Synlett 2009(19): 3123-3126  
DOI: 10.1055/s-0029-1218342
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Organocatalytic Stereoselective Aziridination of Imines via Ammonium Ylides

Lal Dhar S. Yadav*, Ritu Kapoor, Garima
Green Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad 211002, India
Fax: +91(532)2460533; e-Mail: ldsyadav@hotmail.com;

Further Information

Publication History

Received 5 September 2009
Publication Date:
05 November 2009 (online)

Abstract

Tertiary amine catalyzed reaction of imines with phen­acyl bromide derivatives expeditiously affords functionalized aziridines in high yields and stereoselectivities in a one-pot process. Advantageously, the protocol precludes the preparation and isolation of ylides and their precursors in a separate step as they are formed in situ.

Aziridines are fascinating synthetic targets not only as key components of a range of natural and non-natural molecules, [¹] [²] but also as versatile building blocks in synthesis. [³] Whereas the inherent ring strain in aziridines leads to difficulties in their synthesis, functionalization, and modification, it is advantageous for their bioactivity and synthetic applications involving alkylation and selective ring-opening reactions, respectively. [4] The importance of aziridines is reflected in the enormous effort with varying degree of success and limitations that has been devoted to their synthesis. [5-7]

The development of methodology for stereocontrolled formation of carbon-nitrogen bond is one of the challenging research topics. Several reports are available on the application of sulfur ylides to stereocontrolled aziridination of imines. [7] Surprisingly, the literature records no example of such aziridination employing a nitrogen ylide. [8] [9] This remarkable gap and elegant work of Gaunt and co-workers on ammonium ylide promoted cyclo-propanation [¹0] along with our continued quest for the development of novel cyclization reactions [¹¹] prompted us to investigate whether organocatalytic aziridination of im­ines could be feasible via ammonium ylides, and we report herein the first successful results (Scheme  [¹] ).

Scheme 1 One-pot aziridination of imines 1

An ammonium ylide based reaction becomes an attractive target for a general stereoselective aziridination process owing to the vast range of commercially available tertiary amines including the chiral ones. Advantageously, the present process does not require ylides or their precursors to be prepared and isolated in a separate step as they are generated in situ, and the process is catalytic in the ylidic species. In the case of sulfur ylides there are only two reports available where the ylide and its precursor are generated in situ. [7f] [g]

Initially, we tried aziridination of imine 1 (R = Ph) with a stoichiometric amount of phenacyl bromide 2 (Ar = Ph), and a base (Na2CO3, NaOH, or Et3N), but the reaction was unsuccessful. Then, attracted by the chemistry of ammonium ylides, we performed the reaction with salt 4a and a base followed by imine 1a, which delighted us by affording the desired aziridine 3a in varying yields depending upon the reaction conditions employed (Table  [¹] ). The best result in terms of the yield and diastereoselectivity was obtained with Na2CO3 in MeCN at 80 ˚C (Table  [¹] , entry 1). The temperature appears crucial because the ­reaction did not take place appreciably even after stirring for 24 hours at room temperature.

Table 1 Optimization of Reaction Conditionsa

Entry Solvent Base Time
(h)b
Yield (%)c of trans-3a trans/cis d
1 MeCN Na2CO3 19 85 94:6
2 THF Na2CO3 20 57 90:10
3 CH2Cl2 Na2CO3 20 58 93:7
4 MeCN NaOH 10 62 94:6
5 THF NaOH 12 49 90:10
6 CH2Cl2 NaOH 12 48 93:7
7 MeCN Et3N 21 17 94:6
8 THF Et3N 24 12 90:10
9 CH2Cl2 Et3N 24 14 93:7

a Salt 4a, imine 1a (1 mmol), base (1.5 mmol), and solvent (5 mL) at 80 ˚C.
b Time for completion of the reaction as indicated by TLC.
c Yield of isolated product after column chromatography.
d As determined by ¹H NMR integration of trans and cis isomers in the crude product.

In order to expeditiously synthesize 3 and to avoid the preparation of ylide precursor 4a in a separate step, we examined the possibility of a one-pot aziridination process. Thus, a mixture of phenacyl bromide 2 (Ar = Ph; 1 mmol), DABCO (1 mmol), imine 1a (1 mmol), and Na2CO3 (1.5 mmol) in MeCN was stirred at 80 ˚C. After 19 hours, aziridine 3a was isolated in 85% yield with 94% trans selectivity. This one-pot aziridination reaction offers significant advantages as it precludes the necessity to generate and isolate the ylide precursors 4 in a separate step.

In the above one-pot process, a phenacyl bromide 2 undergoes SN2 displacement with the tertiary amine 7 to form a quaternary ammonium salt 4. Deprotonation with Na2CO3 forms the ylide 5, which undergoes addition to imine 1 to form 6. Finally, 3-exo-tet cyclization of 6 delivers aziridine 3 and regenerates amine 7 (Scheme  [²] ). This plausible mechanism suggests that the amine 7 is released at the end of the reaction when the aziridine ring is formed, thus it should be possible to use the amine in a catalytic amount. Accordingly, we carried out one-pot organocatalytic azi­ridination reaction, which worked well. Thus, stirring a mixture of phenacyl bromide 2 (1 mmol), imine 1 (1 mmol), sodium carbonate (1.5 mmol), and DABCO (0.2 mmol) in acetonitrile (5 mL) at 80 ˚C for 19 hours produced aziridine 3 in 85% yield (Table  [²] ). [¹²]

Scheme 2 A plausible mechanism and the catalytic cycle of aziridination of imines 1

The general utility of the present organocatalytic aziridination process was demonstrated across a range of substituted N-tosyl imines 1 and phenacyl bromides 2. The results are summarized in Table  [²] ; both electron-withdrawing substituents are tolerated to afford the corresponding products 3 in consistently good yields (78-94%) and trans diastereoselectivities (89-97%). However, the present synthetic protocol is not satisfactorily applicable to unactivated aldimines such as N-benzylideneaniline and to N-tosyl ketimines, for example, acetophenone-­derived N-tosyl imine.

The observed diastereoselectivity in the formation of azi­ridines may be tentatively explained by comparing the two intermediates 8 and 9 bearing charged groups anti to each other. The intermediate 8 leading to cis-aziridines is more congested as it possesses three sterically demanding gauche interactions (Scheme  [³] ). Thus, trans-aziridines are selectively formed through the sterically less congested intermediate 9. The trans diastereoselectivity of aziridines 3 was assigned on the basis of J values (J = 4.09-4.12 Hz) of 2-H and 3-H, which are lower than those for the cis-aziridines (J = 9.6-9.8 Hz). This is in conformity with the earlier observations for trans-aziridines reported in the literature. [¹³]

Table 2 Synthesis of Functionalized Aziridines 3 (Scheme  [¹] ) [¹²]
Entry Aziridine 3
Time (h)a Yield (%)b,c of trans-3 trans/cis d
R Ar
 1 Ph Ph 19 85 94:6
 2 4-OMeC6H4 Ph 21 83 92:8
 3 4-NO2C6H4 Ph 24 82 90:10
 4 n-Bu Ph 24 78 90:10
 5 Ph 4-ClC6H4 19 86 92:8
 6 4-OMeC6H4 4-ClC6H4 19 87 95:5
 7 4-NO2C6H4 4-ClC6H4 20 84 94:6
 8 n-Bu 4-ClC6H4 24 79 89:11
 9 Ph 4-OMeC6H4 21 80 92:8
10 4-OMeC6H4 4-OMeC6H4 23 82 90:10
11 4-NO2C6H4 4-OMeC6H4 24 78 89:11
12 n-Bu 4-OMeC6H4 24 78 90:10
13 Ph 4-NO2C6H4 20 92 91:9
14 4-OMeC6H4 4-NO2C6H4 19 90 93:7
15 4-NO2C6H4 4-NO2C6H4 21 83 92:8
16 n-Bu 4-NO2C6H4 23 81 91:9

a The reaction mixture was stirred at 80 ˚C.
b Yield of isolated and purified trans-aziridine 3.
c All compounds gave C, H, and N analyses within ±0.37% and satisfactory spectral [¹H NMR, ¹³C NMR, and (EI)] data. See supporting information for details.
d As determined by ¹H NMR integration of cis and trans isomers in the crude product.

Scheme 3 A rationale for the trans diastereoselectivity of aziridination

Furthermore, strong NOEs were observed between 2-H/3-H of cis-aziridines (absent in the case of trans isomers), which conclusively prove their cis stereochemistry.

As regards the choice of a tertiary amine 7 for the formation of salt 4, DABCO (1,4-diazobicyclo[2.2.2]octane) was preferred over triethylamine to minimize the propensity for Stevens rearrangement because ring expansion to a seven-membered ring should be less favorable. [¹4] However, use of quinuclidine in place of DABCO did not affect the yield of 3a. Moreover, DABCO was model tertiary amine to mimic the core structure of the cinchona alkaloids because they may be used as a chiral catalyst.

Figure 1

In a pilot work on a one-pot enantioselective aziridination reaction, we stirred a mixture of phenacyl bromide 2a (1 mmol), imine 1a (1 mmol), sodium carbonate (1.5 mmol) and tertiary amine 7a (0.2 mmol) at 80 ˚C for 19 hours to afford aziridine trans-3a in 78% yield with an enantiomeric ratio (e.r.) of 96:4 (92% ee) as determined by chiral HPLC. [¹5] The absolute configuration of trans-3a (92% ee) was determined to be 2S,3R (Figure  [¹] ) by comparing the determined specific rotation [α]²4 D +5.62 (c = 0.95, CHCl3) with the reported one [α]²4 D +5.70 (c = 1.00, CHCl3). [¹6] Currently, we are exploring the range of N-tosyl imines, phenacyl halides, and other chiral tertiary bases to develop a general and ammonium ylide based catalytic enantioselective aziridination reaction.

In summary, we have developed the first organocatalytic aziridination of N-tosyl imines with phenacyl bromide ­derivatives to afford chemically and pharmaceutically ­relevant aziridines in high yields and trans diastereoselectivities in a one-pot process. The reaction is catalyzed by a tertiary amine and proceeds via an ammonium ylide intermediate. We have also demonstrated that this reaction can be made enantioselective by utilizing a chiral tertiary amine as the catalyst. Advantageously, the present protocol precludes the necessity to prepare and isolate ylides or their precursors in a separate step as they are generated in situ.

Supporting Information for this article is available online at http://www.thieme-connect.com.accesdistant.sorbonne-universite.fr/ejournals/toc/synlett.

Acknowledgment

We sincerely thank SAIF, CDRI, Lucknow, for providing microanalyses and spectra. R. K. and Garima are grateful to the CSIR, New Delhi, for the award of a fellowship.

    References and Notes

  • For examples of bioactive natural aziridines, see:
  • 1a Hodgkinson TJ. Shipman M. Tetrahedron  2001,  57:  4467 
  • 1b Coleman RS. Kong JS. Richardson TE. J. Am. Chem. Soc.  1999,  121:  9088 
  • 1c Coleman RS. Li J. Navarro A. Angew. Chem. Int. Ed.  2001,  40:  1736 
  • 1d Kasai M. Kono M. Synlett  1992,  778 
  • 1e Remers WA. In The Chemistry of Antitumor, Antibiotics   Vol. 1:  Wiley Interscience; New York: 1979.  p.242 
  • 1f Katoh T. Itoh E. Yoshino T. Terashima S. Tetrahedron  1997,  53:  10229 
  • 1g Sweeney JB. Chem. Soc. Rev.  2002,  31:  247 
  • 1h Lefemine DV. Dann M. Barbatschi F. Hausmann WK. Zbinovsky V. Monnikendam P. Adam J. Bohonos N. J. Am. Chem. Soc.  1962,  84:  3184 
  • 1i Gerhart F. Higgins W. Tardif C. Ducep J. J. Med. Chem.  1990,  33:  2157 
  • For examples of bioactive active non-natural aziridines as building blocks, see:
  • 2a Tanner ME. Miao S. Tetrahedron Lett.  1994,  35:  4073 
  • 2b Gerhart F. Higgins W. Tardiff C. Ducep JB. J. Med. Chem.  1990,  33:  2157 
  • 2c Skibo EB. Islam I. Heileman MJ. Schulz WG. J. Med. Chem.  1994,  37:  78 
  • 2d Han I. Kohn H. J. Org. Chem.  1991,  56:  4648 
  • For examples of applications of aziridines as building blocks, see:
  • 3a Kumar KSA. Chaudhari VD. Dhavale DD. Org. Biomol. Chem.  2008,  6:  703 
  • 3b Kumar KSA. Chaudhari VD. Puranik VG. Dhavale DD. Eur. J. Org. Chem.  2007,  4895 
  • 3c Trost BM. Dong G. Org. Lett.  2007,  9:  2357 
  • 3d Caldwell JJ. Craig D. Angew. Chem. Int. Ed.  2007,  46:  2631 
  • 3e Crawley SL. Funk RL. Org. Lett.  2006,  8:  3995 
  • 3f Banwell MG. Lupton DW. Org. Biomol. Chem.  2005,  3:  213 
  • 3g Smith AB. Kim D. Org. Lett.  2004,  6:  1493 
  • For leading references on ring-opening reactions of aziridines, see:
  • 4a Tanner D. Angew. Chem., Int. Ed. Engl.  1994,  33: 599
  • 4b Pearson WH. Lian BW. Bergmeier SC. In Comprehensive Heterocyclic Chemistry II   Vol. IA:  Padwa A. , Ed.; Pergamon; Oxford: 1996.  p.1-60  
  • 4c McCoull W. Davis FA. Synthesis  2000,  1347 
  • For recent reviews on the synthesis of aziridines, see:
  • 5a Osborn HMI. Sweeney JB. Tetrahedron: Asymmetry  1997,  8:  1693 
  • 5b Hou XL. Wu J. Fan R. Ding CH. Luo ZB. Dai LX. Synlett  2006,  181 
  • 5c Watson IDG. Yu L. Yudin AK. Acc. Chem. Res.  2006,  39:  194 
  • 5d Schaumann E. Kirschning A. Synlett  2007,  177 
  • 5e Singh GS. D’Hooghe M. De Kimpe N. Chem. Rev.  2007,  107:  2080 
  • For recent references on the synthesis of aziridines from imines, see:
  • 6a Hodgson DM. Kloesges J. Evans B. Org. Lett.  2008,  10:  2781 
  • 6b Denolf B. Leemans E.
    De Kimpe
    N. J. Org. Chem.  2007,  72:  3211 
  • 6c Sweeney JB. Cantrill AA. Drew MGB. McLaren AB. Thobhani S. Tetrahedron  2006,  62:  3694 
  • 6d Sweeney JB. Cantrill AA. McLaren AB. Thobhani S. Tetrahedron  2006,  62:  3681 
  • 6e Concellon JM. Bernad PL. Riego E. Garcia-Granda S. Forcen-Acebal A.
    J. Org. Chem.  2001,  66:  2764 
  • 6f Kim DY. Suh KH. Choi JS. Mang JY. Chang SK. Synth. Commun.  2000,  30:  87 
  • 6g Cantrill AA. Hall LD. Jarvis AN. Osborn HMI. Raphy J. Sweeney JB. Chem. Commun.  1996,  2631 
  • 6h Davis FA. Zhou P. Liang C.-H. Reddy RE. Tetrahedron: Asymmetry  1995,  6:  1511 
  • 6i Concellon JM. Rodriguez-Sollo H. Bernad PL. Simal C. J. Org. Chem.  2009,  74:  2452 
  • 6j Lu Z. Zhang Y. Wulff WD. J. Am. Chem. Soc.  2007,  129:  7185 
  • For the synthesis of aziridines from sulfur ylides, see:
  • 7a Gracia-Ruano JL. Fernandez I. del Prado-Catalina M. Alcudia-Cruz A. Tetrahedron: Asymmetry  1996,  7:  3407 
  • 7b Higashiyma K. Matsumura M. Shiogama A. Yamaguchi T. Ohmiya S. Heterocycles  2002,  58:  85 
  • 7c Corey EJ. Chaykovsky M. J. Am. Chem. Soc.  1965,  87:  1353 
  • 7d Morton D. Pearson D. Field RA. Stockman RA. Synlett  2003,  1985 
  • 7e Midura WH. Tetrahedron Lett.  2007,  48:  3907 
  • 7f Aggarwal VK. Alonso E. Hynd G. Lydon KM. Palmer MJ. Porcelloni M. Studley JR. Angew. Chem. Int. Ed.  2001,  40:  1430 
  • 7g Aggarwal VK. Stenson RA. Jones RVH. Fieldhouse R. Blacker J. Tetrahedron Lett.  2001,  42:  1587 
  • 7h Morton D. Pearson D. Field RA. Stockman RA. Chem. Commun.  2006,  1833 
  • Though not an imine aziridination, Ishikawa and co-workers have reported an elegant method in which guanidinium ylides react with aldehydes to form aziridines stereo-selectively:
  • 8a Disadee W. Ishikawa T. J. Org. Chem.  2005,  70:  9399 
  • 8b Haga T. Ishikawa T. Tetrahedron  2005,  61:  2857 
  • Some amine-imide NH-transfer reagents have been reported for the aziridination of chalcones, but they are not applicable to the aziridination of imines:
  • 9a Shen Y.-M. Zhao M.-X. Xu J. Shi Y. Angew. Chem. Int. Ed.  2006,  45:  8005 
  • 9b Ikeda I. Machii Y. Okahara M. Synthesis  1980,  650 
  • 9c Xu J. Jiao P. J. Chem. Soc., Perkin Trans. 1  2002,  1491 
  • 9d Armstrong A. Carbery DR. Lamont SG. Pape AR. Wincewicz R. Synlett  2006,  2504 
  • 9e Armstrong A. Baxter CA. Lamont SG. Pape AR. Wincewicz R. Org. Lett.  2007,  9:  351 
  • 10a Papageorgiou CD. Ley SV. Gaunt MJ. Angew. Chem. Int. Ed.  2003,  42:  828 
  • 10b Papageorgiou CD. Cubillo de Dios MA. Ley SV. Gaunt MJ. Angew. Chem. Int. Ed.  2004,  43:  4641 
  • 10c Bremeyer N. Smith SC. Ley SV. Gaunt MJ. Angew. Chem. Int. Ed.  2004,  43:  2681 
  • 10d Johansson CCC. Bremeyer N. Ley SV. Owen DR. Smith SC. Gaunt MJ. Angew. Chem. Int. Ed.  2006,  45:  6024 
  • For examples of our recent work on cyclization reactions, see:
  • 11a Yadav LDS. Kapoor R. J. Org. Chem.  2004,  69:  8118 
  • 11b Yadav LDS. Kapoor R. Synlett  2005,  3055 
  • 11c Yadav LDS. Yadav S. Rai VK. Green Chem.  2006,  8:  455 
  • 11d Yadav LDS. Awasthi C. Rai VK. Rai A. Tetrahedron Lett.  2007,  48:  4899 
  • 11e Yadav LDS. Rai A. Rai VK. Awasthi C. Tetrahedron  2008,  64:  1420 
  • 11f Yadav LDS. Kapoor R. Synlett  2008,  2348 
  • 11g Yadav LDS. Singh S. Rai VK. Green Chem.  2009,  11:  878 
  • 11h Yadav LDS. Kapoor R. ; Synlett  2009,  1055 
  • 13a Ma L. Jiao P. Zhang Q. Xu J. Tetrahedron: Asymmetry  2005,  16:  3718 
  • 13b Ma L. Du D.-M. Xu J. J. Org. Chem.  2005,  70:  10155 
  • 14 Aggarwal VK. Alonso E. Bae I. Hynd G. Lydon KM. Palmer MJ. Patel M. Porcelloni M. Richardson J. Stenson RA. Studley JR. Vasse J.-L. Winn CL.
    J. Am. Chem. Soc.  2003,  125:  10926 
  • 16 Xu J. Ma L. Jiao P. Chem. Commun.  2004,  1616 
12

General Procedure for the One-Pot Synthesis of Aziridines 3: A mixture of phenacyl bromide 2 (1 mmol), DABCO (0.2 mmol), imine 1 (1 mmol), and Na2CO3 (1.5 mmol) in MeCN (5 mL) was stirred at 80 ˚C for 19-24 h (Table  [²] ). After completion of the reaction (monitored by TLC), it was quenched with aq HCl (1 M) and extracted with EtOAc (3 × 10 mL). The combined organic phases were washed with a sat. aq solution of NaHCO3, dried over MgSO4, and concentrated under reduced pressure. The crude product thus obtained was purified by silica gel column chromatography using EtOAc-n-hexane (2:8) as eluent to afford analytically pure sample of 3 (Table  [²] ). Characterization Data of Representative Compounds:
Product 3 (Table 2, entry 2): ¹H NMR (400 MHz, CDCl3): δ = 8.03 (d, J = 8.6 Hz, 2 H), 7.42-7.61 (m, 3 H), 7.20-7.23 (m, 4 H), 7.10 (d, J = 8.4 Hz, 2 H), 6.75 (d, J = 8.4 Hz, 2 H), 4.51 (d, J = 4.1 Hz, 1 H), 4.28 (d, J = 4.1 Hz, 1 H), 3.72 (s, 3 H), 2.36 (s, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 190.03, 160.30, 144.12, 136.29, 135.63, 132.63, 129.90, 129.23, 129.00, 128.61, 127.35, 127.21, 113.90, 55.60, 49.99, 47.04, 21.24. IR (KBr): 3051, 2847, 1685, 1602, 1583, 1514, 1456, 1331, 1151, 843, 741 cm. EIMS: m/z = 407 [M+]. Anal. Calcd for C23H21NO4S: C, 67.79; H, 5.19; N, 3.44. Found: C, 67.99; H, 5.45; N, 3.21. Product 3 (Table 2, entry 6): ¹H NMR (400 MHz, CDCl3): δ = 8.05 (d, J = 8.5 Hz, 2 H), 7.85 (d, J = 8.9 Hz, 2 H), 7.44 (d, J = 8.9 Hz, 2 H), 7.24 (d, J = 8.5 Hz, 2 H), 7.12 (d, J = 8.3 Hz, 2 H), 6.78 (d, J = 8.3 Hz, 2 H), 4.54 (d, J = 4.1 Hz, 1 H), 4.30 (d, J = 4.1 Hz, 1 H), 3.72 (s, 3 H), 2.37 (s, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 190.06, 160.60, 138.00, 136.66, 133.33, 130.00, 129.28, 129.10, 128.64, 127.38, 127.25, 114.20, 114.16, 55.80, 50.03, 47.09, 21.28. IR (KBr): 3049, 2842, 1687, 1603, 1584, 1516, 1448, 1336, 1146, 848 cm. EIMS: m/z = 441 [M+]. Anal. Calcd for C23H20ClNO4S: C, 62.51; H, 4.56; N, 3.17. Found: C, 62.74; H, 4.29; N, 2.84. Product 3 (Table 2, entry 10): ¹H NMR (400 MHz, CDCl3): δ = 8.01 (d, J = 8.6 Hz, 2 H), 7.70 (d, J = 8.4 Hz, 2 H), 7.20 (d, J = 8.6 Hz, 2 H), 7.08 (d, J = 8.5 Hz, 2 H), 6.75 (d, J = 8.4 Hz, 2 H), 6.73 (d, J = 8.5 Hz, 2 H), 4.50 (d, J = 4.1 Hz, 1 H), 4.28 (d, J = 4.1 Hz, 1 H), 3.72 (s, 3 H), 3.70 (s, 3 H), 2.35 (s, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 190.00, 162.60, 160.00, 144.08, 136.25, 130.40, 129.10, 129.00, 128.50, 127.31, 127.18, 114.30, 113.30, 55.80, 55.10, 49.95, 47.00, 21.20. IR (KBr): 3057, 2847, 1677, 1602, 1577, 1514, 1457, 1334, 1148, 842 cm. EIMS: m/z = 437 [M+]. Anal. Calcd for C24H23NO5S: C, 65.89; H, 5.30; N, 3.20. Found: C, 65.62; H, 5.55; N, 2.87. Product 3 (Table 2, entry 14): ¹H NMR (400 MHz, CDCl3): δ = 8.24 (d, J = 8.8 Hz, 2 H), 8.10 (d, J = 8.8 Hz, 2 H), 8.06 (d, J = 8.5 Hz, 2 H), 7.26 (d, J = 8.5 Hz, 2 H), 7.14 (d, J = 8.2 Hz, 2 H), 6.80 (d, J = 8.2 Hz, 2 H), 4.56 (d, J = 4.1 Hz, 1 H), 4.32 (d, J = 4.1 Hz, 1 H), 3.72 (s, 3 H), 2.39 (s, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 190.08, 170.00, 149.00, 144.19, 141.20, 136.36, 130.04, 129.90, 129.10, 127.41, 127.29, 123.00, 114.6, 56.01, 50.06, 47.12, 21.30. IR (KBr): 3064, 2853, 1683, 1603, 1584, 1512, 1453, 1338, 1150, 854 cm. EIMS: m/z = 452 [M+]. Anal. Calcd for C23H20N2O6S: C, 61.05; H, 4.46; N, 6.19. Found: C, 61.37; H, 4.19; N, 6.47.

15

Chiral HPLC: enantiomeric excess (ee) was determined by using a Chiracel OD 25 cm, 4.6 mm internal diameter column, hexane-i-PrOH (88:12), flow: 1 mL min, 30 ˚C,
λ = 250 nm. The enantiomers had retention times (t R) of 22.4 min (major) and 24.2 min (minor).

    References and Notes

  • For examples of bioactive natural aziridines, see:
  • 1a Hodgkinson TJ. Shipman M. Tetrahedron  2001,  57:  4467 
  • 1b Coleman RS. Kong JS. Richardson TE. J. Am. Chem. Soc.  1999,  121:  9088 
  • 1c Coleman RS. Li J. Navarro A. Angew. Chem. Int. Ed.  2001,  40:  1736 
  • 1d Kasai M. Kono M. Synlett  1992,  778 
  • 1e Remers WA. In The Chemistry of Antitumor, Antibiotics   Vol. 1:  Wiley Interscience; New York: 1979.  p.242 
  • 1f Katoh T. Itoh E. Yoshino T. Terashima S. Tetrahedron  1997,  53:  10229 
  • 1g Sweeney JB. Chem. Soc. Rev.  2002,  31:  247 
  • 1h Lefemine DV. Dann M. Barbatschi F. Hausmann WK. Zbinovsky V. Monnikendam P. Adam J. Bohonos N. J. Am. Chem. Soc.  1962,  84:  3184 
  • 1i Gerhart F. Higgins W. Tardif C. Ducep J. J. Med. Chem.  1990,  33:  2157 
  • For examples of bioactive active non-natural aziridines as building blocks, see:
  • 2a Tanner ME. Miao S. Tetrahedron Lett.  1994,  35:  4073 
  • 2b Gerhart F. Higgins W. Tardiff C. Ducep JB. J. Med. Chem.  1990,  33:  2157 
  • 2c Skibo EB. Islam I. Heileman MJ. Schulz WG. J. Med. Chem.  1994,  37:  78 
  • 2d Han I. Kohn H. J. Org. Chem.  1991,  56:  4648 
  • For examples of applications of aziridines as building blocks, see:
  • 3a Kumar KSA. Chaudhari VD. Dhavale DD. Org. Biomol. Chem.  2008,  6:  703 
  • 3b Kumar KSA. Chaudhari VD. Puranik VG. Dhavale DD. Eur. J. Org. Chem.  2007,  4895 
  • 3c Trost BM. Dong G. Org. Lett.  2007,  9:  2357 
  • 3d Caldwell JJ. Craig D. Angew. Chem. Int. Ed.  2007,  46:  2631 
  • 3e Crawley SL. Funk RL. Org. Lett.  2006,  8:  3995 
  • 3f Banwell MG. Lupton DW. Org. Biomol. Chem.  2005,  3:  213 
  • 3g Smith AB. Kim D. Org. Lett.  2004,  6:  1493 
  • For leading references on ring-opening reactions of aziridines, see:
  • 4a Tanner D. Angew. Chem., Int. Ed. Engl.  1994,  33: 599
  • 4b Pearson WH. Lian BW. Bergmeier SC. In Comprehensive Heterocyclic Chemistry II   Vol. IA:  Padwa A. , Ed.; Pergamon; Oxford: 1996.  p.1-60  
  • 4c McCoull W. Davis FA. Synthesis  2000,  1347 
  • For recent reviews on the synthesis of aziridines, see:
  • 5a Osborn HMI. Sweeney JB. Tetrahedron: Asymmetry  1997,  8:  1693 
  • 5b Hou XL. Wu J. Fan R. Ding CH. Luo ZB. Dai LX. Synlett  2006,  181 
  • 5c Watson IDG. Yu L. Yudin AK. Acc. Chem. Res.  2006,  39:  194 
  • 5d Schaumann E. Kirschning A. Synlett  2007,  177 
  • 5e Singh GS. D’Hooghe M. De Kimpe N. Chem. Rev.  2007,  107:  2080 
  • For recent references on the synthesis of aziridines from imines, see:
  • 6a Hodgson DM. Kloesges J. Evans B. Org. Lett.  2008,  10:  2781 
  • 6b Denolf B. Leemans E.
    De Kimpe
    N. J. Org. Chem.  2007,  72:  3211 
  • 6c Sweeney JB. Cantrill AA. Drew MGB. McLaren AB. Thobhani S. Tetrahedron  2006,  62:  3694 
  • 6d Sweeney JB. Cantrill AA. McLaren AB. Thobhani S. Tetrahedron  2006,  62:  3681 
  • 6e Concellon JM. Bernad PL. Riego E. Garcia-Granda S. Forcen-Acebal A.
    J. Org. Chem.  2001,  66:  2764 
  • 6f Kim DY. Suh KH. Choi JS. Mang JY. Chang SK. Synth. Commun.  2000,  30:  87 
  • 6g Cantrill AA. Hall LD. Jarvis AN. Osborn HMI. Raphy J. Sweeney JB. Chem. Commun.  1996,  2631 
  • 6h Davis FA. Zhou P. Liang C.-H. Reddy RE. Tetrahedron: Asymmetry  1995,  6:  1511 
  • 6i Concellon JM. Rodriguez-Sollo H. Bernad PL. Simal C. J. Org. Chem.  2009,  74:  2452 
  • 6j Lu Z. Zhang Y. Wulff WD. J. Am. Chem. Soc.  2007,  129:  7185 
  • For the synthesis of aziridines from sulfur ylides, see:
  • 7a Gracia-Ruano JL. Fernandez I. del Prado-Catalina M. Alcudia-Cruz A. Tetrahedron: Asymmetry  1996,  7:  3407 
  • 7b Higashiyma K. Matsumura M. Shiogama A. Yamaguchi T. Ohmiya S. Heterocycles  2002,  58:  85 
  • 7c Corey EJ. Chaykovsky M. J. Am. Chem. Soc.  1965,  87:  1353 
  • 7d Morton D. Pearson D. Field RA. Stockman RA. Synlett  2003,  1985 
  • 7e Midura WH. Tetrahedron Lett.  2007,  48:  3907 
  • 7f Aggarwal VK. Alonso E. Hynd G. Lydon KM. Palmer MJ. Porcelloni M. Studley JR. Angew. Chem. Int. Ed.  2001,  40:  1430 
  • 7g Aggarwal VK. Stenson RA. Jones RVH. Fieldhouse R. Blacker J. Tetrahedron Lett.  2001,  42:  1587 
  • 7h Morton D. Pearson D. Field RA. Stockman RA. Chem. Commun.  2006,  1833 
  • Though not an imine aziridination, Ishikawa and co-workers have reported an elegant method in which guanidinium ylides react with aldehydes to form aziridines stereo-selectively:
  • 8a Disadee W. Ishikawa T. J. Org. Chem.  2005,  70:  9399 
  • 8b Haga T. Ishikawa T. Tetrahedron  2005,  61:  2857 
  • Some amine-imide NH-transfer reagents have been reported for the aziridination of chalcones, but they are not applicable to the aziridination of imines:
  • 9a Shen Y.-M. Zhao M.-X. Xu J. Shi Y. Angew. Chem. Int. Ed.  2006,  45:  8005 
  • 9b Ikeda I. Machii Y. Okahara M. Synthesis  1980,  650 
  • 9c Xu J. Jiao P. J. Chem. Soc., Perkin Trans. 1  2002,  1491 
  • 9d Armstrong A. Carbery DR. Lamont SG. Pape AR. Wincewicz R. Synlett  2006,  2504 
  • 9e Armstrong A. Baxter CA. Lamont SG. Pape AR. Wincewicz R. Org. Lett.  2007,  9:  351 
  • 10a Papageorgiou CD. Ley SV. Gaunt MJ. Angew. Chem. Int. Ed.  2003,  42:  828 
  • 10b Papageorgiou CD. Cubillo de Dios MA. Ley SV. Gaunt MJ. Angew. Chem. Int. Ed.  2004,  43:  4641 
  • 10c Bremeyer N. Smith SC. Ley SV. Gaunt MJ. Angew. Chem. Int. Ed.  2004,  43:  2681 
  • 10d Johansson CCC. Bremeyer N. Ley SV. Owen DR. Smith SC. Gaunt MJ. Angew. Chem. Int. Ed.  2006,  45:  6024 
  • For examples of our recent work on cyclization reactions, see:
  • 11a Yadav LDS. Kapoor R. J. Org. Chem.  2004,  69:  8118 
  • 11b Yadav LDS. Kapoor R. Synlett  2005,  3055 
  • 11c Yadav LDS. Yadav S. Rai VK. Green Chem.  2006,  8:  455 
  • 11d Yadav LDS. Awasthi C. Rai VK. Rai A. Tetrahedron Lett.  2007,  48:  4899 
  • 11e Yadav LDS. Rai A. Rai VK. Awasthi C. Tetrahedron  2008,  64:  1420 
  • 11f Yadav LDS. Kapoor R. Synlett  2008,  2348 
  • 11g Yadav LDS. Singh S. Rai VK. Green Chem.  2009,  11:  878 
  • 11h Yadav LDS. Kapoor R. ; Synlett  2009,  1055 
  • 13a Ma L. Jiao P. Zhang Q. Xu J. Tetrahedron: Asymmetry  2005,  16:  3718 
  • 13b Ma L. Du D.-M. Xu J. J. Org. Chem.  2005,  70:  10155 
  • 14 Aggarwal VK. Alonso E. Bae I. Hynd G. Lydon KM. Palmer MJ. Patel M. Porcelloni M. Richardson J. Stenson RA. Studley JR. Vasse J.-L. Winn CL.
    J. Am. Chem. Soc.  2003,  125:  10926 
  • 16 Xu J. Ma L. Jiao P. Chem. Commun.  2004,  1616 
12

General Procedure for the One-Pot Synthesis of Aziridines 3: A mixture of phenacyl bromide 2 (1 mmol), DABCO (0.2 mmol), imine 1 (1 mmol), and Na2CO3 (1.5 mmol) in MeCN (5 mL) was stirred at 80 ˚C for 19-24 h (Table  [²] ). After completion of the reaction (monitored by TLC), it was quenched with aq HCl (1 M) and extracted with EtOAc (3 × 10 mL). The combined organic phases were washed with a sat. aq solution of NaHCO3, dried over MgSO4, and concentrated under reduced pressure. The crude product thus obtained was purified by silica gel column chromatography using EtOAc-n-hexane (2:8) as eluent to afford analytically pure sample of 3 (Table  [²] ). Characterization Data of Representative Compounds:
Product 3 (Table 2, entry 2): ¹H NMR (400 MHz, CDCl3): δ = 8.03 (d, J = 8.6 Hz, 2 H), 7.42-7.61 (m, 3 H), 7.20-7.23 (m, 4 H), 7.10 (d, J = 8.4 Hz, 2 H), 6.75 (d, J = 8.4 Hz, 2 H), 4.51 (d, J = 4.1 Hz, 1 H), 4.28 (d, J = 4.1 Hz, 1 H), 3.72 (s, 3 H), 2.36 (s, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 190.03, 160.30, 144.12, 136.29, 135.63, 132.63, 129.90, 129.23, 129.00, 128.61, 127.35, 127.21, 113.90, 55.60, 49.99, 47.04, 21.24. IR (KBr): 3051, 2847, 1685, 1602, 1583, 1514, 1456, 1331, 1151, 843, 741 cm. EIMS: m/z = 407 [M+]. Anal. Calcd for C23H21NO4S: C, 67.79; H, 5.19; N, 3.44. Found: C, 67.99; H, 5.45; N, 3.21. Product 3 (Table 2, entry 6): ¹H NMR (400 MHz, CDCl3): δ = 8.05 (d, J = 8.5 Hz, 2 H), 7.85 (d, J = 8.9 Hz, 2 H), 7.44 (d, J = 8.9 Hz, 2 H), 7.24 (d, J = 8.5 Hz, 2 H), 7.12 (d, J = 8.3 Hz, 2 H), 6.78 (d, J = 8.3 Hz, 2 H), 4.54 (d, J = 4.1 Hz, 1 H), 4.30 (d, J = 4.1 Hz, 1 H), 3.72 (s, 3 H), 2.37 (s, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 190.06, 160.60, 138.00, 136.66, 133.33, 130.00, 129.28, 129.10, 128.64, 127.38, 127.25, 114.20, 114.16, 55.80, 50.03, 47.09, 21.28. IR (KBr): 3049, 2842, 1687, 1603, 1584, 1516, 1448, 1336, 1146, 848 cm. EIMS: m/z = 441 [M+]. Anal. Calcd for C23H20ClNO4S: C, 62.51; H, 4.56; N, 3.17. Found: C, 62.74; H, 4.29; N, 2.84. Product 3 (Table 2, entry 10): ¹H NMR (400 MHz, CDCl3): δ = 8.01 (d, J = 8.6 Hz, 2 H), 7.70 (d, J = 8.4 Hz, 2 H), 7.20 (d, J = 8.6 Hz, 2 H), 7.08 (d, J = 8.5 Hz, 2 H), 6.75 (d, J = 8.4 Hz, 2 H), 6.73 (d, J = 8.5 Hz, 2 H), 4.50 (d, J = 4.1 Hz, 1 H), 4.28 (d, J = 4.1 Hz, 1 H), 3.72 (s, 3 H), 3.70 (s, 3 H), 2.35 (s, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 190.00, 162.60, 160.00, 144.08, 136.25, 130.40, 129.10, 129.00, 128.50, 127.31, 127.18, 114.30, 113.30, 55.80, 55.10, 49.95, 47.00, 21.20. IR (KBr): 3057, 2847, 1677, 1602, 1577, 1514, 1457, 1334, 1148, 842 cm. EIMS: m/z = 437 [M+]. Anal. Calcd for C24H23NO5S: C, 65.89; H, 5.30; N, 3.20. Found: C, 65.62; H, 5.55; N, 2.87. Product 3 (Table 2, entry 14): ¹H NMR (400 MHz, CDCl3): δ = 8.24 (d, J = 8.8 Hz, 2 H), 8.10 (d, J = 8.8 Hz, 2 H), 8.06 (d, J = 8.5 Hz, 2 H), 7.26 (d, J = 8.5 Hz, 2 H), 7.14 (d, J = 8.2 Hz, 2 H), 6.80 (d, J = 8.2 Hz, 2 H), 4.56 (d, J = 4.1 Hz, 1 H), 4.32 (d, J = 4.1 Hz, 1 H), 3.72 (s, 3 H), 2.39 (s, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 190.08, 170.00, 149.00, 144.19, 141.20, 136.36, 130.04, 129.90, 129.10, 127.41, 127.29, 123.00, 114.6, 56.01, 50.06, 47.12, 21.30. IR (KBr): 3064, 2853, 1683, 1603, 1584, 1512, 1453, 1338, 1150, 854 cm. EIMS: m/z = 452 [M+]. Anal. Calcd for C23H20N2O6S: C, 61.05; H, 4.46; N, 6.19. Found: C, 61.37; H, 4.19; N, 6.47.

15

Chiral HPLC: enantiomeric excess (ee) was determined by using a Chiracel OD 25 cm, 4.6 mm internal diameter column, hexane-i-PrOH (88:12), flow: 1 mL min, 30 ˚C,
λ = 250 nm. The enantiomers had retention times (t R) of 22.4 min (major) and 24.2 min (minor).

Scheme 1 One-pot aziridination of imines 1

Scheme 2 A plausible mechanism and the catalytic cycle of aziridination of imines 1

Scheme 3 A rationale for the trans diastereoselectivity of aziridination

Figure 1