NMR (125 MHz, DMSO-d 6): δ = 31.16, 37.93, 73.66 (q, ² J CF = 31.0 Hz), 118.96, 124.29 (q, ¹ J CF = 288.0 Hz), 139.66, 149.79, 151.11, 171.90.
¹9F NMR (470 MHz, DMSO-d 6): δ = -77.29.
MS (CI): m/z = 294 [M + 1].
1-(1,3-Benzothiazol-2-yl)-1-[2-(diethylamino)-1,3-thiazol-5-yl]-2,2,2-trifluoroethanol (18a)
Yield: 52%; colorless solid; mp 128-129 ˚C.
¹H NMR (500 MHz, DMSO-d 6): δ = 1.11 (m, 6 H), 3.40 (m, 4 H), 7.27 (s, 1 H), 7.50 (m, 1 H), 7.56 (m, 1 H), 8.09 (d, J = 7.5 Hz, 1 H), 8.16 (d, J = 7.5 Hz, 1 H), 8.67 (s, 1 H).
¹³C NMR (125 MHz, DMSO-d 6): δ = 12.79, 45.40, 76.35 (q, ² J CF = 31.0 Hz), 119.70, 122.89, 123.87, 124.27 (q, ¹ J CF = 288.0 Hz), 126.38, 127.04, 135.09, 140.48, 153.36, 170.63, 171.32.
¹9F NMR (470 MHz, DMSO-d 6): δ = -76.79.
MS (CI): m/z = 388 [M + 1].
1-(5-Amino-3-methylisoxazol-4-yl)-1-(1,3-benzothiazol-2-yl)-2,2,2-trifluoroethanol (19a)
Yield: 89%; colorless solid; mp 227-228 ˚C.
¹H NMR (500 MHz, DMSO-d 6): δ = 1.68 (s, 3 H), 6.75 (s, 2 H), 7.48-7.66 (m, 2 H), 8.08-8.27 (m, 2 H), 8.50 (s, 1 H).
¹³C NMR (125 MHz, DMSO-d 6): δ = 11.83, 75.35 (q, ² J CF = 30.6 Hz), 86.11, 122.94, 124.04, 125.43 (q, ¹ J CF = 288.0 Hz), 126.74, 127.13, 135.25, 152.08, 159.11, 168.36, 171.24.
¹9F NMR (470 MHz, DMSO-d 6): δ = -76.69.
MS (CI): m/z = 330 [M + 1].
2,2,2-Trifluoro-1-[2-(methylamino)-1,3-thiazol-5-yl]-1-(1-methyl-1 H -1,2,4-triazol-5-yl)ethanol (16b)
Yield: 76%; colorless solid; mp 193-194 ˚C.
¹H NMR (500 MHz, DMSO-d 6): δ = 2.79 (d, J = 1.0 Hz, 3 H), 3.81 (s, 3 H), 6.80 (s, 1 H), 7.70 (q, J = 1.0 Hz, 1 H), 7.99 (s, 1 H), 8.21 (s, 1 H).
¹³C NMR (125 MHz, DMSO-d 6): δ = 31.16, 37.93, 73.66 (q, ² J CF = 31.0 Hz), 118.96, 124.29 (q, ¹ J CF = 288.0 Hz), 139.66, 149.79, 151.11, 171.90.
¹9F NMR (470 MHz, DMSO-d 6): δ = -77.29.
MS (CI): m/z = 294 [M + 1].
2,2,2-Trifluoro-1-[2-(methylamino)-1,3-thiazol-5-yl]-1-(5-phenyl-1,3-oxazol-2-yl)ethanol (16c)
Yield: 85%; colorless solid; mp 165-166 ˚C.
¹H NMR (500 MHz, DMSO-d 6): δ = 2.82 (s, 3 H), 7.10 (s, 1 H), 7.40 (t, J = 7.5 Hz, 1 H), 7.49 (dd, J = 7.5 Hz, 2 H), 7.68-7.78 (m, 3 H), 7.82 (s, 1 H), 8.15 (s, 1 H).
¹³C NMR (125 MHz, DMSO-d 6): δ = 31.21, 73.91 (q, ² J CF = 31.4 Hz), 119.10, 123.24, 124.04 (q, ¹ J CF = 288.0 Hz), 124.70, 127.34, 129.55, 129.65, 139.75, 152.26, 158.70, 171.71.
¹9F NMR (470 MHz, DMSO-d 6): δ = -77.72.
MS (CI): m/z = 356 [M + 1].
1-(5-Amino-3-methylisoxazol-4-yl)-2,2,2-trifluoro-1-(1-methyl-1 H -imidazol-2-yl)ethanol (19d)
Yield: 74%; colorless solid; mp 230-230 ˚C.
¹H NMR (500 MHz, DMSO-d 6): δ = 1.29 (s, 3 H), 3.45 (s, 3 H), 6.34 (s, 2 H), 6.88 (s, 1 H), 7.23 (s, 1 H), 7.74 (s, 1 H).
¹³C NMR (125 MHz, DMSO-d 6): δ = 10.03, 33.97, 72.24 (q, ² J CF = 30.6 Hz), 85.53, 124.35, 125.85 (q, ¹ J CF = 286.7 Hz), 126.07, 142.90, 158.81, 168.47.
¹9F NMR (470 MHz, DMSO-d 6): δ = -77.12.
MS (CI): m/z = 277 [M + 1].
1-(5-Amino-3-methylisoxazol-4-yl)-2,2,2-trifluoro-1-(1-vinyl-1 H -imidazol-2-yl)ethanol (19e)
Yield: 81%; colorless solid; mp 215-225 ˚C (sublimation).
¹H NMR (500 MHz, DMSO-d 6): δ = 1.25 (s, 3 H), 4.81 (d, J = 9.0 Hz, 1 H), 5.41 (d, J = 16.0 Hz, 1 H), 6.44 (s, 2 H), 7.03 (s, 1 H), 7.08 (dd, J = 16.0, 9.0 Hz, 1 H), 7.80 (s, 1 H), 8.04 (s, 1 H).
¹³C NMR (125 MHz, DMSO-d 6): δ = 9.83, 72.25 (q, ² J CF = 30.2 Hz), 85.99, 102.74, 118.62, 125.65 (q, ¹ J CF = 288.0 Hz), 127.62, 129.36, 142.62, 158.61, 168.26.
¹9F NMR (470 MHz, DMSO-d 6): δ = -77.10.
MS (CI): m/z = 289 [M + 1].
1-(5-Amino-3-methylisoxazol-4-yl)-1-[4-(1 H -benzimidazol-2-yl)-1,3-thiazol-2-yl]-2,2,2-trifluoroethanol (19f)
Yield: 53%; colorless solid; mp >250 ˚C.
¹H NMR (500 MHz, DMSO-d 6): δ = 1.84 (s, 3 H), 6.85 (br, 2 H), 7.32 (m, 2 H), 7.69 (m, 2 H), 8.50 (br, 1 H), 8.68 (s, 1 H).
¹³C NMR (125 MHz, DMSO-d 6): δ = 12.28, 75.09 (q, ² J CF = 31.4 Hz), 86.03, 115.62, 123.82, 123.96, 125.34 (q, ¹ J CF = 288.0 Hz), 137.77, 144.24, 146.00, 159.43, 168.17, 171.96.
¹9F NMR (470 MHz, DMSO-d 6): δ = -76.80.
MS (CI): m/z = 396 [M + 1].
1-(5-Amino-3-methylisoxazol-4-yl)-2,2,2-trifluoro-1-(4-methyl-5-phenyl-4 H -1,2,4-triazol-3-yl)ethanol (19j)
Yield: 72%; colorless solid; mp 201-202 ˚C.
¹H NMR (500 MHz, DMSO-d 6): δ = 1.43 (s, 3 H), 3.50 (s, 3 H), 6.58 (s, 2 H), 7.58 (m, 3 H), 7.69 (m, 2 H), 8.15 (s, 1 H).
¹³C NMR (125 MHz, DMSO-d 6): δ = 10.36, 32.58, 71.57 (q, ² J CF = 31.4 Hz), 83.69, 125.46 (q, ¹ J CF = 288.0 Hz), 126.98, 129.36, 129.45, 130.71, 151.13, 156.26, 158.21, 168.94.
¹9F NMR (470 MHz, DMSO-d 6): δ = -77.16.
MS (CI): m/z = 354 [M + 1].
- 1a
O’Hagan D.Rzepa HS. Chem. Commun. 1997, 645 - 1b
Kirsch P. In Modern Fluoroorganic Chemistry Wiley-VCH; Weinheim: 2004. - 1c
Smits R.Damiano Cadicamo C.Burger K.Koksch B. Chem. Soc. Rev. 2008, 37: 1727 - 1d
Qiu X.-L.Meng W.-D.Qing F.-L. Tetrahedron 2004, 60: 6711 - 1e
Dave R.Badet B.Meffre P. Amino Acids 2004, 24: 245 - 1f
Kukhar VP.Soloshonok VA. Fluorine-Containing Amino Acids John Wiley and Sons; New York: 1995. - 2a
Harper DB.O’Hagan D. Nat. Prod. Rep. 1994, 123 - 2b
Murphy CD.Schaffrath C.O’Hagan D. Chemosphere 2003, 455 - 3a
Singh RP.Shreeve JM. Tetrahedron 2000, 56: 7613 - 3b
Prakash GKS.Yudin AK. Chem. Rev. 1997, 97: 757 - 3c
Umemoto T. Chem. Rev. 1996, 96: 1757 - 3d
Burton DJ.Yang Z.-Y. Tetrahedron 1992, 48: 189 - 3e
McClinton MA.McClinton DA. Tetrahedron 1992, 48: 6555 - 4a
Lin P.Jiang J. Tetrahedron 2000, 56: 3635 - 4b
Nenaidenko VG.Sanin AV.Balenkova ES. Russ. Chem. Rev. 1999, 437 - 4c
Bégué J.-P.Bonnet-Delpon D. Tetrahedron 1991, 47: 3207 - 4d
Dolenský B.Kvíčala J.Paleček J.Paleta O. J. Fluorine Chem. 2002, 115: 67 - 4e
Friezer RW.Ducharme Y.Ball RG.Blouin M.Boulet L.Côté B.Frenette R.Girard M.Guay D.Huang Z.Jones TR.Laliberté F.Lynch JJ.Mancini J.Martins E.Masson P.Muise E.Pon DJ.Siegl PKS.Styhler A.Tsou NN.Turner MJ.Young RN.Girard Y. J. Med. Chem. 2003, 46: 2413 - 4f
Middleton L. J. Am. Chem. Soc. 1964, 86: 4948 - 4g
Palecek J.Paleta O. Synthesis 2004, 521 - 4h
Braun RA. J. Org. Chem. 1966, 31: 3828 - 4i
Ohkura H.Berbasov DO.Soloshonok VA. Tetrahedron 2003, 59: 1647 - 5a
Regel E.Buechel KH. Liebigs Ann. Chem. 1977, 145 - 5b
Kawase M.Sakagami H.Kusama K.Motohashi N.Saito S. Bioorg. Med. Chem. Lett. 1999, 9: 3113 - 5c
Fujii S.Maki Y.Kimoto H. J. Fluorine Chem. 1987, 35: 437 - 5d
Salvador RL.Saucier M. Tetrahedron 1971, 27: 1221 - 6a
Khodakovskiy PV.Volochnyuk DM.Panov DM.Pervak II.Zarudnitskii EV.Shishkin OV.Yurchenko AA.Shivanyuk A.Tolmachev AA. Synthesis 2008, 948 - 6b
Khodakovskiy PV.Volochnyuk DM.Tolmachev AA. Synthesis 2009, 1099 - 6c
Khodakovskiy PV.Volochnyuk V.Shivanyuk A.Shishkin OV.Tolmachev AA. Synthesis 2008, 3245 - 6d
Khodakovskiy PV.Mykhailiuk PK.Volochnyuk DM.Tolmachev AA. Synthesis 2010, DOI: 10.1055/s-0029-1219219
References
- 1a
O’Hagan D.Rzepa HS. Chem. Commun. 1997, 645 - 1b
Kirsch P. In Modern Fluoroorganic Chemistry Wiley-VCH; Weinheim: 2004. - 1c
Smits R.Damiano Cadicamo C.Burger K.Koksch B. Chem. Soc. Rev. 2008, 37: 1727 - 1d
Qiu X.-L.Meng W.-D.Qing F.-L. Tetrahedron 2004, 60: 6711 - 1e
Dave R.Badet B.Meffre P. Amino Acids 2004, 24: 245 - 1f
Kukhar VP.Soloshonok VA. Fluorine-Containing Amino Acids John Wiley and Sons; New York: 1995. - 2a
Harper DB.O’Hagan D. Nat. Prod. Rep. 1994, 123 - 2b
Murphy CD.Schaffrath C.O’Hagan D. Chemosphere 2003, 455 - 3a
Singh RP.Shreeve JM. Tetrahedron 2000, 56: 7613 - 3b
Prakash GKS.Yudin AK. Chem. Rev. 1997, 97: 757 - 3c
Umemoto T. Chem. Rev. 1996, 96: 1757 - 3d
Burton DJ.Yang Z.-Y. Tetrahedron 1992, 48: 189 - 3e
McClinton MA.McClinton DA. Tetrahedron 1992, 48: 6555 - 4a
Lin P.Jiang J. Tetrahedron 2000, 56: 3635 - 4b
Nenaidenko VG.Sanin AV.Balenkova ES. Russ. Chem. Rev. 1999, 437 - 4c
Bégué J.-P.Bonnet-Delpon D. Tetrahedron 1991, 47: 3207 - 4d
Dolenský B.Kvíčala J.Paleček J.Paleta O. J. Fluorine Chem. 2002, 115: 67 - 4e
Friezer RW.Ducharme Y.Ball RG.Blouin M.Boulet L.Côté B.Frenette R.Girard M.Guay D.Huang Z.Jones TR.Laliberté F.Lynch JJ.Mancini J.Martins E.Masson P.Muise E.Pon DJ.Siegl PKS.Styhler A.Tsou NN.Turner MJ.Young RN.Girard Y. J. Med. Chem. 2003, 46: 2413 - 4f
Middleton L. J. Am. Chem. Soc. 1964, 86: 4948 - 4g
Palecek J.Paleta O. Synthesis 2004, 521 - 4h
Braun RA. J. Org. Chem. 1966, 31: 3828 - 4i
Ohkura H.Berbasov DO.Soloshonok VA. Tetrahedron 2003, 59: 1647 - 5a
Regel E.Buechel KH. Liebigs Ann. Chem. 1977, 145 - 5b
Kawase M.Sakagami H.Kusama K.Motohashi N.Saito S. Bioorg. Med. Chem. Lett. 1999, 9: 3113 - 5c
Fujii S.Maki Y.Kimoto H. J. Fluorine Chem. 1987, 35: 437 - 5d
Salvador RL.Saucier M. Tetrahedron 1971, 27: 1221 - 6a
Khodakovskiy PV.Volochnyuk DM.Panov DM.Pervak II.Zarudnitskii EV.Shishkin OV.Yurchenko AA.Shivanyuk A.Tolmachev AA. Synthesis 2008, 948 - 6b
Khodakovskiy PV.Volochnyuk DM.Tolmachev AA. Synthesis 2009, 1099 - 6c
Khodakovskiy PV.Volochnyuk V.Shivanyuk A.Shishkin OV.Tolmachev AA. Synthesis 2008, 3245 - 6d
Khodakovskiy PV.Mykhailiuk PK.Volochnyuk DM.Tolmachev AA. Synthesis 2010, DOI: 10.1055/s-0029-1219219
References

Scheme 1 Reagents and conditions: (a) TFAA, Et3N; (b) NCCH2CO2H, py, heat; (c) H2C=CHCN, DABCO; (d) indole, toluene, heat.

Figure 1 Derivatives of pyrrole (4-8), furan (9,10), thiophene (11-13), 1,3-thiazole (14-18), and 1,2-oxazole (19)

Scheme 2 Synthesis of trifluoromethyl-substituted alcohols 4a-19a from 2-(trifluoroacetyl)-1,3-benzothiazole (3a)

















Figure 2 2-(Trifluoroacetyl)-1,3-azoles 3b-j





