Subscribe to RSS
DOI: 10.1055/s-0029-1217098
Michael Addition-Lactonization Reaction of Electron-Deficient Alkynes with N-(Diphenylmethylene)glycinates: An Efficient Synthesis of 3-Amino-2-pyrone Derivatives
Publication History
Publication Date:
03 November 2009 (online)
Abstract
A mild and efficient process for the synthesis of 3-amino-2-pyrone derivatives has been developed. This approach is based on the Michael addition of N-(diphenylmethylene)glycinates to various alkynyl ketones, followed by lactonization using 10 mol% sodium hydroxide as catalyst. Aromatic and aliphatic alkynyl ketones were converted into the corresponding 3-amino-2-pyrone derivatives in moderate to high yields. When methyl propiolate was submitted to the reaction, α,β-dehydroamino acids were formed in good yields.
Key words
3-amino-2-pyrone derivatives - alkynyl ketones - Michael addition - lactonization - synthesis
2-Pyrones are found in numerous natural products [¹] and exhibit a wide range of biological activities; such compounds possess anti-HIV, [²] telomerase inhibition, [³] antimicrobial, [4] antifungal, [5] cardiotonic, [6] pheromonal, [7] androgen-like, [8] and phytotoxic [9] properties. 2-Pyrones are also versatile synthetic building blocks due to the existence of a six-membered cyclic unsaturated ester. [¹0] Thus, many ways have been developed for the synthesis of 2-pyrones either through traditional approaches [¹¹] or by transition-metal catalyzed procedures. [7] [¹²] Recently, 2-pyrones were synthesized via electron-deficient allenes with acetates or aldehydes substituted with electron-withdrawing groups, in the presence of either potassium carbonate [¹³] or phosphine [¹4] catalyst. Despite the plethora of these synthetic processes, there is a general lack of simple procedures with which to synthesize 3-amino-2-pyrone derivatives from simple and readily available starting materials.

Scheme 1
Recently, Xue reported an efficient synthesis of α,β-dehydroamino acid derivatives from the reaction of acetylenic ketones with N-(diphenylmethylene)glycinates (Scheme [¹] ). [¹5] The reaction proceeded effectively with both aliphatic and aromatic acetylenic ketones, in the presence of triethylamine at -10 ˚C, to gave the corresponding α,β-dehydroamino acid derivatives in good yields. When 1-phenylhex-2-yn-1-one and methyl propiolate were tested under the above reaction conditions, no product was found. Due to the importance of α,β-dehydroamino acid derivatives, we re-examined the reaction using sodium hydroxide as base, in place of triethylamine, to catalyze the reaction of 1-phenylhex-2-yn-1-one (1a) with N-(diphenylmethylene)glycinate 2a. We were surprised to find that, under these conditions, the 3-amino-2-pyrone derivative 3a was obtained (Scheme [²] ). Here, we wish to report a one-step, sodium hydroxide catalyzed synthesis of 3-amino-2-pyrone derivatives from simple and readily available starting materials: alkynyl ketones and N-(diphenylmethylene)glycinate.
Entry |
Base (mol%) | Solvent | Temp (˚C) |
Time (h) | Yield of 3a (%)a | ||||||||||||||
1 | Cs2CO3 (50) | CH2Cl2 | r.t. | 120 | 36 | ||||||||||||||
2 | Et3N (50) | CH2Cl2 | r.t. | 120 | 0 | ||||||||||||||
3 | Ph3P (50) | CH2Cl2 | r.t. | 120 | 0 | ||||||||||||||
4 | KOH (50) | CH2Cl2 | r.t. | 16 | 76 | ||||||||||||||
5 | NaOH (50) | CH2Cl2 | r.t. | 24 | 83 | ||||||||||||||
6 | NaOH (100) | CH2Cl2 | r.t. | 6 | 84 | ||||||||||||||
7 | NaOH (10) | CH2Cl2 | r.t. | 48 | 81 | ||||||||||||||
8 | NaOH (10) | CH2Cl2 | 0 | 72 | trace | ||||||||||||||
9 | NaOH (10) | CH2Cl2 | 40 | 2 | 86 | ||||||||||||||
10 | NaOH (10) | acetone | 55 | 40 min | 70 | ||||||||||||||
11 | NaOH (10) | toluene | 60 | 40 min | 68 | ||||||||||||||
12 | NaOH (10) | EtOAc | 60 | 3 | 51 | ||||||||||||||
13 | NaOH (10) | THF | 60 | 1 | 69 | ||||||||||||||
14 | NaOH (10) | Et2O | 35 | 50 min | 89 | ||||||||||||||
| |||||||||||||||||||
a Yield after
purification by silica gel column chromatography. |
We started our studies with the reaction of 1-phenylhex-2-yn-1-one (1a) with N-(diphenylmethylene)glycinate (2a) in the presence of cesium carbonate (50 mol%) in dichloromethane at room temperature for five days. To our surprise, 3-(diphenylmethyleneamino)-6-phenyl-4-propyl-2H-pyran-2-one (3a) was isolated from the reaction mixture. This compound was satisfactorily characterized by NMR and MS analysis. This metal-free base-catalyzed process thus generates a 3-amino-2-pyrone derivative that is difficult to construct using other methods. This prompted us to explore the feasibility of constructing 3-amino-2-pyrone derivatives using readily available alkynyl ketones and N-(diphenylmethylene)glycinates. To this end, we then carried out the reaction under various conditions in order to optimize the catalyst and reaction conditions; the results are shown in Table [¹] . It was found that the nature of the base was critical to the success of the reaction (Table [¹] , entries 1-4). Among the catalysts tested, sodium hydroxide was found to be the best choice. The amount of sodium hydroxide employed had a significance effect on the reaction rate, but no obvious effect on the yield (Table [¹] , entries 4-6). The effect of higher temperatures was found to be beneficial not only to the reaction rate but also for the yield of 3a (Table [¹] , entries 6-8). When the reaction was carried out at 0 ˚C, only trace amounts of product were obtained even after a prolonged reaction time (72 h). The choice of solvent also had an effect on the reaction; performing the reactions in acetone, toluene, ethyl acetate or tetrahydrofuran afforded the target product in good yields. It was interesting to observe that, when the same reaction was performed in diethyl ether at 35 ˚C, compound 3a was obtained in excellent yield after 50 minutes. Thus, the optimal reaction conditions for this reaction were determined to be: 10 mol% sodium hydroxide as base catalyst in diethyl ether at 35 ˚C.

Scheme 2

Scheme 3
With these results in hand, several derivatives of glycine esters were synthesized and tested under the reaction conditions (Table [²] ). Methyl and ethyl glycine derivatives gave the expected products in similar yields, whereas the corresponding bulky tert-butyl ester afforded the desired product 3a in lower yield. A variety of electron-deficient alkynes were then submitted to the reaction; these results are summarized in Table [²] . It was observed that all of the reactions proceeded smoothly under the optimized conditions, to afford the corresponding products with moderate to excellent yields. The results show the scope of the reaction with respect to a range of aromatic and aliphatic alkyne ketones. Aromatic alkyne ketones show higher reactivity in the reaction than the aliphatic alkyne ketones. The substituents on the phenyl ring of the aromatic acetylenic ketones have no obvious effect on the yields of the reactions. For example, the reaction of 1-(4-chlorophenyl)hex-2-yn-1-one or 1-(4-methoxyphenyl)hex-2-yn-1-one, under the conditions described, gave the corresponding products 3c and 3j in 90% and 96% yields, respectively.

Scheme 4 Possible mechanism for the formation of 3-amino-2-pyrone derivatives 3
When methyl propiolate [¹6] and dimethyl but-2-ynedioate were submitted to the reaction conditions, the reaction proceeded smoothly at 35 ˚C in two hours to afford the corresponding α,β-dehydroamino acids in good yields (Scheme [³] ).
A plausible mechanism to account for the formation of the 3-amino-2-pyrone derivatives 3 is presented in Scheme [4] as follows: [¹7] Sodium hydroxide deprotonates the active methylene proton of the benzophenone Schiff base derivative of glycine ester 2 to generate intermediate 6. The intermediate 6 then undergoes conjugate addition to the electron-deficient alkyne to give 7, followed by proton transfer to give compound 8. The intermediate 8 would undergo carbon-carbon double bond migration and the subsequent cyclization would give the product 3-amino-2-pyrone derivatives 3.
In summary, we have developed an efficient methodology for the synthesis of 3-amino-2-pyrone derivatives 3 from simple and commercially available starting materials. High yields of α,β-dehydroamino acids were obtained when ethyl propynoate and dimethyl but-2-ynedioate were submitted to the reaction. Efforts are currently underway in our laboratories to reveal the biological activities of 3-amino-2-pyrone derivatives 3 and to develop their synthetic applications.
All reactions were performed in anhydrous solvents under an argon atmosphere. THF, Et2O, and toluene were distilled from K and Na metal, respectively. CH2Cl2, EtOAc and acetone were distilled from CaH2. PE refers to petroleum ether (boiling range 60-90 ˚C). Acetylenic ketones [¹8] and N-(diphenylmethylene)glycinates [¹9] were prepared following known procedures. Methyl propiolate and dimethyl but-2-ynedioate are commercially available. Reaction progress was monitored using thin layer chromatography (TLC) on precoated Merck silica gel Kiese gel 60 F254 plates; the spots were visualized under UV light (254 nm). Flash chromatography was conducted with silica gel 230-400 mesh. The IR spectra were measured on a Jasco FT/IR-430 spectrophotometer. ¹H and ¹³C NMR spectra were recorded in CDCl3 using a Bruker Avance 300 spectrometer. Chemical shifts (δ, ppm) were determined with TMS as the internal reference; J values are given in Hz. GC-MS spectra were obtained on a Fisons 8000 Trio instrument at an ionization potential of 70 eV. High-resolution mass spectra (HRMS) were recorded on a Shimadzu LC-IT-TOF/MS instrument.
Reaction of 1-Phenylhex-2-yn-1-one (1) with N -(Diphenylmethylene)glycinate 2; General Procedure
A mixture of the benzophenone Schiff base derivative of glycine ethyl ester (0.2 mmol), alkynyl ketone (0.3 mmol), and NaOH (0.02 mmol) in Et2O (2 mL) under argon, was heated to 35 ˚C with stirring. When the reaction was complete (monitored by TLC), the solvent was evaporated and the crude product was purified by flash chromatography on silica gel (PE-EtOAc, 10:1→5:1), to afford the corresponding pure product.
3-(Diphenylmethyleneamino)-6-phenyl-4-propyl-2 H -pyran-2-one (3a)
Yellow oil.
IR (KBr): 2924, 1707, 1633, 1504, 1447, 693 cm-¹.
¹H NMR (300 MHz, CDCl3): δ = 7.73-7.71 (m, 4 H), 7.49-7.25 (m, 11 H), 6.51 (s, 1 H), 2.38 (t, J = 7.8 Hz, 2 H), 1.62-1.59 (m, 2 H), 1.01 (t, J = 7.2 Hz, 3 H).
¹³C NMR (75 MHz, CDCl3): δ = 172.2, 157.5, 154.0, 140.4, 138.6, 137.1, 133.7, 131.6, 131.2, 129.8, 129.7, 129.3, 128.8, 128.2, 128.1, 127.9, 124.9, 103.6, 33.1, 20.9, 14.1.
MS (70 eV): m/z = 393 [M+].
HRMS (ESI): m/z [M+] calcd for C27H23NO2: 393.1729; found: 393.1732.
3-(Diphenylmethyleneamino)-6-(4-fluorophenyl)-4-pentyl-2 H -pyran-2-one (3b)
Yellow oil.
IR (KBr): 2928, 1711, 1635, 1508, 1446, 835, 696 cm-¹.
¹H NMR (300 MHz, CDCl3): δ = 7.78-7.67 (m, 4 H), 7.48-7.24 (m, 8 H), 7.24-7.03 (m, 2 H), 2.37 (t, J = 6.9 Hz, 2 H), 1.58-1.51 (m, 2 H), 1.34-1.24 (m, 4 H), 0.91 (t, J = 7.2 Hz, 3 H).
¹³C NMR (75 MHz, CDCl3): δ = 172.4, 165.3, 157.5, 153.2, 140.6, 138.7, 137.2, 133.5, 131.3, 129.8, 129.4, 128.2, 128.1, 128.0, 127.9, 127.1, 116.1, 103.4, 31.8, 31.2, 29.8, 27.3, 22.6, 14.0.
MS (70 eV): m/z = 439 [M+].
HRMS (ESI): m/z [M + H]+ calcd for C29H26FNO2: 440.2020; found: 440.2021.
6-(4-Chlorophenyl)-3-(diphenylmethyleneamino)-4-propyl-2 H -pyran-2-one (3c)
Yellow oil.
IR (KBr): 2930, 1710, 1634, 1575, 1446, 695 cm-¹.
¹H NMR (300 MHz, CDCl3): δ = 7.78 (d, J = 7.5 Hz, 2 H), 7.65 (d, J = 8.1 Hz, 2 H), 7.50-7.24 (m, 10 H), 6.46 (s, 1 H), 2.37 (t, J = 7.5 Hz, 2 H), 1.64-1.52 (m, 2 H), 1.00 (t, J = 7.2 Hz, 3 H).
¹³C NMR (75 MHz, CDCl3): δ = 172.4, 157.3, 152.9, 140.3, 138.6, 137.1, 135.7, 133.9, 131.3, 130.2, 130.1, 129.8, 129.4, 129.0, 128.2, 127.9, 126.2, 103.9, 33.2, 20.9, 14.2.
MS (70 eV): m/z = 427 [M+].
HRMS (ESI): m/z [M + H]+ calcd for C27H22ClNO2: 428.1412; found: 428.1414.
6-(4-Bromophenyl)-3-(diphenylmethyleneamino)-4-propyl-2 H -pyran-2-one (3d)
Yellow oil.
IR (KBr): 2916, 1708, 1634, 1568, 1486, 697 cm-¹.
¹H NMR (300 MHz, CDCl3): δ = 7.78 (d, J = 7.5 Hz, 2 H), 7.59 (d, J = 8.7 Hz, 2 H), 7.51 (d, J = 8.4 Hz, 2 H), 7.46-7.24 (m, 8 H), 6.47 (s, 1 H), 2.37 (t, J = 7.5 Hz, 2 H), 1.64-1.50 (m, 2 H), 1.00 (t, J = 7.2 Hz, 3 H).
¹³C NMR (75 MHz, CDCl3): δ = 172.3, 157.2, 152.9, 140.2, 138.6, 137.1, 134.0, 132.0, 131.8, 131.3, 130.6, 129.8, 129.4, 128.2, 127.9, 126.3, 124.0, 103.9, 33.1, 20.9, 14.2.
MS (70 eV): m/z = 473 [M+].
HRMS (ESI): m/z [M + H]+ calcd for C27H22BrNO2: 472.0907; found: 472.0901.
3-(Diphenylmethyleneamino)-6-(4-nitrophenyl)-4-propyl-2 H -pyran-2-one (3e)
Yellow oil.
IR (KBr): 2930, 1711, 1637, 1595, 1518, 1446, 694 cm-¹.
¹H NMR (300 MHz, CDCl3): δ = 8.24 (d, J = 9.0 Hz, 2 H), 7.87 (d, J = 9.0 Hz, 2 H), 7.78 (d, J = 8.4 Hz, 2 H), 7.58-7.24 (m, 8 H), 6.65 (s, 1 H), 2.41 (t, J = 7.2 Hz, 2 H), 1.64-1.57 (m, 2 H), 1.02 (t, J = 7.2 Hz, 3 H).
¹³C NMR (75 MHz, CDCl3): δ = 172.5, 156.8, 151.0, 147.9, 139.5, 138.3, 137.3, 135.4, 131.5, 129.5, 128.2, 127.8, 125.4, 124.1, 106.6, 33.1, 20.9, 14.1.
MS (70 eV): m/z = 438 [M+].
HRMS (ESI): m/z [M + H]+ calcd for C27H22N2O4: 439.1652; found: 439.1658.
3-(Diphenylmethyleneamino)-4-propyl-6-[4-(trifluoromethyl)phenyl]-2 H -pyran-2-one (3f)
Yellow oil.
IR (KBr): 2962, 1712, 1637, 1614, 1577, 1446, 696 cm-¹.
¹H NMR (300 MHz, CDCl3): δ = 7.83-7.86 (m, 4 H), 7.63 (d, J = 8.4 Hz, 2 H), 7.49-7.24 (m, 8 H), 6.57 (s, 1 H), 2.39 (t, J = 7.5 Hz, 2 H), 1.63-1.54 (m, 2 H), 1.01 (t, J = 7.2 Hz, 3 H).
¹³C NMR (75 MHz, CDCl3): δ = 172.5, 157.1, 152.2, 139.9, 138.5, 137.1, 134.9, 131.5, 130.1, 129.9, 129.5, 129.0, 128.2, 127.9, 125.9, 125.8, 125.1, 105.2, 33.2, 20.9, 14.2.
MS (70 eV): m/z = 461 [M+].
HRMS (ESI): m/z [M + H]+ calcd for C28H22F3NO2: 462.1675; found: 462.1674.
3-(Diphenylmethyleneamino)-4-propyl-6-[2-(trifluoromethyl)phenyl]-2 H -pyran-2-one (3g)
Yellow oil.
IR (KBr): 2962, 1714, 1643, 1577, 1447, 696 cm-¹.
¹H NMR (300 MHz, CDCl3): δ = 7.81 (d, J = 7.2 Hz, 2 H), 7.71 (d, J = 7.5 Hz, 2 H), 7.55-7.24 (m, 10 H), 6.18 (s, 1 H), 2.36 (t, J = 7.5 Hz, 2 H), 1.59-1.52 (m, 2 H), 0.98 (t, J = 7.5 Hz, 3 H).
¹³C NMR (75 MHz, CDCl3): δ = 172.4, 157.4, 152.4, 139.6, 138.6, 136.9, 134.3, 131.7, 131.3, 131.0, 129.8, 129.7, 129.4, 128.2, 128.1, 128.0, 126.8, 126.4, 125.8, 108.4, 32.9, 20.7, 14.0.
MS (70 eV): m/z = 461 [M+].
HRMS (ESI): m/z [M + H]+ calcd for C28H22F3NO2: 462.1675; found: 462.1672.
3-(Diphenylmethyleneamino)-4-propyl-6- p -tolyl-2 H -pyran-2-one (3h)
Yellow oil.
IR (KBr): 2961, 1708, 1633, 1596, 1574, 695 cm-¹.
¹H NMR (300 MHz, CDCl3): δ = 7.78 (d, J = 7.2 Hz, 2 H), 7.62 (d, J = 8.1 Hz, 2 H), 7.50-7.27 (m, 8 H), 7.18 (d, J = 8.1 Hz, 2 H), 6.45 (s, 1 H), 2.37-2.32 (m, 5 H), 1.62-1.54 (m, 2 H), 1.00 (t, J = 7.5 Hz, 3 H).
¹³C NMR (75 MHz, CDCl3): δ = 171.1, 156.5, 153.2, 139.5, 138.9, 137.6, 132.2, 130.1, 128.7, 128.2, 127.8, 127.0, 126.9, 126.8, 123.7, 101.8, 32.1, 20.3, 19.8, 13.1.
MS (70 eV): m/z = 407 [M+].
HRMS (ESI): m/z [M + H]+ calcd for C28H25NO2: 408.1958; found: 408.1958.
3-(Diphenylmethyleneamino)-6-(4-methoxyphenyl)-4-propyl-2 H -pyran-2-one (3i)
Yellow oil.
IR (KBr): 2932, 1705, 1633, 1607, 1575, 697 cm-¹.
¹H NMR (300 MHz, CDCl3): δ = 7.80 (d, J = 7.2 Hz, 2 H), 7.69 (d, J = 8.7 Hz, 2 H), 7.51-7.28 (m, 8 H), 6.92 (d, J = 8.7 Hz, 2 H), 6.39 (s, 1 H), 3.84 (s, 3 H), 2.38 (t, J = 7.5 Hz, 2 H), 1.66-1.52 (m, 2 H), 1.01 (t, J = 7.5 Hz, 3 H).
¹³C NMR (75 MHz, CDCl3): δ = 172.1, 160.9, 157.6, 154.3, 141.0, 138.8, 137.2, 132.7, 131.2, 129.7, 129.3, 129,1, 128.1, 127.9, 126.5, 124.4, 114.2, 102.1, 55.4, 33.2, 20.9, 14.2.
MS (70 eV): m/z = 423 [M+].
HRMS (ESI): m/z [M + H]+ calcd for C28H25NO3: 424.1907; found: 424.1905.
3-(Diphenylmethyleneamino)-6-(naphthalen-1-yl)-4-propyl-2 H -pyran-2-one (3j)
Yellow oil.
IR (KBr): 2929, 1709, 1636, 1595, 1575, 696 cm-¹.
¹H NMR (300 MHz, CDCl3): δ = 8.07 (m, 1 H), 7.90-7.83 (m, 4 H), 7.63-7.61 (m, 1 H), 7.55-7.65 (m, 11 H), 6.37 (s, 1 H), 2.45 (t, J = 7.5 Hz, 2 H), 1.66-1.59 (m, 2 H), 1.04 (t, J = 7.2 Hz, 3 H).
¹³C NMR (75 MHz, CDCl3): δ = 172.4, 158.0, 155.2, 140.3, 137.2, 133.8, 131.3, 130.5, 130.4, 129.8, 129.4, 128.6, 128.3, 128.2, 128.0, 127.4, 127.1, 126.9, 126.2, 125.1, 125.0, 108.8, 104.1, 33.2, 20.9, 14.2.
MS (70 eV): m/z = 443 [M+].
HRMS (ESI): m/z [M + H]+ calcd for C31H25NO2: 444.1958; found: 444.1956.
3-(Diphenylmethyleneamino)-4,6-dipropyl-2 H -pyran-2-one (3k)
Yellow oil.
IR (KBr): 2932, 1712, 1645, 696 cm-¹.
¹H NMR (300 MHz, CDCl3): δ = 7.77 (d, J = 7.2 Hz, 2 H), 7.46-7.24 (m, 8 H), 5.76 (s, 1 H), 2.36 (t, J = 7.2 Hz, 2 H), 2.26 (t, J = 7.5 Hz, 2 H), 1.63-1.54 (m, 4 H), 0.95 (t, J = 7.5 Hz, 3 H), 0.90 (t, J = 7.2 Hz, 3 H).
¹³C NMR (75 MHz, CDCl3): δ = 171.0, 157.7, 157.5, 139.1, 137.6, 136.0, 131.3, 130.0, 128.6, 128.1, 127.0, 126.9, 126.8, 103.7, 34.0, 31.7, 19.6, 19.2, 13.0, 12.2.
MS (70 eV): m/z = 359 [M+].
HRMS (ESI): m/z [M+] calcd for C24H25NO2: 359.1885; found: 359.1883.
3-(Diphenylmethyleneamino)-6-phenethyl-4-propyl-2 H -pyran-2-one (3l)
Yellow oil.
IR (KBr): 2930, 1704, 1648, 1600, 1556, 699 cm-¹.
¹H NMR (300 MHz, CDCl3): δ = 7.77 (d, J = 7.2 Hz, 2 H), 7.49-7.31 (m, 6 H), 7.25-7.14 (m, 5 H), 7.05 (d, J = 7.8 Hz, 2 H), 5.61 (s, 1 H), 2.90 (t, J = 7.5 Hz, 2 H), 2.67 (t, J = 7.5 Hz, 2 H), 2.20 (t, J = 7.5 Hz, 2 H), 1.47-1.37 (m, 2 H), 0.89 (t, J = 7.2 Hz, 3 H).
¹³C NMR (75 MHz, CDCl3): δ = 172.3, 158.5, 157.4, 140.3, 140.1, 138.8, 137.2, 132.6, 131.2, 129.7, 128.5, 128.3, 128.2, 128.0, 127.9, 126.3, 105.6, 35.4, 33.4, 32.8, 20.7, 14.1.
MS (70 eV): m/z = 421 [M+].
HRMS (ESI): m/z [M+] calcd for C29H27NO2: 421.2042; found: 421.2039.
( Z )-1-Ethyl 5-Methyl 2-(Diphenylmethyleneamino)pent-2-enedioate (5a) [¹6]
Pale-yellow oil.
IR (KBr): 2961, 1735, 1717, 1262, 1097, 695 cm-¹.
¹H NMR (300 MHz, CDCl3): δ = 7.59 (d, J = 7.2 Hz, 2 H), 7.35-7.23 (m, 6 H), 7.09-7.01 (m, 2 H), 6.11 (d, J = 7.2 Hz, 1 H), 3.93 (q, J = 6.9 Hz, 2 H), 3.53 (s, 3 H), 3.03 (d, J = 6.9 Hz, 2 H), 1.04 (t, J = 7.2 Hz, 3 H).
MS (70 eV): m/z = 351 [M+].
HRMS (ESI): m/z [M+] calcd for C21H21NO4: 351.1471; found: 351.1473.
( Z )-1-Ethyl 2,3-Dimethyl 1-(Diphenylmethyleneamino)prop-1-ene-1,2,3-tricarboxylate (5b)
Pale-yellow oil.
IR (KBr): 2951, 1737, 1720, 1272, 1089, 698 cm-¹.
¹H NMR (300 MHz, CDCl3): δ = 7.59 (d, J = 7.2 Hz, 2 H), 7.48-7.37 (m, 8 H), 4.01 (q, J = 6.9 Hz, 2 H), 3.67 (s, 3 H), 3.56 (s, 3 H), 3.27 (s, 2 H), 1.16 (t, J = 7.2 Hz, 3 H).
¹³C NMR (75 MHz, CDCl3): δ = 171.7, 170.7, 166.8, 165.3, 150.4, 131.1, 129.7, 128.3, 128.2, 111.5, 61.8, 52.1, 52.0, 33.1, 13.8.
MS (70 eV): m/z = 409 [M+].
HRMS (ESI): m/z [M+] calcd for C23H23NO6: 409.1525; found: 409.1523.
- 1a
Dickinson JM. Nat. Prod. Rep. 1993, 10: 71 - 1b
McGlacken GP.Fairlamb IJS. Nat. Prod. Rep. 2005, 22: 369 - 2
Vara Prasad JVN.Para KS.Lunney EA.Ortwine DF.Dunbar JB.Ferguson D.Tummino PJ.Hupe D.Tait BD.Domagala JM.Humblet C.Bhat TN.Liu B.Guerin DAM.Baldwin ET.Erickson JW.Sawyer TK. J. Am. Chem. Soc. 1994, 116: 6989 - 3
Kanai A.Kamino T.Kuramochi K.Kobayashi S. Org. Lett. 2003, 5: 2837 - 4a
Barrero AF.Oltra JE.Herrador MM.Sanchez JF.Quilez JF.Rojas FJ.Reyes JF. Tetrahedron 1993, 49: 141 - 4b
Abraham WR.Arfmann H. Phytochemistry 1988, 27: 3310 - 5a
Evidente A.Cabras A.Maddau L.Serra S.Andolfi A.Motta A. J. Agric. Food Chem. 2003, 51: 6957 - 5b
Simon A.Dunlop RW.Ghisalberti EL.Sivasithamparam K. Soil Biol. Biochem. 1988, 20: 263 - 5c
Claydon N.Asllan M.Hanson JR.Avent AG. Trans. Br. Mycol. Soc. 1987, 88: 503 - 5d
Cutler HG.Cox RH.Crumley FG.Cole PO. Agric. Biol. Chem. 1986, 50: 2943 - 6
Chen KK.Kovarikova AJ. J. Pharm. Sci. 1967, 56: 1535 - 7
Shi X.Leal WS.Liu Z.Schrader E.Meinwald J. Tetrahedron Lett. 1995, 36: 71 - 8
Schlingmann G.Milne L.Carter GT. Tetrahedron 1998, 54: 13013 - 9
Sato H.Konoma K.Sakamura S. Agric. Biol. Chem. 1981, 45: 1675 - 10a
Afarinkia K.Vinader V.Nelson TD.Posner GH. Tetrahedron 1992, 48: 9111 - 10b
Kvita V.Fischer W. Chimia 1993, 47: 3 - 10c
Afarinkia K.Berna-Canovas J. Tetrahedron Lett. 2000, 41: 4955 - 10d
Okamura H.Shimizu H.Nakamura Y.Iwagawa T.Nakatani M. Tetrahedron Lett. 2000, 41: 4147 - 10e
Yao S.Roberson M.Reichel F.Hazell RG.Jorgensen KA. J. Org. Chem. 1999, 64: 6677 - 10f
Stigers KD.Mar-Tang R.Bartlett PA. J. Org. Chem. 1999, 64: 8409 - 10g
Kotretsou SI.Georgiadis MP. Org. Prep. Proced. Int. 2000, 32: 161 - 10h
Larock RC.Doty MJ.Han X. J. Org. Chem. 1999, 64: 8770 - 10i
Bodwell G.Pi Z.Potti IR. Synlett 1999, 477 - 10j
Liebeskind LS.Wang J. Tetrahedron 1993, 49: 5461 - 11a
Komiyama T.Takaguchi Y.Tsuboi S. Tetrahedron Lett. 2004, 45: 6299 - 11b
Sheibani H.Islami MR.Khabazzadeh H.Saidi K. Tetrahedron 2004, 60: 5931 - 11c
Ma S.Yu S.Yin S. J. Org. Chem. 2003, 68: 8996 - 11d
Yao T.Larock RC. J. Org. Chem. 2003, 68: 5936 - 11e
Biagetti M.Bellina F.Carpita A.Rossi R. Tetrahedron Lett. 2003, 44: 607 - 11f
Anastasia L.Xu C.Negishi E. Tetrahedron Lett. 2002, 43: 5673 - 11g
Kotretsou SI.Georgiadis MP. Org. Prep. Proced. Int. 2000, 32: 161 - 11h
Tidwell TT.Sammtleben F.Christl M. J. Chem. Soc., Perkin Trans. 1 1998, 2031 - 11i
Kepe V.Polanc S.Kocevar M. Heterocycles 1998, 48: 671 - 11j
Dubuffet T.Cimetiere B.Lavielle G. Synth. Commun. 1997, 27: 1123 - 11k
Svete J.Cadez Z.Stanovnik B.Tisler M. Synthesis 1990, 70 - 11l
Dieter RK.Fishpaugh JR. J. Org. Chem. 1988, 53: 2031 - 11m
Takata T.Tajima R.Ando W. Chem. Lett. 1985, 665 - 11n
Ishibe N.Yutaka S. J. Org. Chem. 1978, 43: 2138 - 11o
Bélanger A.Brassard P. Can. J. Chem. 1975, 53: 195 - 11p
Izumi T.Kasahara A. Bull. Chem. Soc. Jpn. 1975, 48: 1673 - 11q
Pittet AO.Klaiber EM. J. Agric. Food Chem. 1975, 23: 1189 - 11r
Ho TL.Hall TW.Wong CM. Synth. Commun. 1973, 3: 79 - 11s
Hayasi Y.Nozaki H. Tetrahedron 1971, 27: 3085 - 11t
Jacobs TL.Dankner D.Dankner AR. J. Am. Chem. Soc. 1958, 80: 864 - 12a
Rousset S.Abarbi M.Thibonnet J.Parrain J.Duchêne A. Tetrahedron Lett. 2003, 44: 7633 - 12b
Louie J.Gibby JE.Farnworth MV.Tekavec TN. J. Am. Chem. Soc. 2002, 124: 15188 - 12c
Thibonnet J.Abarbi M.Parrain J.Duchêne A. J. Org. Chem. 2002, 67: 3941 - 12d
Rossi R.Bellina F.Biagetti M.Catanese A.Mannina L. Tetrahedron Lett. 2000, 41: 5281 - 12e
Larock RC.Doty MJ.Han X. J. Org. Chem. 1999, 64: 8770 - 12f
Ogawa Y.Maruno M.Wakamatsu T. Heterocycles 1995, 41: 2587 - 12g
Liebeskind LS.Wang J. Tetrahedron 1993, 49: 5461 - 12h
Tsuda T.Morikawa S.Saegusa T. J. Chem. Soc., Chem. Commun. 1989, 9 - 12i
Cho SK.Liebskind LS. J. Org. Chem. 1987, 52: 2631 - 12j
Henry W.Hughes RP. J. Am. Chem. Soc. 1986, 108: 7862 - 12k
Inoue Y.Itoh Y.Kazama H.Hashimoto H. Bull. Chem. Soc. Jpn. 1980, 53: 3329 - 13
Ma S.Yin S.Li L.Tao F. Org. Lett. 2002, 4: 505 - 14
Zhu X.-F.Schaffner A.-P.Li RC.Kwon O. Org. Lett. 2005, 7: 2977 - 15
Zhou Q.-F.Wu Q.-P.Xue S. Tetrahedron Lett. 2008, 49: 7027 - 16a
Alvarez-Ibarra C.Csaky AG.Ortega EM.de la Morena MJ.Quiroga ML. Tetrahedron Lett. 1997, 38: 4501 - 16b
Alvarez-Ibarra C.Csaky AG.de la Oliva CG.Rodriguez E. Tetrahedron Lett. 2001, 42: 2129 - 17
Ma S.Yu S.Yin S. J. Org. Chem. 2003, 68: 8996 - 18
Van den Hoven B. G.El Ali B.Alper H. J. Org. Chem. 2000, 65: 4131 - 19
O’Donell M. J.Polt R. L. J. Org. Chem. 1982, 47: 2663
References
- 1a
Dickinson JM. Nat. Prod. Rep. 1993, 10: 71 - 1b
McGlacken GP.Fairlamb IJS. Nat. Prod. Rep. 2005, 22: 369 - 2
Vara Prasad JVN.Para KS.Lunney EA.Ortwine DF.Dunbar JB.Ferguson D.Tummino PJ.Hupe D.Tait BD.Domagala JM.Humblet C.Bhat TN.Liu B.Guerin DAM.Baldwin ET.Erickson JW.Sawyer TK. J. Am. Chem. Soc. 1994, 116: 6989 - 3
Kanai A.Kamino T.Kuramochi K.Kobayashi S. Org. Lett. 2003, 5: 2837 - 4a
Barrero AF.Oltra JE.Herrador MM.Sanchez JF.Quilez JF.Rojas FJ.Reyes JF. Tetrahedron 1993, 49: 141 - 4b
Abraham WR.Arfmann H. Phytochemistry 1988, 27: 3310 - 5a
Evidente A.Cabras A.Maddau L.Serra S.Andolfi A.Motta A. J. Agric. Food Chem. 2003, 51: 6957 - 5b
Simon A.Dunlop RW.Ghisalberti EL.Sivasithamparam K. Soil Biol. Biochem. 1988, 20: 263 - 5c
Claydon N.Asllan M.Hanson JR.Avent AG. Trans. Br. Mycol. Soc. 1987, 88: 503 - 5d
Cutler HG.Cox RH.Crumley FG.Cole PO. Agric. Biol. Chem. 1986, 50: 2943 - 6
Chen KK.Kovarikova AJ. J. Pharm. Sci. 1967, 56: 1535 - 7
Shi X.Leal WS.Liu Z.Schrader E.Meinwald J. Tetrahedron Lett. 1995, 36: 71 - 8
Schlingmann G.Milne L.Carter GT. Tetrahedron 1998, 54: 13013 - 9
Sato H.Konoma K.Sakamura S. Agric. Biol. Chem. 1981, 45: 1675 - 10a
Afarinkia K.Vinader V.Nelson TD.Posner GH. Tetrahedron 1992, 48: 9111 - 10b
Kvita V.Fischer W. Chimia 1993, 47: 3 - 10c
Afarinkia K.Berna-Canovas J. Tetrahedron Lett. 2000, 41: 4955 - 10d
Okamura H.Shimizu H.Nakamura Y.Iwagawa T.Nakatani M. Tetrahedron Lett. 2000, 41: 4147 - 10e
Yao S.Roberson M.Reichel F.Hazell RG.Jorgensen KA. J. Org. Chem. 1999, 64: 6677 - 10f
Stigers KD.Mar-Tang R.Bartlett PA. J. Org. Chem. 1999, 64: 8409 - 10g
Kotretsou SI.Georgiadis MP. Org. Prep. Proced. Int. 2000, 32: 161 - 10h
Larock RC.Doty MJ.Han X. J. Org. Chem. 1999, 64: 8770 - 10i
Bodwell G.Pi Z.Potti IR. Synlett 1999, 477 - 10j
Liebeskind LS.Wang J. Tetrahedron 1993, 49: 5461 - 11a
Komiyama T.Takaguchi Y.Tsuboi S. Tetrahedron Lett. 2004, 45: 6299 - 11b
Sheibani H.Islami MR.Khabazzadeh H.Saidi K. Tetrahedron 2004, 60: 5931 - 11c
Ma S.Yu S.Yin S. J. Org. Chem. 2003, 68: 8996 - 11d
Yao T.Larock RC. J. Org. Chem. 2003, 68: 5936 - 11e
Biagetti M.Bellina F.Carpita A.Rossi R. Tetrahedron Lett. 2003, 44: 607 - 11f
Anastasia L.Xu C.Negishi E. Tetrahedron Lett. 2002, 43: 5673 - 11g
Kotretsou SI.Georgiadis MP. Org. Prep. Proced. Int. 2000, 32: 161 - 11h
Tidwell TT.Sammtleben F.Christl M. J. Chem. Soc., Perkin Trans. 1 1998, 2031 - 11i
Kepe V.Polanc S.Kocevar M. Heterocycles 1998, 48: 671 - 11j
Dubuffet T.Cimetiere B.Lavielle G. Synth. Commun. 1997, 27: 1123 - 11k
Svete J.Cadez Z.Stanovnik B.Tisler M. Synthesis 1990, 70 - 11l
Dieter RK.Fishpaugh JR. J. Org. Chem. 1988, 53: 2031 - 11m
Takata T.Tajima R.Ando W. Chem. Lett. 1985, 665 - 11n
Ishibe N.Yutaka S. J. Org. Chem. 1978, 43: 2138 - 11o
Bélanger A.Brassard P. Can. J. Chem. 1975, 53: 195 - 11p
Izumi T.Kasahara A. Bull. Chem. Soc. Jpn. 1975, 48: 1673 - 11q
Pittet AO.Klaiber EM. J. Agric. Food Chem. 1975, 23: 1189 - 11r
Ho TL.Hall TW.Wong CM. Synth. Commun. 1973, 3: 79 - 11s
Hayasi Y.Nozaki H. Tetrahedron 1971, 27: 3085 - 11t
Jacobs TL.Dankner D.Dankner AR. J. Am. Chem. Soc. 1958, 80: 864 - 12a
Rousset S.Abarbi M.Thibonnet J.Parrain J.Duchêne A. Tetrahedron Lett. 2003, 44: 7633 - 12b
Louie J.Gibby JE.Farnworth MV.Tekavec TN. J. Am. Chem. Soc. 2002, 124: 15188 - 12c
Thibonnet J.Abarbi M.Parrain J.Duchêne A. J. Org. Chem. 2002, 67: 3941 - 12d
Rossi R.Bellina F.Biagetti M.Catanese A.Mannina L. Tetrahedron Lett. 2000, 41: 5281 - 12e
Larock RC.Doty MJ.Han X. J. Org. Chem. 1999, 64: 8770 - 12f
Ogawa Y.Maruno M.Wakamatsu T. Heterocycles 1995, 41: 2587 - 12g
Liebeskind LS.Wang J. Tetrahedron 1993, 49: 5461 - 12h
Tsuda T.Morikawa S.Saegusa T. J. Chem. Soc., Chem. Commun. 1989, 9 - 12i
Cho SK.Liebskind LS. J. Org. Chem. 1987, 52: 2631 - 12j
Henry W.Hughes RP. J. Am. Chem. Soc. 1986, 108: 7862 - 12k
Inoue Y.Itoh Y.Kazama H.Hashimoto H. Bull. Chem. Soc. Jpn. 1980, 53: 3329 - 13
Ma S.Yin S.Li L.Tao F. Org. Lett. 2002, 4: 505 - 14
Zhu X.-F.Schaffner A.-P.Li RC.Kwon O. Org. Lett. 2005, 7: 2977 - 15
Zhou Q.-F.Wu Q.-P.Xue S. Tetrahedron Lett. 2008, 49: 7027 - 16a
Alvarez-Ibarra C.Csaky AG.Ortega EM.de la Morena MJ.Quiroga ML. Tetrahedron Lett. 1997, 38: 4501 - 16b
Alvarez-Ibarra C.Csaky AG.de la Oliva CG.Rodriguez E. Tetrahedron Lett. 2001, 42: 2129 - 17
Ma S.Yu S.Yin S. J. Org. Chem. 2003, 68: 8996 - 18
Van den Hoven B. G.El Ali B.Alper H. J. Org. Chem. 2000, 65: 4131 - 19
O’Donell M. J.Polt R. L. J. Org. Chem. 1982, 47: 2663
References

Scheme 1

Scheme 2


Scheme 3

Scheme 4 Possible mechanism for the formation of 3-amino-2-pyrone derivatives 3