Synthesis 2009(10): 1753-1756  
DOI: 10.1055/s-0028-1088049
PSP
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of 3,6-Dimethoxybenzene-1,2-diamine and of 4,7-Dimethoxy-2-methyl-1H-benzimidazole

Tatiana Besset, Christophe Morin*
Département de Chimie Moléculaire (CNRS, UMR-5250, ICMG FR-2607), Université Joseph Fourier, 301 rue de la chimie, BP 53, 38041 Grenoble Cedex 9, France
Fax: +33(4)76635983 ; e-Mail: Christophe.Morin@ujf-grenoble.fr;

Further Information

Publication History

Received 11 December 2008
Publication Date:
14 April 2009 (online)

Abstract

Hydrogenation of a mixture of ortho- and para-dinitro derivatives of 1,4-dimethoxybenzene in ethyl acetate under palladium catalysis, allows 3,6-dimethoxybenzene-1,2-diamine to be isolated as the sole product; this diamine is then converted into 4,7-dimethoxy-2-methyl-1H-benzimidazole, a building block for the preparation of imidazobenzo(hydro)quinones.

Scheme 1

Scheme 2 3,6-Dimethoxybenzene-1,2-diamine as a synthon

3,6-Dimethoxybenzene-1,2-diamine (1) is a synthon that has been used for the construction of aromatics, heterocycles, and quinones of both physical [¹] [²] and biological [³-5] relevance­; 1 is obtained after nitration/reduction of 1,4-dimethoxybenzene (hydroquinone dimethyl ether) (Scheme  [¹] and Scheme  [²] ). Since the first mention of this procedure, [6] [7] a dozen alternatives have been reported (Table  [¹] and Table  [²] ), which suggest that some difficulties exist in its preparation. A close look at the described procedures led us to identify several points to be addressed as this could be of some help in establishing a reliable and high-yielding synthesis of 1. An efficient preparation of benzimidazole 2, which is a building block in the synthesis of imidazobenzoquinones, [4] from 1 is also presented.

Nitration of 1,4-dimethoxybenzene has been performed using various methods and conditions to yield a mixture of ortho- 3 and para-isomers 4 (Scheme  [³] ), the proportion of which depends on the experimental conditions (Table  [¹] ). The isolation of 3 in its pure state has been effected by crystallization from ethyl acetate [³a] [6] [7] or from acetic acid, [²] [4a] but, in our hands, using either solvent and starting with batches of different compositions, the enrichment of 3 did not proceed beyond 90%. [8] [9] A chromatographic purification has also been proposed, but this necessitates large quantities of adsorbent (1 kg of silica gel for the purification of an 8 g mixture of 3/4). [4p]

Scheme 3 Preparation of 1 and 2

Table 1 Nitration of 1,4-Dimethoxybenzene
Entry Conditions Ratio 3/4 Yield (%) Ref.
 1 70% HNO3, Ac2O, 0 ˚C 45:55 95 [4p]
 2 concd HNO3, AcOH, r.t. then 70-80 ˚C -a 80 [³a]
 3 concd HNO3, AcOH, r.t. then 90 ˚C -a 80 [³c]
 4 NO2, O3, CH2Cl2, -10 ˚C 54:46 81 [¹6d]
 5 NO2BF4, DME, -50 ˚C -a 76 [¹6c]
 6 concd HNO3, Ac2O, 0 ˚C -a 70 [4f]
 7 concd HNO3, 0-5 ˚C, 24 ˚C, then reflux 88:12b 91.6 [¹6b]
 8 concd HNO3, 0 ˚C, r.t., then 90 ˚C 89:11b 89 [4h]
 9 62% HNO3, 0 ˚C, r.t., then 100 ˚C -a 90c [²]
10 concd HNO3, AcOH, r.t., 80 ˚C -a 35d [¹6e]
11 Ag0.51K0.42Na0.07NO3˙K3Fe(CN)6
(4 equiv), 160 ˚C
45:55 35 [¹6f]

a Not available.
b Ratio from ¹H NMR and/or VPC.
c Yield of 3.
d Yield of 4.

An indirect way to 1 consists of the selective reduction of 3 into 5, a compound that is easily purified, [³h] which is followed by another reduction; however, this procedure adds an extra step. All of the above results explain why most of the syntheses presented in Scheme  [²] were carried out starting with a mixture of dinitro isomers 3/4.

With regard to the reduction step to diamine 1, several methods have been proposed (Table  [²] ). Due to the ease of work-up, [¹0] catalytic hydrogenation appears to be the method of choice and it has been performed under pressure in the presence of various catalysts (Table  [²] ). As at atmospheric pressure, hydrogenation with palladium as catalyst has led to 5 and as it could be further reduced at atmospheric pressure, [³h] ‘one-pot’ conditions for full reduction to 1 were sought. Although the reduction of 3/4 at atmospheric pressure was slow (2-3 days), it could be driven to completion. [¹¹] During our search for optimal conditions, it was serendipitously discovered that, when the reduction was carried out in ethyl acetate, pure 1 could be isolated after mere filtration of the reaction mixture on Celite, followed by evaporation of the solvent. [¹²] [¹³] This avoids the indirect procedures that have been used for the isolation of 1 [³c] [g] [4a] and sets up a high-yielding trouble-free preparation (83% from a 9:1 mixture of dinitro isomers; 96% based on 3).

Table 2 Reduction of Dinitro Derivatives 3/4
Entry Substrate Conditions Yield (%) Ref.
 1 3 H2, PtO2, EtOH 40 [4a]
 2 3 H2, Raney Ni, EtOH, 50 ˚C 60 [4c]
 3 3 Sn (14.5 equiv), concd HCl, 100 ˚C 56b [¹6d]
 4 3 Sn (5.8 equiv), 12 M HCl, 100 ˚C 98a [4p]
 5 3 + 4 (40:60) Sn, 12 M HCl, reflux 98 [4j]
 6 3 + 4 (89:11) SnCl2 (9.1 equiv),
concd HCl, 90-100 ˚C
78b [4h]
 7 3 + 4 c H2 (2-3 bar), Raney Ni, MeOH 12b [³a]
 8 3 NH2NH2˙x H2O, Raney Ni 55b [4f]
 9 3 + 4 c Na2S2O4 (10 equiv),
THF-MeOH (1:1), reflux
12 [³c]
10 3 + 4 c H2 (3.45 bar), PtO2, EtOH 62b [³c]
11 3 H2 (5 bar), 10% Pd/C, EtOAc 99 [²]
12 3 + 4 c H2 (Parr apparatus), 10% Pd/C, AcOH 94b [¹6a]

a Mixture of two isomers (no ratio indicated), isolated as hydrochlorides.
b The crude product was used as such in the next step (yield is given for two steps).
c Ratio not available.

With 1 in hand, we looked for its conversion into 2, a key building block for the preparation of imidazobenzoqui­nones. [4] The synthesis of 2 is based on the general method of Phillips, [¹4] which refers to the condensation of ortho-benzenediamines with carboxylic acids. Thus, reaction of 1 with acetic acid gives 2, [4a] [j] [n] but our attempts to reproduce the described literature procedure led to impure 2 and only in fair yield. [¹5] During attempts to improve its preparation, we found that performing the reaction under argon with freshly prepared 1 and using degassed acetic acid were decisive: this led to a reliable procedure, 2 being isolated in 96% yield.

Thus the preparations of 1 and 2 are now made simple and high yielding (74% and 71% overall yields, respectively, from 1,4-dimethoxybenzene), which thus improves previous procedures.

Pd/C was purchased from Acros (palladium on activated carbon unreduced 10%; specific area: 800 m²/g; particle size distribution: 90% < 90 µm). Reactions were monitored by TLC using Al-backed silica gel plates (Merck, Kieselgel 60 PF254); TLC spots were visualized under UV light and after spraying with 5% phosphomolybdic acid-EtOH followed by heating. NMR spectra were recorded on a Bruker Avance 300.12 spectrometer operating at 300.12 MHz (¹H) and 75.47 MHz (¹³C); internal standards (δ[¹H] CHCl3 = 7.26; δ[¹³C] CDCl3 = 77.0). Elemental analyses were performed by the Service de Micro-Analyses, Département de Chimie Moléculaire, Grenoble.

1,4-Dimethoxy-2,3-dinitrobenzene (3) and 1,4-Dimethoxy-2,5-dinitrobenzene (4)

The nitration of 1,4-dimethoxybenzene was carried out according to ref. 2; crystallization (AcOH) afforded a mixture of 3 and 4 in 91:9 ratio.

ortho -Isomer 3

¹H NMR (300 MHz, CDCl3): δ = 3.92 (s, 6 H, OCH3), 7.21 (s, 2 H, H2, H3).

para -Isomer 4

¹H NMR (300 MHz, CDCl3): δ = 3.97 (s, 6 H, OCH3), 7.56 (s, 2 H, H2, H5).

3,6-Dimethoxybenzene-1,2-diamine (1)

The above mixture of 3 and 4 (4 g, 17.5 mmol) in EtOAc (80 mL) was stirred under a H2 atmosphere (balloon) in the presence of 10% Pd/C (0.4 g) until the soln became colorless (2-3 d), at which stage TLC analysis or ¹H NMR showed the absence of intermediate 5 [R f = 0.71, CH2Cl2, orange spot; ¹H NMR (300 MHz, CDCl3): δ = 3.82 (2 s, 6 H, CH3), 5.35 (br s, 2 H, NH2), 6.16 (d, J = 8.9 Hz, 1 H, H4), 6.74 (d, J = 8.9 Hz, 1 H, H5)]. After filtration over a short pad of Celite and rinsing with a small amount of EtOAc (10 mL), the volatiles were removed under reduced pressure to afford 1 as the sole product (2.44 g, 83%, 96% based on 3); 1 was flushed with argon and used immediately in the next step; mp 73-74 ˚C. [¹0]

¹H NMR (300 MHz, CDCl3): δ = 3.50 (br s, NH2), 3.81 (s, 6 H, OCH3), 6.31 (s, 2 H, H4, H5).

¹³C NMR (100 MHz, CDCl3): δ = 55.9, 100.6, 124.6, 143.1.

4,7-Dimethoxy-2-methyl-1 H -benzimidazole (2)

Argon was bubbled with stirring for 30 min through distilled AcOH (80 mL); this was then added to freshly prepared 1 (2.44 g, 12.7 mmol) and the soln was stirred under argon at 110 ˚C for 15 h; after removal of AcOH acid under reduced pressure, co-evaporation with toluene was performed twice; the residue was then washed with Et2O to afford pure 2 (2.52 g, 96%); mp 210 ˚C (dec) (EtOH) (Lit. [4a] 224-226 ˚C).

¹H NMR (300 MHz, CDCl3): δ = 2.62 (s, 3 H, 2-CH3), 3.91 (s, 6 H, OCH3), 6.54 (s, 2 H, H4, H5), 6.70 (br s, NH).

¹³C NMR (75 MHz, CDCl3): δ = 14.6, 55.9, 102.4, 129.9, 142.6, 149.4.

Anal. Calcd for C10H12N2O2: C, 62.25; H, 6.29; N, 14.58. Found: C, 61.97; H, 6.42, N, 14.78.

Acknowledgment

T.B. is grateful to the French ‘Ministère de l’Education Nationale, de la Recherche et de la Technologie’ for a doctoral fellowship.

    References

  • 1 Nishida J. Naraso MS. Fujiwara E. Tada H. Tomura M. Yamashita Y. Org. Lett.  2004,  6:  2007 
  • 2 Hammershoej P. Reenberg TK. Pittelkow M. Nielsen CB. Hammerich O. Christensen JB. Eur. J. Org. Chem.  2006,  2786 
  • 3a King FE. Clark NG. Davis PMH. J. Chem. Soc.  1949,  3012 
  • 3b Mitra GK. Pathak BC. J. Indian Chem. Soc.  1978,  55:  422 
  • 3c Shaikh IA. Johnson F. Grollman AP. J. Med. Chem.  1986,  29:  1329 
  • 3d Bock H. Dickmann P. Herrmann H.-F. Z. Naturforsch., B: Chem. Sci.  1991,  46:  326 
  • 3e Ahmad AR. Mehta LK. Parrick J. J. Chem. Soc., Perkin Trans. 1  1996,  2443 
  • 3f Bu X.-H. Liu H. Du M. Wong KM.-C. Yam VW.-W. Shionoya M. Inorg. Chem.  2001,  40:  4143 
  • 3g Lion C. Baudry R. Hedayatullah M. da Conceicao L. Genard S. Maignan J. J. Heterocycl. Chem.  2002,  39:  125 
  • 3h Morin C. Besset T. Moutet J.-C. Fayolle M. Brückner M. Limosin D. Becker K. Davioud-Charvet E. Org. Biomol. Chem.  2008,  6:  2731 
  • 4a Weinberger L. Day AR. J. Org. Chem.  1959,  24:  1451 
  • 4b Taffs KH. Posser LV. Wigton FB. Joullié MM. J. Org. Chem.  1961,  26:  462 
  • 4c Zakhs ER. Efros LR. Zh. Org. Khim.  1966,  2:  1095 
  • 4d Grinev AN. Zotova SAA. Bogdanova NS. Nikolaeva IS. Pershin GN. Khim.-Farm. Zh.  1974,  8:  5 ; Chem. Abstr. 1974, 81, 25605
  • 4e Shaikh IA. Johnson F. Grollman AP. J. Med. Chem.  1986,  29:  329 
  • 4f Narayan S. Kumar V. Pujari HK. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.  1986,  25:  267 
  • 4g Antonini I. Claudi F. Cristalli G. Franchetti P. Grifantini M. Martelli S. J. Med. Chem.  1988,  31:  260 
  • 4h Flader C. Liu J. Borch RF. J. Med. Chem.  2000,  43:  3157 
  • 4i Garuti L. Roberti M. Pession A. Leoncini E. Hrelia S. Bioorg. Med. Chem. Lett.  2001,  11:  3147 
  • 4j Alvarez F. Gherardi A. Nebois P. Sarciron M.-E. Petavy A.-F. Walchofer N. Bioorg. Med. Chem. Lett.  2002,  12:  977 
  • 4k Ryu C.-K. Song E.-H. Shim J.-Y. You H.-J. Choi KU. Choi IHK. Lee EY. Chae J. Bioorg. Med. Chem. Lett.  2003,  13:  17 
  • 4l Hong S.-Y. Chung K.-H. You H.-J. Choi IH. Chae MJ. Han SY. Jung O.-J. Kang S.-O. Ryu C.-K. Bioorg. Med. Chem. Lett.  2004,  14:  3563 
  • 4m Garuti L. Roberti M. Pizzirani D. Pession A. Leoncini E. Cenici V. Hrelia S. Farmaco  2004,  59:  663 
  • 4n O’Shaughnessy J. Aldabbagh F. Synthesis  2005,  1069 
  • 4o Lavergne O. Fernandes A.-C. Brehu L. Sidhu A. Brezak M.-C. Prevost G. Ducommun B. Contour-Galcera M.-O. Bioorg. Med. Chem. Lett.  2006,  16:  171 
  • 4p Taleb A. Alvarez F. Nebois P. Walschofer N. Heterocycl. Commun.  2006,  12:  111 
  • 4q Chung K.-W. Hong S.-Y. You H.-J. Park R.-E. Ryu C.-K. Bioorg. Med. Chem.  2006,  14:  5795 
  • 4r Ryu C.-K. Lee R.-Y. Lee S.-Y. Chung H.-J. Lee SK. Chung K.-H. Bioorg. Med. Chem. Lett.  2008,  18:  2948 
  • 4s For closely related analogues see: Newsome JF. Colucci MA. Hassani M. Beal HW. Moody CJ. Org. Biomol. Chem.  2007,  5:  3665 
  • 5a Warren JD. Lee VJ. Angier RB. J. Heterocycl. Chem.  1979,  16:  1617 
  • 5b Dzieduszycka M. Stefanska B. Martelli S. Bontemps-Gracz M. Borowski E. Eur. J. Med. Chem.  1994,  29:  561 
  • 6 Nietski R. Regberg F. Ber. Dtsch. Chem. Ges.  1890,  23:  1212 
  • 7 Kawai S. Kosaka J. Hatano M. Proc. Jpn. Acad.  1954,  30:  774 
  • 13 When the Celite pad was thoroughly washed with MeOH, 2,5-dimethoxybenzene-1,4-diamine was obtained together with minor unidentified material. The 2,5-dimethoxy­-benzene-1,4-diamine was identified spectroscopically, see: Miller SE. Lukas AS. Marsh E. Bushard P. Wasielewski MR. J. Am. Chem. Soc.  2000,  122:  7802 
  • 14 Phillips MA. J. Chem. Soc.  1928,  2393 
  • 16a Gum WF. Joullié MM. J. Org. Chem.  1967,  32:  53 
  • 16b Fisher GH. Moreno HR. Oatis JE. Schultz HP. J. Med. Chem.  1975,  18:  746 
  • 16c Dwyer CL. Holzapfel CW. Tetrahedron  1998,  54:  7843 
  • 16d Nose M. Suzuki H. Synthesis  2000,  1539 
  • 16e Wu J. Fang F. Lu W.-Y. Hou J.-L. Li C. Wu Z.-Q. Jiang X.-K. Li Z.-T. Yu Y.-H. J. Org. Chem.  2007,  72:  2897 
  • 16f Mascal M. Yin L. Edwards R. Jarosh M. J. Org. Chem.  2008,  73:  6148 
8

Ref. 7 reads that this is a co-crystallization process and that, provided there are no ‘small aggregates’, the separation of ‘rhombic plates’ from ‘long columns’ can be effected by hand.

9

The ratio of isomers is determined by relative integration in ¹H NMR spectra, for data see experimental.

10

The mp recorded for this material is in the range of literature values (68-70 ˚C,4e 75 ˚C,² 85-87 ˚C4a). Note that this material is labile: darkening with time of this electron-rich diamine has been noted previously and we found experimentally that even after minimal exposure to air, 1 became unreactive.

11

A H2-filled balloon is used, monitoring of the reaction can be performed by TLC or NMR (for data see experimental) but, most simply, it can be done by visual inspection as the mixture becomes colorless when reaction is complete.

12

Hydrogenation of a 6:4 mixture of 3 and 4 was performed under the same protocol and, here also, only diamine 1 is isolated (51% yield; 85% based on 3).

15

Impure 2 could not be freed from byproducts by crystallization or by chromatography, which furthermore led to severe losses of material.

    References

  • 1 Nishida J. Naraso MS. Fujiwara E. Tada H. Tomura M. Yamashita Y. Org. Lett.  2004,  6:  2007 
  • 2 Hammershoej P. Reenberg TK. Pittelkow M. Nielsen CB. Hammerich O. Christensen JB. Eur. J. Org. Chem.  2006,  2786 
  • 3a King FE. Clark NG. Davis PMH. J. Chem. Soc.  1949,  3012 
  • 3b Mitra GK. Pathak BC. J. Indian Chem. Soc.  1978,  55:  422 
  • 3c Shaikh IA. Johnson F. Grollman AP. J. Med. Chem.  1986,  29:  1329 
  • 3d Bock H. Dickmann P. Herrmann H.-F. Z. Naturforsch., B: Chem. Sci.  1991,  46:  326 
  • 3e Ahmad AR. Mehta LK. Parrick J. J. Chem. Soc., Perkin Trans. 1  1996,  2443 
  • 3f Bu X.-H. Liu H. Du M. Wong KM.-C. Yam VW.-W. Shionoya M. Inorg. Chem.  2001,  40:  4143 
  • 3g Lion C. Baudry R. Hedayatullah M. da Conceicao L. Genard S. Maignan J. J. Heterocycl. Chem.  2002,  39:  125 
  • 3h Morin C. Besset T. Moutet J.-C. Fayolle M. Brückner M. Limosin D. Becker K. Davioud-Charvet E. Org. Biomol. Chem.  2008,  6:  2731 
  • 4a Weinberger L. Day AR. J. Org. Chem.  1959,  24:  1451 
  • 4b Taffs KH. Posser LV. Wigton FB. Joullié MM. J. Org. Chem.  1961,  26:  462 
  • 4c Zakhs ER. Efros LR. Zh. Org. Khim.  1966,  2:  1095 
  • 4d Grinev AN. Zotova SAA. Bogdanova NS. Nikolaeva IS. Pershin GN. Khim.-Farm. Zh.  1974,  8:  5 ; Chem. Abstr. 1974, 81, 25605
  • 4e Shaikh IA. Johnson F. Grollman AP. J. Med. Chem.  1986,  29:  329 
  • 4f Narayan S. Kumar V. Pujari HK. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.  1986,  25:  267 
  • 4g Antonini I. Claudi F. Cristalli G. Franchetti P. Grifantini M. Martelli S. J. Med. Chem.  1988,  31:  260 
  • 4h Flader C. Liu J. Borch RF. J. Med. Chem.  2000,  43:  3157 
  • 4i Garuti L. Roberti M. Pession A. Leoncini E. Hrelia S. Bioorg. Med. Chem. Lett.  2001,  11:  3147 
  • 4j Alvarez F. Gherardi A. Nebois P. Sarciron M.-E. Petavy A.-F. Walchofer N. Bioorg. Med. Chem. Lett.  2002,  12:  977 
  • 4k Ryu C.-K. Song E.-H. Shim J.-Y. You H.-J. Choi KU. Choi IHK. Lee EY. Chae J. Bioorg. Med. Chem. Lett.  2003,  13:  17 
  • 4l Hong S.-Y. Chung K.-H. You H.-J. Choi IH. Chae MJ. Han SY. Jung O.-J. Kang S.-O. Ryu C.-K. Bioorg. Med. Chem. Lett.  2004,  14:  3563 
  • 4m Garuti L. Roberti M. Pizzirani D. Pession A. Leoncini E. Cenici V. Hrelia S. Farmaco  2004,  59:  663 
  • 4n O’Shaughnessy J. Aldabbagh F. Synthesis  2005,  1069 
  • 4o Lavergne O. Fernandes A.-C. Brehu L. Sidhu A. Brezak M.-C. Prevost G. Ducommun B. Contour-Galcera M.-O. Bioorg. Med. Chem. Lett.  2006,  16:  171 
  • 4p Taleb A. Alvarez F. Nebois P. Walschofer N. Heterocycl. Commun.  2006,  12:  111 
  • 4q Chung K.-W. Hong S.-Y. You H.-J. Park R.-E. Ryu C.-K. Bioorg. Med. Chem.  2006,  14:  5795 
  • 4r Ryu C.-K. Lee R.-Y. Lee S.-Y. Chung H.-J. Lee SK. Chung K.-H. Bioorg. Med. Chem. Lett.  2008,  18:  2948 
  • 4s For closely related analogues see: Newsome JF. Colucci MA. Hassani M. Beal HW. Moody CJ. Org. Biomol. Chem.  2007,  5:  3665 
  • 5a Warren JD. Lee VJ. Angier RB. J. Heterocycl. Chem.  1979,  16:  1617 
  • 5b Dzieduszycka M. Stefanska B. Martelli S. Bontemps-Gracz M. Borowski E. Eur. J. Med. Chem.  1994,  29:  561 
  • 6 Nietski R. Regberg F. Ber. Dtsch. Chem. Ges.  1890,  23:  1212 
  • 7 Kawai S. Kosaka J. Hatano M. Proc. Jpn. Acad.  1954,  30:  774 
  • 13 When the Celite pad was thoroughly washed with MeOH, 2,5-dimethoxybenzene-1,4-diamine was obtained together with minor unidentified material. The 2,5-dimethoxy­-benzene-1,4-diamine was identified spectroscopically, see: Miller SE. Lukas AS. Marsh E. Bushard P. Wasielewski MR. J. Am. Chem. Soc.  2000,  122:  7802 
  • 14 Phillips MA. J. Chem. Soc.  1928,  2393 
  • 16a Gum WF. Joullié MM. J. Org. Chem.  1967,  32:  53 
  • 16b Fisher GH. Moreno HR. Oatis JE. Schultz HP. J. Med. Chem.  1975,  18:  746 
  • 16c Dwyer CL. Holzapfel CW. Tetrahedron  1998,  54:  7843 
  • 16d Nose M. Suzuki H. Synthesis  2000,  1539 
  • 16e Wu J. Fang F. Lu W.-Y. Hou J.-L. Li C. Wu Z.-Q. Jiang X.-K. Li Z.-T. Yu Y.-H. J. Org. Chem.  2007,  72:  2897 
  • 16f Mascal M. Yin L. Edwards R. Jarosh M. J. Org. Chem.  2008,  73:  6148 
8

Ref. 7 reads that this is a co-crystallization process and that, provided there are no ‘small aggregates’, the separation of ‘rhombic plates’ from ‘long columns’ can be effected by hand.

9

The ratio of isomers is determined by relative integration in ¹H NMR spectra, for data see experimental.

10

The mp recorded for this material is in the range of literature values (68-70 ˚C,4e 75 ˚C,² 85-87 ˚C4a). Note that this material is labile: darkening with time of this electron-rich diamine has been noted previously and we found experimentally that even after minimal exposure to air, 1 became unreactive.

11

A H2-filled balloon is used, monitoring of the reaction can be performed by TLC or NMR (for data see experimental) but, most simply, it can be done by visual inspection as the mixture becomes colorless when reaction is complete.

12

Hydrogenation of a 6:4 mixture of 3 and 4 was performed under the same protocol and, here also, only diamine 1 is isolated (51% yield; 85% based on 3).

15

Impure 2 could not be freed from byproducts by crystallization or by chromatography, which furthermore led to severe losses of material.

Scheme 1

Scheme 2 3,6-Dimethoxybenzene-1,2-diamine as a synthon

Scheme 3 Preparation of 1 and 2