Synthesis 2009(8): 1375-1385  
DOI: 10.1055/s-0028-1088024
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Chemoselectivity of Multicomponent Condensations of Barbituric Acids, 5-Aminopyrazoles, and Aldehydes

Elena A. Muravyova, Svetlana V. Shishkina, Vladimir I. Musatov, Irina V. Knyazeva, Oleg V. Shishkin, Sergey M. Desenko, Valentin A. Chebanov*
State Scientific Institution ‘Institute for Single Crystals’ of National Academy of Sciences of Ukraine, Lenin Ave. 60, 61001 Kharkiv, Ukraine
Fax: +38(57)3409343; e-Mail: chebanov@isc.kharkov.com;

Further Information

Publication History

Received 3 November 2008
Publication Date:
25 March 2009 (online)

Abstract

Multicomponent cyclocondensations between 5-aminopyrazoles, barbituric acids, and aromatic aldehydes under conventional thermal heating, microwave irradiation, or ultrasonic irradiation were studied and the temperature regime was found to be the main factor in controlling their chemoselectivity. At high temperatures the starting materials react in two different ways yielding pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidines or their dihydro analogues depending on the nature of the N-substituent in the 5-aminopyrazole. Treatment at room temperature results in a new four-component reaction giving previously undisclosed heterocyclic compounds, 4,6-diaryl-1,4,6,7-tetrahydro-2′H-spiro[pyrazolo[3,4-b]pyridine-5,5′-pyrimidine]s. Facile multipurpose three-component selective procedures to new spiroheterocycles are proposed.

The efficient synthesis of organic compounds by an ‘ideal procedure’ [¹] is one of the most important objectives in modern synthetic chemistry for drug discovery and related fields. Organic reactions should preferably be facile and fast and the resulting products should be easily and rapidly purified. Multicomponent reactions [²] and the application of ‘non-classical’ conditions, like controlled microwave [³] and ultrasonic [4] irradiation, are powerful tools in modern chemistry for the optimization of reactions and the efficient preparation of new target compounds. The use of these methods and their combinations in high-throughput organic synthesis has become particularly popular within the last fifteen years and numerous examples of such condensations for the construction of heterocycles with interesting properties have been reported in the literature. [²-4]

The importance of azolopyrimidines in medicinal chemistry is widely known: many of these fused nitrogen heterocycles are known as cardiovascular vasodilators, calcium channel blocking agents, and potassium channel inhibitors and openers. [5] An interesting class of such heterocycles is the azolopyridopyrimidines, which possess antimycobacterial, fungicidal, anticancer, and antihistamic activities and they are effective as central analgetics and for the treatment of insomnia. [6] Some derivatives of pyrazolopyridines have been also found to be useful in agriculture [7] and for coloring wool, silk, and polyamides. [8]

A facile and widespread synthetic approach to azolopyridines and pyrimidines is the multicomponent cyclocondensation of aminoazoles with CH-acids and carbonyl compounds, which sometimes can lead to the formation of several different reaction products; [9] their selectivity may be efficiently tuned by application of microwave and ultrasonic irradiation. [9e] [h] [i] However, the multicomponent synthesis of pyrazolopyridopyrimidines involving barbituric acid as a building block has not been described in the literature and only unsuccessful attempts at similar condensations have been communicated. [¹0] The usual way to pyrazolopyridopyrimidines is by the modification of vicinal aminocarbonitriles or aminoamides of azolopyridines, obtained by three-component reaction of aminoazole, aldehyde, and malononitrile or cyanoacetamide (Scheme 1). [¹¹] This method allows the synthesis of diverse types of the target heterocycles, but cannot be conducted as an efficient one-pot procedure. Another way includes reaction of 5-aminopyrazole-4-carbaldehydes with active methylene compounds, for example barbituric acids and cyclic 1,3-diketones, and leads to pyrazolopyridopyrimidines in high yields. [¹²] However, this route does not give the possibility of introducing substituents into the pyridine ring (Scheme 1).

Scheme 1

Four-component condensations involving two equivalents of barbituric acid and one equivalent of aldehyde and ammonia leading to the formation of dihydropyridine ring are also known. [¹³]

Therefore, in the present work the multicomponent reactions of 5-aminopyrazoles 1, barbituric acids 2, and aromatic aldehydes 3 were studied under conventional heating, microwave irradiation, or ultrasonic irradiation at various temperatures. It was established that the three-component reaction of 5-amino-3-methyl-1-phenyl-1H-pyrazole (1a) with barbituric acids 2a,b and aldehydes 3a-h in boiling N,N-dimethylformamide for 30 minutes gave heteroaromatized 4-arylpyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidines 4a-l (Scheme 2, Table 1). The work-up procedure was simple and consisted of the addition of ethanol to the reaction mixture, filtration, and drying on air at room temperature, which allowed the target heterocycles 4a-l to be obtained in 50-95% yields with purity ˜95% according to ¹H NMR.

From the other hand, it was unexpectedly found that refluxing of the equimolar mixture of N-unsubstituted 3-methyl- and 3-phenyl-5-aminopyrazoles 1d,e with barbituric acids 2a-c and aromatic aldehydes 3a-d,f-h,j in N,N-dimethylformamide for 30 minutes after an identical work up procedure led to 4-aryl-4,9-dihydropyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidines 5a-i in 50-90% yields (Scheme 2, Table 1). It should be noted that in case of compound 5b impurities of the corresponding hetero­aromatized heterocycle (˜5%) were also observed in the ¹H NMR spectrum.

As the possible reason for the different reaction products in the case of aminoazoles 1a and 1d,e, we considered the influence of the N-phenyl substituent which enlarges the electron-donor properties of the aminoazole moiety and this can result in easier oxidation of the pyridine ring. The multicomponent reactions involving barbituric acid 2a, aldehyde 3g, and 5-amino-3-methyl-1-(4-nitrophenyl)-1H-pyrazole (1b), containing a nitrophenyl electron-withdrawing substituent, however, also led to oxidized heterocycle 4j. The reaction with participation of 5-amino-1,3-dimethyl-1H-pyrazole (1c), barbituric acids 2a,c, and aldehydes 3e,i gave the same result, compounds 4k and 4l were the sole isolated products after cooling and addition of ethanol to the reaction mixture.

Table 1 Synthesis of Pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidines 4a-l, 5a-i (continued)
Entry 5-Aminopyrazole
Barbituric acid
Aldehyde
Product Yield (%)
R¹ R² R³ X R4
 1 1a Me Ph 2a H O 3a 4-EtC6H4 4a 95a
 2 1a Me Ph 2a H O 3b 4-MeSC6H4 4b 60a
 3 1a Me Ph 2a H O 3c 4-O2NC6H4 4c 95a
 4 1a Me Ph 2a H O 3d 4-NCC6H4 4d 90a
 5 1a Me Ph 2a H O 3e 4-MeOC6H4 4e 75a
 6 1a Me Ph 2a H O 3f 2,4,5-(MeO)3C6H2 4f 85a
 7 1a Me Ph 2b H S 3a 4-EtC6H4 4g 65a
 8 1a Me Ph 2b H S 3g 4-ClC6H4 4h 55a
 9 1a Me Ph 2b H S 3h 3,4-(HO)2C6H3 4i 50a
10 1b Me 4-O2NC6H4 2a H O 3g 4-ClC6H4 4j 55a
11 1c Me Me 2a H O 3e 4-MeOC6H4 4k 50a
12 1c Me Me 2c Me O 3i 4-MeC6H4 4l 50a
13 1d Me H 2a H O 3a 4-EtC6H4 5a 85
14 1d Me H 2c Me O 3b 4-MeSC6H4 5b 50
15 1d Me H 2a H O 3c 4-O2NC6H4 5c 75
16 1d Me H 2a H O 3d 4-NCC6H4 5d 85
17 1d Me H 2a H O 3f 2,4,5-(MeO)3C6H2 5e 70
18 1d Me H 2a H O 3h 3,4-(HO)2C6H3 5f 55
19 1d Me H 2a H O 3j 2-HO-3-EtOC6H3 5g 90
20 1e Ph H 2a H O 3g 4-ClC6H4 5h 75
21 1e Ph H 2b H S 3g 4-ClC6H4 5i 55

a Under MW irradiation.

Scheme 2

Application of controlled microwave irradiation (temperatures from 150 to 190 ˚C) to carry out multicomponent reaction involving N-unsubstituted pyrazoles 1d,e did not give positive results, as it was expected, and led to complicated mixtures of several inseparable products. However, using the microwave field to promote the reaction of 5-aminopyrazoles 1a-c with barbituric acids and aldehydes was successful. It was established that three-component reactions of aromatic aldehydes 3a-i and barbituric acids 2a-c with aminopyrazoles 1a-c can be efficiently carried out under microwave irradiation in ethanol instead of N,N-dimethylformamide at 170 ˚C for five minutes. The most preferable microwave-assisted procedure for the synthesis of pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidines 4, from the viewpoint of yields and purity of the target compounds. consisted of the treatment of the starting building blocks in N,N-dimethylformamide under microwave irradiation at 190 ˚C for three minutes.

Surprisingly, it was observed that the multicomponent reaction involving 4-(methylsulfanyl)benzaldehyde (3b), 5-amino-3-methyl-1-phenyl-1H-pyrazole (1a), and barbituric acid 2a in boiling N,N-dimethylformamide sometimes passed in an unusual manner yielding, according to ¹H NMR and mass spectra, hitherto undisclosed 3-methyl-4,6-bis[4-(methylsulfanyl)phenyl]-1-phenyl-1,4,6,7-tetrahydro-2′H-spiro[pyrazolo[3,4-b]pyridine-5,5′-pyrimidine]-2′,4′,6′(1′H,3′H)-trione (6a).

Taking into account our previous results in tuning the chemoselectivity of multicomponent reactions with participation of similar starting compounds by application of high-temperature microwave-assisted and low-temperature ultrasonic-promoted procedures [9e] [h] [i] we tried to carry out this four-component cyclocondensation under sonication at room temperature. It was found that treatment of two equivalent of aromatic aldehyde 3b,e,g with one equivalent of barbituric acid 2a-c and aminopyrazoles 1a,d in N,N-dimethylformamide in ultrasonic bath for three hours yielded spiro compounds 6a-f in 63-98% yields (Method A, Scheme 3, Table 2).

It was additionally established that simple intensive stirring of the same starting compounds in N,N-dimethyl­formamide at room temperature with magnetic stirring for 2-3 hours also allowed the target spiroheterocycles 6a-f to be obtained in lower yields. It is interesting that a recent report [9h] found that multicomponent condensations of 5-aminopyrazoles with cyclic 1,3-diketones and aldehydes under ultrasonic irradiation at room temperature yielded Biginelli-type dihydropyrimidines, which were not observed in our case. On the other hand, the formation of similar spiro compounds was described for the four-component treatment of barbituric acid, urea, and aldehydes. [¹4]

A main disadvantage of the new four-component reaction is the impossibility of introducing two different substituents R4 in positions 4 and 6. To avoid this limitation we developed a two-component procedure consisted of the reaction of arylidenebarbituric acids 7a,b and azometh­ines 8a,b; treatment of these compounds in N,N-dimethylformamide under sonication for three hours yielded spiroheterocycles 6g,h (Method B, Scheme 3, Table 2).

However, this method requires the preliminary synthesis of two starting compounds (6 and 7) and this makes the procedure less efficient and facile. Taking into account such inconveniences, two additional three-component synthetic pathways to target compounds 6 were elaborated.

Heterocycles 6a,d-h were obtained by treatment of azomethines 8a-e with barbituric acids 2a-c and corresponding aromatic aldehydes 3a,b,g,e at room temperature under sonication or simple stirring of the reaction mixture for three hours in 55-70% yields (Method C, Scheme 3, Table 2). The most convenient and effective procedure for the synthesis spiro[pyrazolo[3,4-b]pyridine-5,5′-pyrimidine]s 6 consists of the three-component reaction of arylidenebarbituric acids 7a-e, 5-aminopyrazoles 1a,d,e, and aldehydes 3b,e,g under ultrasonic irradiation or with magnetic stirring at ambient conditions (Method D, Scheme 3, Table 2).

Scheme 3

Table 2 Synthesis of Spiropyrazolo[3,4-b]pyridine-5,5′-pyrimidines 6a-h (continued)
Entry Substrates Method Substituents
Product
R¹ R² R³ R4 R5 X Yielda (%)
 1 1a + 2a + 3b (2 equiv) A Me Ph H 4-MeSC6H4 - O 6a 95
 2 1a + 2a + 3e (2 equiv) A Me Ph H 4-MeOC6H4 - O 6b 98
 3 1a + 2a + 3g (2 equiv) A Me Ph H 4-ClC6H4 - O 6c 80
 4 1a + 2b + 3g (2 equiv) A Me Ph H 4-ClC6H4 - S 6d 82
 5 1d + 2c + 3e (2 equiv) A Me H Me 4-MeOC6H4 - O 6e 80
 6 1e + 2c + 3b (2 equiv) A Ph H Me 4-MeOC6H4 - O 6f 63
 7 7a + 8a B Me H H 4-EtC6H4 4-MeOC6H4 O 6g 75
 8 7b + 9b B Me Ph Me 4-MeSC6H4 4-MeOC6H4 O 6h 60
 9 2a + 3b + 8c C Me Ph H 4-MeSC6H4 4-MeSC6H4 O 6a 70
10 2b + 3g + 8d C Me Ph H 4-ClC6H4 4-ClC6H4 S 6d 70
11 2c + 3e + 8a C Me H Me 4-MeOC6H4 4-MeOC6H4 O 6e 55
12 2c + 3b + 8e C Ph H Me 4-MeOC6H4 4-MeOC6H4 O 6f 55
13 2a + 3a + 8a C Me H H 4-EtC6H4 4-MeOC6H4 O 6g 65
14 2c + 3b + 8b C Me Ph Me 4-MeSC6H4 4-MeOC6H4 O 6h 55
15 1a + 3b + 7c D Me Ph H 4-MeSC6H4 4-MeSC6H4 O 6a 75
16 1a + 3g + 7d D Me Ph H 4-ClC6H4 4-ClC6H4 S 6d 78
17 1d + 3e + 7e D Me H Me 4-MeOC6H4 4-MeOC6H4 O 6e 53
18 1e + 3b + 7e D Ph H Me 4-MeOC6H4 4-MeOC6H4 O 6f 54
19 1d + 3e + 7a D Me H H 4-EtC6H4 4-MeOC6H4 O 6g 65
20 1a + 3e + 7b D Me Ph Me 4-MeSC6H4 4-MeOC6H4 O 6h 55

a Under sonication.

It should be noted that in Methods B and C if the reaction mixture is refluxed, instead of ultrasonication or stirring at room temperature, this leads to decomposition of azo­methines 8 and formation of two isomeric products with reverse location of the R4 and R5 substituents (see result of X-ray analysis for compound 6h).

In addition, it was established that compounds 6a-h under both refluxing in boiling N,N-dimethylformamide and microwave­ irradiation at 150-180 ˚C could not be rearranged into pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidines 4 or 5 and only numerous products of decomposition were found after the above-mentioned treatments.

The structures of heterocycles of type 4, 5, and 6 were established by elemental analyses in combination with MS and NMR spectroscopic data and X-ray diffraction analysis. The ¹H NMR spectra of pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidines 4a-l are very simple and exhibit the signals of pyrimidine NH and terminal functional groups as well as of aryl rings. However, even together with information obtained from MS and ¹³C NMR spectra these data did not give structure proof of the compounds synthesized. Finally X-ray diffraction analysis carried out for heterocycle 4a showed that it has a structure of 4-(4-ethylphenyl)-3-methyl­-1-phenyl-1H-pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyr­imidine-5,7(6H,8H)-dione (Figure 1).

Figure 1 Structure of compound 4a (X-ray diffraction data)

¹H NMR spectra of heterocyclic compounds 5a-i together with signals of functional groups and aromatic rings contain two additional singlets at ca. δ = 5 and 11-12 assigned to methylene and amino groups of dihydropyridine moiety, respectively.

MS spectra and elemental analysis of compounds 6a-h showed that these heterocycles contain fragments of two molecules of aromatic aldehyde, one pyrimidine and one pyrazole ring. ¹H NMR spectra exhibit the following signals: singlets of methylene protons and amino group of tetrahydropyridine ring at δ = ˜4.8, 4.9, and 6.0-6.5, respectively, pyrimidine NH singlets at δ = 10-12 (for compounds 6a-d,g), multiplets of aromatic rings, and necessary signals of other functional groups. ¹³C NMR spectra of other signals contain a signal for the spiro-carbon at δ = ca. 65. All this data allowed us to suggest the spiroheterocyclic structure for compounds 6a-h. Finally, this structure was proved by X-ray diffraction data obtained for crystal of 6h obtained in boiling N,N-dimethylformamide (Figure 2).

Figure 2 Structure of compound 6h (X-ray diffraction data)

In summary, the article describes the development of chemoselective cyclocondensations based on multicomponent treatment between 5-aminopyrazoles, barbituric acids, and aromatic aldehydes. It was established that temperature was the main factor in controlling the direction of the reaction studied. Under reflux or microwave irradiation at high temperatures (170-190 ˚C) the starting materials react in two different ways, in the case of N-substituted aminopyrazoles the reaction yields pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidines or their dihydro analogues when the N-substituent is absent. Sonication of the same reaction mixture or simple stirring at room temperature leads to a new four-component reaction yielding previously undisclosed heterocyclic compounds, 4,6-diaryl­-1,4,6,7-tetrahydro-2′H-spiro[pyrazolo[3,4-b]pyridine-5,5′-pyrimidine]s.

Melting points were obtained on a standard melting point apparatus in open capillary tubes. The ¹H and ¹³C NMR spectra were recorded in DMSO-d 6 at 400 and 200 MHz (100 and 50 MHz for ¹³C) on Jeol Lambda 400 and Varian Mercury VX-200 spectrometers. LR-MS were measured on a GC-MS Varian 1200L (ionizing voltage 70 eV). Elemental analysis was made on a EuroVector EA-3000. TLC analyses were performed on pre-coated (silica gel 60 HF254) plates.

Sonication was carried out with help of standard ultrasonic bath producing irradiation at 44.2 kHz in round-bottom flasks equipped with a condenser.

Microwave experiments were performed using the EmrysTM Creator­ EXP and EmrysTM Initiator reactors from Biotage AB (Uppsala, Sweden) possessing a single-mode microwave cavity producing controlled irradiation at 2.45 GHz. Experiments were carried out in sealed microwave process vials using high absorbance level settings and IR temperature monitoring. Reaction times reflect irradiation times at the set reaction temperature (fixed hold times).

All solvents and chemicals were obtained from standard commercial vendors and were used without any further purification.

The synthesis of the starting 5-aminopyrazoles 1a-e were carried out by the described procedures. [¹5] Arylidenebarbituric acids 7a-e and Schiff bases 8a-e obtained according known methods. [¹6] [¹7]

X-ray Diffraction Analysis of Compounds 4a and 6h

The colorless crystals of 4a 2 (C23H19N5O2)˙C3H7NO˙C6H6O) are triclinic. At -173 K, a = 11.522(6), b = 13.364(8), c = 16.369(4) Å, α = 79.58(4)˚, β = 84.30(4)˚, γ = 63.27(6)˚, V = 2214(2) ų, Mr = 914.03, Z = 2, space group P1, d calc = 1.371 g/m³, µ (MoKα) = 0.093 mm, F(000) = 964. Intensities of 13853 reflections (7323 independent, R int = 0.037) were measured on the ‘Xcalibur-3’ diffractometer (graphite monochromated MoKα radiation, CCD detector, ω-scanning, 2Θmax = 50˚).

The colorless crystals of 6h (C32H31N5O4S) are triclinic. At 293 K, a = 8.180(1), b = 10.823(2), c = 17.503(3) Å, α = 107.23(1)˚, β = 94.75(1)˚, γ = 96.92(1)˚, V = 1457.7(4) ų, Mr = 581.68, Z = 2, space group P1, d calc = 1.325 g/m³, µ (MoKα) = 0.157 mm, F(000) = 612. Intensities of 9458 reflections (4877 independent, R int = 0.032) were measured on the ‘Xcalibur-3’ diffractometer (graphite monochromated MoKα radiation, CCD detector, ω-scanning, 2Θmax = 50˚).

The structures were solved by direct method using SHELXTL package. [¹8] The restrains for the bond lengths (Csp³-Csp³ 1.54 Å, CAr-O 1.37 Å, Csp³-O 1.42 Å, CAr-S 1.77 Å, Csp³-S 1.79 Å) in the disordered fragments were applied in the refinement of the structures. Positions of the hydrogen atoms were located from electron density difference maps and refined by ‘riding’ model with U iso = nU eq of the carrier atom (n = 1.5 for methyl group and n = 1.2 for other hydrogen atoms). The hydrogen atom of the structure 6h participating in the formation of the hydrogen bond was refined in isotropic approximation.

Full-matrix least-squares refinement of the structures against F2 in anisotropic approximation for non-hydrogen atoms using 7155 (4a), 4824 (6h) reflections was converged to: wR 2 = 0.081 (R 1 = 0.042 for 2690 reflections with F > 4σ(F), S = 0.708) for structure 4a and wR 2 = 0.194 (R 1 = 0.066 for 2842 reflections with F > 4σ(F), S = 0.926) for structure 6h. [¹9]

4-Aryl-1 H -pyrazolo[4′,3′:5,6]pyrido[2,3- d ]pyrimidines 4a-l; General Procedure

A mixture of 5-aminopyrazole 1a-c (1.30 mmol, 1 equiv), barbituric acid 2a-c (1.30 mmol, 1 equiv), and aromatic aldehyde 3a-i (1.3 mmol, 1 equiv) in DMF (2 mL), contained in a round-bottom flask equipped with condenser, was refluxed for 30 min. The mixture was cooled and EtOH (20 mL) was added. The mixture was allowed to stand and then filtered to give a solid product that was washed with EtOH and dried on air at r.t.

4-Aryl-1 H -pyrazolo[4′,3′:5,6]pyrido[2,3- d ]pyrimidines 4a-l; General Procedure for Microwave-Assisted Reactions

A mixture of 5-aminopyrazole 1a-c (1.30 mmol, 1 equiv), barbituric acid 2a-c (1.30 mmol, 1 equiv), and aromatic aldehyde 3a-i (1.3 mmol, 1 equiv) in DMF (2 mL), contained in a sealed microwave vial, was heated in a single mode microwave reactor at 190 ˚C for 3 min with magnetic stirring. The mixture was cooled to r.t. by compressed air and EtOH (20 mL) was added. The mixture was allowed to stand and then filtered to give a solid product which was washed with EtOH and dried on air at r.t.

The reaction was also carried out in EtOH (2 mL) at 150 ˚C for 5 min. In this case the precipitate formed was filtered after cooling of the mixture without addition of any other solvent.

4-(4-Ethylphenyl)-3-methyl-1-phenyl-1 H -pyrazolo[4′,3′:5,6]pyrido[2,3- d ]pyrimidine-5,7(6 H ,8 H )-dione (4a)

Colorless solid; mp >300 ˚C.

¹H NMR (200 MHz, DMSO-d 6): δ = 1.25 (t, J = 7.5 Hz, 3 H, CH3), 1.70 (s, 3 H, CH3), 2.69 (q, J = 7.5 Hz, 2 H, CH3), 7.17-8.24 (m, 9 Harom), 11.28 (s, 2 H, NH).

¹³C NMR (100 MHz, DMSO-d 6): δ = 161.8, 153.2, 151.4, 150.7, 150.3, 145.5, 143.7, 139.1, 133.7, 129.5, 128.0, 127.3, 126.3, 120.7, 114.2, 104.2, 28.5, 16.0, 14.4.

MS (EI, 70 eV): m/z (%) = 397 (100) [M+], 398 (29.5), 396 (26.8).

Anal. Calcd for C23H19N5O2: C, 69.51; H, 4.82; N, 17.62. Found: C, 69.48; H, 4.78; N, 17.60.

3-Methyl-4-[4-(methylsulfanyl)phenyl]-1-phenyl-1 H -pyrazolo[4′,3′:5,6]pyrido[2,3- d ]pyrimidine-5,7(6 H ,8 H )-dione (4b)

Colorless solid; mp >300 ˚C.

¹H NMR (200 MHz, DMSO-d 6): δ = 1.80 (s, 3 H, CH3), 2.54 (s, 3 H, SCH3), 6.24-8.25 (m, 9 Harom), 11.16 (s, 1 H, NH), 11.76 (s, 1 H, NH).

MS (EI, 70 eV): m/z (%) = 415 (100) [M+], 416 (38.5), 417 (13.3).

Anal. Calcd for C22H17N5O2S: C, 63.60; H, 4.12; N, 16.86. Found: C, 63.63; H, 4.09; N, 16.84.

3-Methyl-4-(4-nitrophenyl)-1-phenyl-1 H -pyrazolo[4′,3′:5,6]pyrido[2,3- d ]pyrimidine-5,7(6 H ,8 H )-dione (4c)

Yellow solid; mp >300 ˚C.

¹H NMR (200 MHz, DMSO-d 6): δ = 1.74 (s, 3 H, CH3), 7.29-8.35 (m, 9 Harom), 11.27 (s, 1 H, NH), 11.86 (s, 1 H, NH).

¹³C NMR (100 MHz, DMSO-d 6): δ = 161.8, 152.8, 150.3, 150.0, 147.5, 147.3, 144.7, 138.5, 137.8, 134.5, 129.4, 129.2, 126.1, 123.0, 122.8, 120.4, 113.4, 103.9, 14.2.

MS (EI, 70 eV): m/z (%) = 414 (100) [M+], 415 (23.5).

Anal. Calcd for C21H14N6O4: C, 60.87; H, 3.41; N, 20.28. Found: C, 60.91; H, 3.45; N, 20.30.

4-(4-Cyanophenyl)-3-methyl-1-phenyl-1 H -pyrazolo[4′,3′:5,6]pyrido[2,3- d ]pyrimidine-5,7(6 H ,8 H )-dione (4d)

Colorless solid; mp >300 ˚C.

¹H NMR (200 MHz, DMSO-d 6): δ = 1.71 (s, 3 H, CH3), 7.28-8.23 (m, 9 Harom), 11.24 (s, 1 H, NH), 11.83 (s, 1 H, NH).

¹³C NMR (100 MHz, DMSO-d 6): δ = 161.3, 152.5, 150.0, 149.8, 148.2, 144.4, 141.2, 138.4, 131.3, 129.0, 128.7, 125.8, 120.3, 118.6, 112.8, 110.7, 103.4, 39.5, 13.7.

MS (EI, 70 eV): m/z (%) = 394 (100) [M+], 395 (25.9), 393 (24.1).

Anal. Calcd for C22H14N6O2: C, 67.00; H, 3.58; N, 21.31. Found: C, 66.98; H, 3.61; N, 21.29.

4-(4-Methoxyphenyl)-3-methyl-1-phenyl-1 H -pyrazolo[4′,3′:5,6]pyrido[2,3- d ]pyrimidine-5,7(6 H ,8 H )-dione (4e)

Colorless solid; mp >300 ˚C.

¹H NMR (200 MHz, DMSO-d 6): δ = 1.76 (s, 3 H, CH3), 3.82 (s, 3 H, OCH3), 6.98-8.24 (m, 9 Harom), 11.11 (s, 1 H, NH), 11.70 (s, 1 H, NH).

MS (EI, 70 eV): m/z (%) = 399 (100) [M+], 398 (40.6), 400 (16.6).

Anal. Calcd for C22H17N5O3: C, 66.16; H, 4.29; N, 17.53. Found: C, 66.13; H, 4.33; N, 17.51.

3-Methyl-1-phenyl-4-(2,4,5-trimethoxyphenyl)-1 H -pyrazolo[4′,3′:5,6]pyrido[2,3- d ]pyrimidine-5,7(6 H ,8 H )-dione (4f)

Yellow solid; mp 276-277 ˚C.

¹H NMR (200 MHz, DMSO-d 6): δ = 1.87 (s, 3 H, CH3), 3.64 (s, 6 H, 2 OCH3), 3.87 (s, 3 H, OCH3), 6.78-8.24 (m, 7 Harom), 11.10 (s, 1 H, NH), 11.63 (s, 1 H, NH).

¹³C NMR (100 MHz, DMSO-d 6): δ = 161.4, 153.0, 150.3, 150.1, 149.8, 148.2, 145.4, 142.5, 138.7, 129.3, 126.0, 120.5, 115.6, 114.2, 113.5, 104.6, 97.9, 56.4, 56.2, 55.8, 13.5.

MS (EI, 70 eV): m/z (%) = 459 (100) [M+], 428 (47.8), 460 (26.2), 444 (18.5).

Anal. Calcd for C24H21N5O5: C, 62.74; H, 4.61; N, 15.24. Found: C, 62.77; H, 4.60; N, 15.22.

4-(4-Ethylphenyl)-3-methyl-1-phenyl-7-thioxo-1,6,7,8-tetrahydro-5 H -pyrazolo[4′,3′:5,6]pyrido[2,3- d ]pyrimidin-5-one (4g)

Colorless solid; mp 281-282 ˚C.

¹H NMR (200 MHz, DMSO-d 6): δ = 1.25 (t, J = 7.8 Hz, 3 H, CH3), 1.74 (s, 3 H, CH3), 2.7 (q, J = 7.8 Hz, 2 H, CH3), 7.19-8.30 (m, 9 Harom), 12.27 (s, 1 H, NH), 13.10 (s, 1 H, NH).

¹³C NMR (100 MHz, DMSO-d 6): δ = 176.2, 159.2, 151.9, 151.3, 150.1, 145.6, 144.0, 139.0, 133.2, 129.5, 128.1, 127.3, 126.2, 120.4, 115.0, 105.9, 28.5, 15.9, 14.4.

MS (EI, 70 eV): m/z (%) = 413 (100) [M+], 414 (30.9), 412 (25.1), 384 (17.8).

Anal. Calcd for C23H19N5OS: C, 66.81; H, 4.63; N, 16.94. Found: C, 66.85; H, 4.60; N, 16.96.

4-(4-Chlorophenyl)-3-methyl-1-phenyl-7-thioxo-1,6,7,8-tetra­hydro-5 H -pyrazolo[4′,3′:5,6]pyrido[2,3- d ]pyrimidin-5-one (4h)

Yellow solid; mp 297-298 ˚C.

¹H NMR (200 MHz, DMSO-d 6): δ = 1.82 (s, 3 H, CH3), 7.32-8.34 (m, 9 Harom), 12.35 (s, 1 H, NH), 13.2 (s, 1 H, NH).

¹³C NMR (100 MHz, DMSO-d 6): δ = 175.9, 159.1, 151.5, 149.7, 149.2, 145.1, 138.6, 134.5, 133.0, 129.7, 129.2, 127.7, 126.0, 120.1, 114.3, 105.6, 14.1.

MS (EI, 70 eV): m/z (%) = 419 (100) [M+], 420 (32.2), 421 (23.9).

Anal. Calcd for C21H14ClN5OS: C, 60.07; H, 3.36; N, 16.68. Found: C, 60.04; H, 3.32; N, 16.66.

4-(3,4-Dihydroxyphenyl)-3-methyl-1-phenyl-7-thioxo-1,6,7,8-tetrahydro-5 H -pyrazolo[4′,3′:5,6]pyrido[2,3- d ]pyrimidin-5-one (4i)

Yellow solid; mp >300 ˚C.

¹H NMR (200 MHz, DMSO-d 6): δ = 1.85 (s, 3 H, CH3), 6.50-8.25 (m, 8 Harom), 9.03 (s, 1 H, OH), 9.10 (s, 1 H, OH), 11.10 (s, 1 H, NH), 11.70 (s, 1 H, NH).

¹³C NMR (100 MHz, DMSO-d 6): δ = 165.7, 161.5, 153.0, 151.7, 150.5, 150.3, 150.0, 145.4, 144.7, 138.8, 129.3, 126.8, 120.4, 119.0, 115.6, 115.0, 114.1, 104.0, 89.1, 80.3, 14.0.

MS (EI, 70 eV): m/z (%) = 417 (100) [M+], 416 (26.8), 415 (18.9).

Anal. Calcd for C21H15N5O3S: C, 60.42; H, 3.62; N, 16.78. Found: C, 60.45; H, 3.60; N, 16.77.

4-(4-Chlorophenyl)-3-methyl-1-(4-nitrophenyl)-1 H -pyrazolo[4′,3′:5,6]pyrido[2,3- d ]pyrimidine-5,7(6 H ,8 H )-dione (4j)

Yellow solid; mp >300 ˚C.

¹H NMR (200 MHz, DMSO-d 6): δ = 1.71 (s, 3 H, CH3), 7.3-8.55 (m, 8 Harom), 11.26 (s, 1 H, NH), 11.88 (s, 1 H, NH).

MS (EI, 70 eV): m/z (%) = 448 (100) [M+], 450 (38.6), 449 (32.8).

Anal. Calcd for C21H13ClN6O4: C, 56.20; H, 2.92; N, 18.72. Found: C, 56.18; H, 2.89; N, 18.71.

4-(4-Methoxyphenyl)-1,3-dimethyl-1 H -pyrazolo[4′,3′:5,6]pyrido[2,3- d ]pyrimidine-5,7(6 H ,8 H )-dione (4k)

Yellow solid; mp 288-289 ˚C.

¹H NMR (200 MHz, DMSO-d 6): δ = 1.70 (s, 3 H, CH3), 3.81 (s, 3 H, OCH3), 3.86 (s, 3 H, NCH3), 6.95-7.19 (m, 4 Harom), 11.02 (s, 1 H, 1 NH), 11.60 (s, 1 H, 1 NH).

MS (EI, 70 eV): m/z (%) = 337 (100) [M+], 336 (50.6), 338 (13.2).

Anal. Calcd for C17H15N5O3: C, 60.53; H, 4.48; N, 20.76. Found: C, 60.51; H, 4.47; N, 20.74.

1,3,6,8-Tetramethyl-4-(4-methylphenyl)-1 H -pyrazolo[4′,3′:5,6]pyrido[2,3- d ]pyrimidine-5,7(6 H ,8 H )-dione (4l)

Yellow solid; mp 221-223 ˚C.

¹H NMR (200 MHz, DMSO-d 6): δ = 1.68 (s, 3 H, CH3), 2.39 (s, 3 H, CH3), 3.14 (s, 3 H, CH3), 3.66 (s, 3 H, CH3), 3.94 (s, 3 H, CH3), 7.09-7.27 (m, 4 Harom).

MS (EI, 70 eV): m/z (%) = 349 (100) [M+], 348 (60.9), 350 (23.8).

Anal. Calcd for C19H19N5O2: C, 65.32; H, 5.48; N, 20.04. Found: C, 65.29; H, 5.51; N, 20.05.

4-Aryl-4,9-dihydro-1 H -pyrazolo[4′,3′:5,6]pyrido[2,3- d ]pyrimidines 5a-i; General Procedure

A mixture of 5-aminopyrazole 1d,e (1.30 mmol, 1 equiv), barbituric acid 2a-c (1.30 mmol, 1 equiv), and aromatic aldehyde 3a-d,f-h,j (1.3 mmol, 1 equiv) in DMF (2 mL), contained in a round-bottom flask equipped with condenser, was refluxed for 30 min. The mixture was cooled and EtOH (20 mL) was added. The mixture was allowed to stand and then filtered to give the solid product, which was washed with EtOH and dried on air at r.t.

4-(4-Ethylphenyl)-3-methyl-4,9-dihydro-1 H -pyrazolo[4′,3′:5,6]pyrido[2,3- d ]pyrimidine-5,7(6 H ,8 H )-dione (5a)

Colorless solid; mp >300 ˚C.

¹H NMR (200 MHz, DMSO-d 6): δ = 1.1 (t, J = 7.5 Hz, 3 H, CH3), 1.88 (s, 3 H, CH3), 2.5 (q, J = 7.5 Hz, 2 H, CH2), 4.82 (s, 1 H, 4-CH), 6.98-7.07 (m, 4 Harom), 8.71 (s, 1 H, NH), 9.94 (s, 1 H, NH), 10.44 (s, 1 H, 9-NH), 11.80 (s, 1 H, 1-NH).

¹³C NMR (100 MHz, DMSO-d 6): δ = 163.4, 150.5, 147.3, 145.1, 141.3, 127.6, 103.0, 87.3, 34.7, 28.2, 16.0, 10.0.

MS (EI, 70 eV): m/z (%) = 323 (23.4) [M+], 218 (100), 175 (26.6).

Anal. Calcd for C17H17N5O2: C, 63.15; H, 5.30; N, 21.66. Found: C, 63.17; H, 5.27; N, 21.63.

3,6,8-Trimethyl-4-[4-(methylsulfanyl) phenyl]-4,9-dihydro-1 H -pyrazolo[4′,3′:5,6]pyrido[2,3- d ]pyrimidine-5,7(6 H ,8 H )-dione (5b)

Colorless solid; mp 195-196 ˚C.

¹H NMR (200 MHz, DMSO-d 6): δ = 1.90 (s, 3 H, CH3), 2.38 (s, 3 H, SCH3), 3.04 (s, 3 H, NCH3), 3.44 (s, 3 H, NCH3), 4.94 (s, 1 H, 4-CH), 7.03-7.14 (m, 4 Harom), 9.8 (s, 1 H, 9-NH), 11.92 (s, 1 H, 1-NH).

MS (EI, 70 eV): m/z (%) = 369 (15.9) [M+], 246 (100), 247 (15.3), 137 (15.20).

Anal. Calcd for C18H19N5O2S: C, 58.52; H, 5.18; N, 18.96. Found: C, 58.55; H, 5.20; N, 18.93.

3-Methyl-4-(4-nitrophenyl)-4,9-dihydro-1 H -pyrazolo[4′,3′:5,6]pyrido[2,3- d ]pyrimidine-5,7(6 H ,8 H )-dione (5c)

Yellow solid; mp >300 ˚C.

¹H NMR (200 MHz, DMSO-d 6): δ = 1.86 (s, 3 H, CH3), 5.05 (s, 1 H, 4-CH), 7.4-8.1 (m, 4 Harom), 8.92 (s, 1 H, NH), 10.08 (s, 1 H, NH), 10.55 (s, 1 H, 9-NH), 11.92 (s, 1 H, 1-NH).

¹³C NMR (100 MHz, DMSO-d 6): δ = 163.4, 155.2, 150.4, 147.6, 146.1, 145.6, 136.4, 129.1, 123.7, 101.5, 86.2, 35.5, 9.9.

MS (EI, 70 eV): m/z (%) = 340 (22.6) [M+], 218 (100), 175 (38.7), 338 (51.1).

Anal. Calcd for C15H12N6O4: C, 52.94; H, 3.55; N, 24.70. Found: C, 52.91; H, 3.52; N, 24.69.

4-(4-Cyanophenyl)-3-methyl-4,9-dihydro-1 H -pyrazolo[4′,3′:5,6]pyrido[2,3- d ]pyrimidine-5,7(6 H ,8 H )-dione (5d)

Colorless solid; mp >300 ˚C.

¹H NMR (200 MHz, DMSO-d 6): δ = 1.85 (s, 3 H, CH3), 4.98 (s, 1 H, 4-CH), 7.33-7.68 (m, 4 Harom), 8.87 (s, 1 H, NH), 10.04 (s, 1 H, NH), 10.53 (s, 1 H, 9-NH), 11.90 (s, 1 H, 1-NH).

¹³C NMR (100 MHz, DMSO-d 6): δ = 163.4, 153.2, 150.5, 147.8, 145.7, 136.3, 132.4, 128.9, 119.5, 109.0, 101.7, 86.3, 35.6, 9.9.

MS (EI, 70 eV): m/z (%) = 320 (16.5) [M+], 218 (100), 175 (34.6), 219 (12.6).

Anal. Calcd for C16H12N6O2: C, 60.00; H, 3.78; N, 26.24. Found: C, 59.97; H, 3.81; N, 26.23.

3-Methyl-4-(2,4,5-trimethoxyphenyl)-4,9-dihydro-1 H -pyrazolo[4′,3′:5,6]pyrido[2,3- d ]pyrimidine-5,7(6 H ,8 H )-dione (5e)

Colorless solid; mp >300 ˚C.

¹H NMR (200 MHz, DMSO-d 6): δ = 1.85 (s, 3 H, CH3), 3.55 (s, 3 H, OCH3), 3.72 (s, 6 H, 2 OCH3), 5.11 (s, 1 H, 4-CH), 6.52-6.58 (m, 2 Harom), 8.61 (s, 1 H, NH), 9.88 (s, 1 H, NH), 10.37 (s, 1 H, 9-NH), 11.68 (s, 1 H, 1-NH).

¹³C NMR (100 MHz, DMSO-d 6): δ = 163.3, 150.8, 150.6, 148.3, 147.8, 145.9, 143.3, 135.5, 128.1, 114.3, 103.1, 99.8, 86.8, 57.3, 57.1, 56.3, 28.6, 9.8.

MS (EI, 70 eV): m/z (%) = 385 (50.0) [M+], 354 (100), 153 (65.5), 168 (60.4).

Anal. Calcd for C18H19N5O5: C, 56.10; H, 4.97; N, 18.17. Found: C, 56.14; H, 4.95; N, 18.16.

4-(3,4-Dihydroxyphenyl)-3-methyl-4,9-dihydro-1 H -pyrazolo[4′,3′:5,6]pyrido[2,3- d ]pyrimidine-5,7(6 H ,8 H )-dione (5f)

Colorless solid; mp >300 ˚C.

¹H NMR (200 MHz, DMSO-d 6): δ = 1.90 (s, 3 H, CH3), 4.68 (s, 1 H, 4-CH), 6.4-6.54 (m, 3 Harom), 8.49 (s, 1 H, OH), 8.65 (s, 1 H, OH), 8.70 (s, 1 H, NH), 9.91 (s, 1 H, NH), 10.45 (s, 1 H, 9-NH), 11.78 (s, 1 H, 1-NH).

MS (EI, 70 eV): m/z (%) = 325 (40.7) [M+], 110 (100), 174 (67.7), 217 (88.3).

Anal. Calcd for C15H13N5O4: C, 55.05; H, 4.00; N, 21.40. Found: C, 55.02; H, 4.03; N, 21.38.

4-(3-Ethoxy-2-hydroxyphenyl)-3-methyl-4,9-dihydro-1 H -pyrazolo[4′,3′:5,6]pyrido[2,3- d ]pyrimidine-5,7(6 H ,8 H )-dione (5g)

Colorless solid; mp >300 ˚C.

¹H NMR (200 MHz, DMSO-d 6): δ = 1.31 (t, J = 6.9 Hz, 3 H, CH3), 1.86 (s, 3 H, CH3), 3.94 (q, J = 6.9 Hz, 2 H, CH3), 5.2 (s, 1 H, 4-CH), 6.32-6.66 (m, 3 Harom), 8.78 (s, 1 H, NH), 8.84 (s, 1 H, OH), 10.03 (s, 1 H, NH), 10.60 (s, 1 H, 9-NH), 11.80 (s, 1 H, 1-NH).

¹³C NMR (100 MHz, DMSO-d 6): δ = 164.6, 150.2, 147.9, 147.5, 146.1, 143.6, 135.7, 134.9, 121.0, 119.4, 110.9, 102.9, 87.1, 64.4, 28.1, 15.3, 9.8.

MS (EI, 70 eV): m/z (%) = 355 (100) [M+], 218 (73.2), 110 (75.0), 138 (46.8).

Anal. Calcd for C17H17N5O4: C, 57.46; H, 4.82; N, 19.71. Found: C, 57.44; H, 4.80; N, 19.70.

4-(4-Chlorophenyl)-3-phenyl-4,9-dihydro-1 H -pyrazolo[4′,3′:5,6]pyrido[2,3- d ]pyrimidine-5,7(6 H ,8 H )-dione (5h)

Colorless solid; mp >300 ˚C.

¹H NMR (200 MHz, DMSO-d 6): δ = 5.25 (s, 1 H, 4-CH), 7.12-7.49 (m, 9 Harom), 9.06 (s, 1 H, NH), 10.05 (s, 1 H, NH), 10.55 (s, 1 H, 9-NH), 12.66 (s, 1 H, 1-NH).

¹³C NMR (100 MHz, DMSO-d 6): δ = 162.8, 150.4, 147.5, 146.8, 146.0, 138.3, 130.8, 129.8, 129.5, 129.2, 128.6, 128.1, 126.7, 101.9, 87.4, 31.2.

MS (EI, 70 eV): m/z (%) = 391 (30) [M+], 280 (100), 393 (17.0), 237 (19.8).

Anal. Calcd for C20H14ClN5O2: C, 61.31; H, 3.60; N, 17.87. Found: C, 61.33; H, 3.57; N, 17.86.

4-(4-Chlorophenyl)-3-phenyl-7-thioxo-1,4,6,7,8,9-hexahydro-5 H -pyrazolo[4′,3′:5,6]pyrido[2,3- d ]pyrimidin-5-one (5i)

Colorless solid; mp >300 ˚C.

¹H NMR (200 MHz, DMSO-d 6): δ = 5.29 (s, 1 H, 4-CH), 7.1-7.49 (m, 9 Harom), 8.85 (s, 1 H, NH), 10.60 (s, 1 H, NH), 12.02 (s, 1 H, 9-NH), 12.75 (s, 1 H, 1-NH).

MS (EI, 70 eV): m/z (%) = 407 (29.9) [M+], 296 (100), 409 (18.8), 219 (28.4).

Anal. Calcd for C20H14ClN5OS: C, 58.89; H, 3.46; N, 17.17. Found: C, 58.86; H, 3.49; N, 17.14.

4,6-Aryl-1,4,6,7-tetrahydro-2′ H -spiro[pyrazolo[3,4- b ]pyridine-5,5′-pyrimidine]s 6a-f; General Procedure for Method A

A mixture of 5-aminopyrazole 1a,d (1.30 mmol, 1 equiv), barbituric acid 2a-c (1.30 mmol, 1 equiv), and aldehyde 3b,e,g (2.6 mmol, 2 equiv) in DMF (1 mL), contained in a round-bottom flask, was sonicated in ultrasonic bath at r.t. for 3 h. Then EtOH (30 mL) was added and the mixture was allowed to stand; it was filtered to give the solid product, which was washed with EtOH and dried on air at r.t.

This synthesis can be also carried out with intensively magnetic stirring instead of ultrasonication with some lower yields.

4,6-Aryl-1,4,6,7-tetrahydro-2′ H -spiro[pyrazolo[3,4- b ]pyridine-5,5′-pyrimidine]s 6g,h; General Procedure for Method B

A mixture of arylidenebarbituric acid 7a,b (2 mmol, 1 equiv) and appropriate Schiff base 8a,b (2 mmol, 1 equiv) in DMF (1 mL), contained in a round-bottom flask equipped with a condenser, was refluxed for 30 min. The mixture was cooled, EtOH (30 mL) was added, and the mixture was allowed to stand; it was filtered to give the solid product, which was washed with EtOH and dried on air at r.t.

4,6-Aryl-1,4,6,7-tetrahydro-2′ H -spiro[pyrazolo[3,4- b ]pyridine-5,5′-pyrimidine]s 6a,d-h; General Procedure for Method C

A mixture of barbituric acid 2a-c (1.30 mmol, 1 equiv), aromatic aldehyde 3a,b,e,g (1.3 mmol, 1 equiv), and Schiff base 8a-e in DMF (1 mL), contained in a round-bottom flask, was sonicated in an ultrasonic bath at r.t. for 3 h. Then EtOH (30 mL) was added and the mixture was allowed to stand; it was filtered to give the solid product, which was washed with EtOH and dried on air at r.t.

4,6-Aryl-1,4,6,7-tetrahydro-2′ H -spiro[pyrazolo[3,4- b ]pyridine-5,5′-pyrimidine]s 6a,d-h; General Procedure for Method D

A mixture of 5-aminopyrazole 1a,d,e (1.30 mmol, 1 equiv), aromatic aldehyde 3b,e,g (1.3 mmol, 1 equiv), and arylidenebarbituric acid 7a-e in DMF (1 mL), contained in a round-bottom flask, was sonicated in ultrasonic bath at r.t. for 3 h. Then EtOH (30 mL) was added and the mixture was allowed to stand; it was filtered to give the solid product, which was washed with EtOH and dried on air at r.t.

3-Methyl-4,6-bis[4-(methylsulfanyl)phenyl]-1-phenyl-1,4,6,7-tetrahydro-2′ H -spiro[pyrazolo[3,4- b ]pyridine-5,5′-pyrimidine]-2′,4′,6′(1′ H ,3′ H )-trione (6a)

Colorless solid; mp 281-282 ˚C.

¹H NMR (200 MHz, DMSO-d 6): δ = 1.59 (s, 3 H, CH3), 2.43 (s, 6 H, 2 SCH3), 4.71 (d, J = 7.5 Hz, 1 H, 6-CH), 4.88 (s, 1 H, 4-CH), 6.16 (d, J = 7.5 Hz, 1 H, 7-NH), 7.01-7.82 (m, 13 Harom), 11.11 (br s, 2 H, NH).

¹³C NMR (100 MHz, DMSO-d 6): δ = 172.3, 167.2, 149.2, 145.5, 144.4, 139.6, 139.2, 137.9, 133.0, 132.2, 129.0, 128.7, 125.5, 125.5, 125.3, 121.0, 102.1, 65.8, 57.3, 46.2, 14.3, 14.2, 13.92.

MS (EI, 70 eV): m/z (%) = 569 (13) [M+], 307 (100), 306 (37), 308 (21), 442 (20).

Anal. Calcd For C30H27N5O3S2: C, 63.25; H, 4.78; N, 12.29. Found: C, 63.22; H, 4.80; N, 12.26.

4,6-Bis(4-methoxyphenyl)-3-methyl-1-phenyl-1,4,6,7-tetrahydro-2′ H -spiro[pyrazolo[3,4- b ]pyridine-5,5′-pyrimidine]-2′,4′,6′(1′ H ,3′ H )-trione (6b)

Colorless solid; mp 219-220 ˚C.

¹H NMR (200 MHz, DMSO-d 6): δ = 1.57 (s, 3 H, CH3), 3.71 (s, 6 H, 2 OCH3), 4.68 (d, J = 7.6 Hz, 1 H, 6-CH), 4.84 (s, 1 H, 4-CH), 6.06 (d, J = 7.6 Hz, 1 H, 7-NH), 6.83-7.82 (m, 13 Harom), 11.02 (s, 1 H, NH), 11.18 (s, 1 H, NH).

¹³C NMR (100 MHz, DMSO-d 6): δ = 172.9, 167.8, 159.8, 159.2, 149.6, 145.9, 144.8, 140.0, 129.8, 129.3, 128.9, 128.4, 125.6, 121.4, 114.2, 102.8, 66.0, 58.0, 55.6, 55.5, 46.7, 14.3.

MS (EI, 70 eV): m/z (%) = 537 (14) [M+], 291 (100), 290 (53), 246 (61), 184 (64).

Anal. Calcd For C30H27N5O5: C, 67.03; H, 5.06; N, 13.03. Found: C, 67.05; H, 5.02; N, 13.02.

4,6-Bis(4-chlorophenyl)-3-methyl-1-phenyl-1,4,6,7-tetrahydro-2′ H -spiro[pyrazolo[3,4- b ]pyridine-5,5′-pyrimidine]-2′,4′,6′(1′ H ,3′ H )-trione (6c)

Colorless solid; mp 255-256 ˚C.

¹H NMR (200 MHz, DMSO-d 6): δ = 1.59 (s, 3 H, CH3), 4.77 (d, J = 7.3 Hz, 1 H, 6-CH), 4.94 (s, 1 H, 4-CH), 6.35 (d, J = 7.3 Hz, 1 H, 7-NH), 7.06-7.8 (m, 13 Harom), 11.17 (s, 1 H, NH), 11.36 (s, 1 H, NH).

MS (EI, 70 eV): m/z (%) = 547 (14.1) [M+], 549 (10.1), 294 (100.0), 295 (85.0), 296 (35.0).

Anal. Calcd For C28H21Cl2N5O3: C, 61.55; H, 3.87; N, 12.82. Found: C, 61.51; H, 3.85; N, 12.80.

4,6-Bis(4-chlorophenyl)-3-methyl-1-phenyl-2′-thioxo-1,4,6,7-tetrahydro-2′ H -spiro[pyrazolo[3,4- b ]pyridine-5,5′-pyrimidine]-4′,6′(1′ H ,3′ H )-dione (6d)

Colorless solid; mp 210-211 ˚C.

¹H NMR (200 MHz, DMSO-d 6): δ = 1.58 (s, 3 H, CH3), 4.7 (d, J = 7.3 Hz, 1 H, 6-CH), 4.97 (s, 1 H, 4-CH), 6.45 (d, J = 7.3 Hz, 1 H, 7-NH), 7.06-7.8 (m, 13 Harom), 12.2 (s, 1 H, NH), 12.3 (s, 1 H, NH).

¹³C NMR (100 MHz, DMSO-d 6): δ = 177.7, 170.2, 164.9, 145.7, 144.6, 139.9, 135.9, 134.8, 131.1, 133.0, 130.4, 129.4, 129.0, 125.8, 121.8, 101.9, 66.5, 58.6, 46.6, 14.4.

MS (EI, 70 eV): m/z (%) = 561 (17) [M+], 562 (11), 563 (4.7), 295 (100), 297 (98), 266 (96).

Anal. Calcd For C28H21Cl2N5O2S: C, 59.79; H, 3.76; N, 12.45. Found: C, 59.72; H, 3.74; N, 12.44.

4,6-Bis(4-methoxyphenyl)-1′,3,3′-trimethyl-1,4,6,7-tetrahydro-2′ H -spiro[pyrazolo[3,4- b ]pyridine-5,5′-pyrimidine]-2′,4′,6′(1′ H ,3′ H )-trione (6e)

Yellow solid; mp 225-226 ˚C.

¹H NMR (200 MHz, DMSO-d 6): δ = 1.52 (s, 3 H, CH3), 2.74 (s, 3 H, NCH3), 2.79 (s, 3 H, NCH3), 3.66 (s, 3 H, OCH3), 3.68 (s, 3 H, OCH3), 4.68 (d, J = 7.3 Hz, 1 H, 6-CH), 4.88 (s, 1 H, 4-CH), 5.83 (d, J = 7.3 Hz, 1 H, 7-NH), 6.75-7.06 (m, 8 Harom), 11.54 (s, 1 H, NH).

¹³C NMR (100 MHz, DMSO-d 6): δ = 170.4, 164.6, 162.5, 159.6, 158.7, 152.5, 149.7, 135.3, 131.9, 130.1, 129.0, 128.4, 114.6, 113.7, 100.1, 66.2, 60.4, 55.1, 54.9, 45.8, 28.0, 27.3, 11.2.

MS (EI, 70 eV): m/z (%) = 489 (29.7) [M+], 216 (100), 273 (74.6), 274 (68), 490 (20).

Anal. Calcd For C26H27N5O5: C, 63.79; H, 5.56; N, 14.31. Found: C, 63.82; H, 5.54; N, 14.30.

4,6-Bis(4-methoxyphenyl)-1′,3′-dimethyl-3-phenyl-1 H -1,4,6,7-tetrahydro-2′ H -spiro[pyrazolo[3,4- b ]pyridine-5,5′-pyrimidine]-2′,4′,6′(1′ H ,3′ H )-trione (6f)

Yellow solid; mp 156-157 ˚C.

¹H NMR (200 MHz, DMSO-d 6): δ = 2.67 (s, 3 H, NCH3), 2.83 (s, 3 H, NCH3), 3.49 (s, 3 H, OCH3), 3.69 (s, 3 H, OCH3), 4.81 (d, J = 7.3 Hz, 1 H, 6-CH), 5.28 (s, 1 H, 4-CH), 6.02 (d, J = 7.3 Hz, 1 H, 7-NH), 6.40-7.10 (m, 13 Harom), 12.07 (s, 1 H, NH).

¹³C NMR (100 MHz, DMSO-d 6): δ = 170.6, 164.6, 162.5, 159.6, 158.2, 149.6, 129.8, 128.6, 128.5, 128.2, 127.6, 127.1, 126.8, 113.7, 113.0, 99.6, 65.8, 60.6, 55.1, 54.8, 46.4, 35.7, 30.7, 28.1, 27.3.

MS (EI, 70 eV): m/z (%) = 551 (30.8) [M+], 277 (100), 273 (70.6), 274 (62.2).

Anal. Calcd For C31H29N5O5: C, 67.50; H, 5.30; N, 12.70. Found: C, 67.47; H, 5.33; N, 12.67.

4-(4-Ethylphenyl)-6-(4-methoxyphenyl)-3-methyl-1 H -1,4,6,7-tetrahydro-2′ H -spiro[pyrazolo[3,4- b ]pyridine-5,5′-pyrimidine]-2′,4′,6′(1′ H ,3′ H )-trione (6g)

Yellow solid; mp 219-220 ˚C.

¹H NMR (200 MHz, DMSO-d 6): δ = 1.11 (t, J = 7.6 Hz, 3 H, CH3), 1.51 (s, 3 H, CH3), 2.56 (q, J = 7.6 Hz, 2 H, CH2), 3.70 (s, 3 H, OCH3), 4.66 (d, J = 7.3 Hz, 1 H, 6-CH), 4.80 (s, 1 H, 4-CH), 5.78 (d, J = 7.3 Hz, 1 H, 7-NH), 6.79-7.15 (m, 8 Harom), 9.95 (s, 1 H, NH), 10.85 (s, 1 H, NH), 11.06 (s, 1 H, NH).

MS (EI, 70 eV): m/z (%) = 459 (31) [M+], 457 (55), 332 (39.5), 215 (52).

Anal. Calcd For C25H25N5O4: C, 65.35; H, 5.48; N, 15.24. Found: C, 65.37; H, 5.51; N, 15.23.

6-(4-Methoxyphenyl)-1′,3,3′-trimethyl-4-[4-(methylsulfan­yl)phenyl]-1-phenyl-1,4,6,7-tetrahydro-2′ H -spiro[pyrazolo[3,4- b ]pyridine-5,5′-pyrimidine]-2′,4′,6′(1′ H ,3′ H )-trione (6h)

Colorless solid; mp 252-253 ˚C.

¹H NMR (200 MHz, DMSO-d 6): δ = 1.59 (s, 3 H, CH3), 2.41 (s, 3 H, SCH3), 2.77 (s, 3 H, NCH3), 2.84 (s, 3 H, NCH3), 3.69 (s, 3 H, OCH3), 4.76 (d, J = 7.3 Hz, 1 H, 6-CH), 4.95 (s, 1 H, 4-CH), 6.24 (d, J = 7.3 Hz, 1 H, 7-NH), 6.80-7.80 (m, 13 Harom).

¹³C NMR (100 MHz, DMSO-d 6): δ = 170.2, 164.9, 159.6, 158.9, 149.6, 145.5, 144.2, 139.6, 138.0, 133.0, 132.8, 132.2, 132.0, 129.0, 128.7, 128.1, 125.6, 125.5, 121.1, 113.8, 101.9, 66.5, 58.6, 55.0, 46.6, 28.2, 27.5, 14.2, 13.9.

MS (EI, 70 eV): m/z (%) = 581 (93) [M+], 565 (37.8), 290 (100), 426 (54.9), 306 (40.1).

Anal. Calcd For C32H31N5O4S: C, 66.07; H, 5.37; N, 12.04. Found: C, 66.03; H, 5.33; N, 12.03.

    References

  • 1a Dömling A. Ugi I. Angew. Chem. Int. Ed.  2000,  39:  3168 
  • 1b Wender PA. Handy ST. Wright DL. Chem. Ind. (London)  1997,  765 
  • Multicomponent Reactions   Zhu J. Bienayme H. Wiley-VCH; Weinheim: 2005. 
  • 2b Bagley MC. Lubinu MC. Top. Heterocycl. Chem.  2006,  1:  31 
  • 2c Simon C. Constantieux T. Rodriguez J. Eur. J. Org. Chem.  2004,  4957 
  • 2d Orru RVA. de Greef M. Synthesis  2003,  1471 
  • 2e Dömling A. Chem. Rev.  2006,  106:  17 
  • 2f Groenendaal B. Ruijter E. Orru RVA. Chem. Commun.  2008,  5474 
  • See, for example:
  • 3a Kappe CO. Angew. Chem. Int. Ed.  2004,  43:  6250 
  • 3b Hayes BL. Aldrichimica Acta  2004,  37:  266 
  • 3c Roberts BA. Strauss CR. Acc. Chem. Res.  2005,  38:  653 
  • 3d De La Hoz A. Diaz-Ortiz A. Moreno A. Chem. Soc. Rev.  2005,  34:  164 
  • 3e Kappe C. O., Stadler A.; Microwaves in Organic and Medicinal Chemistry; Wiley-VCH: Weinheim, 2005
  • See, for example:
  • 4a Bonrath W. Paz Schmidt R. In Advances in Organic Synthesis   . Bentham Science; Amsterdam: 2005.  Chap. 3. p.81-117  
  • 4b Mason TJ. Luche J.-L. In Chemistry Under Extreme or Non-Classical Conditions   van Eldick R. Hubbard CD. John Wiley; Chichester: 1997. 
  • 4c Cravotto G. Cintas PJ. Chem. Soc. Rev.  2006,  35:  180 
  • 4d Mason TJ. Chem. Soc. Rev.  1997,  26:  443 
  • 4e Muravyova EA. Desenko SM. Musatov VI. Knyazeva IV. Shishkina SV. Shishkin OV. Chebanov VA. J. Comb. Chem.  2007,  9:  798 
  • 5a Huang Z. Ma Q. Bobbitt JM. J. Org. Chem.  1993,  58:  4837 
  • 5b Vicente J. Chicote MT. Guerrero R. de Arellano MCR. Chem. Commun.  1999,  1541 
  • 5c Alajarin R. Avarez-Buila J. Vaquero JJ. Sunkel C. Fau J. Statkov P. Sanz J. Tetrahedron: Asymmetry  1993,  4:  617 
  • 5d Bossert F. Vater W. Med. Res. Rev.  1989,  9:  291 
  • 5e Triggle DJ. Langs DA. Janis RA. Med. Res. Rev.  1989,  9:  123 
  • 5f Tsuda Y, Mishina T, Obata M, Araki K, Inui J, and Nakamura T. inventors; WO  8,504,172. 
  • 5g Tsuda Y, Mishina T, Obata M, Araki K, Inui J, and Nakamura T. inventors; JP  61,227,584. 
  • 5h Tsuda Y, Mishina T, Obata M, Araki K, Inui J, and Nakamura T. inventors; EP  0,217,142. 
  • 5i Atwal KS, Vaccaro W, Lloyd J, Finlay H, Yan L, and Bhandaru RS. inventors; US  2007,099,899. 
  • 5j Atwal KS. Moreland S. Bioorg. Med. Chem. Lett.  1991,  1:  291 
  • 6a Sanghvi YS. Larson SB. Wills RC. Robins RK. Revankar GR. J. Med. Chem.  1989,  32:  945 
  • 6b Bell MR. Ackerman JH. US 4,920,128,  1990, 
  • 6c Farghaly AM. Habib NS. Hazzaa AB. El-Sayed OA. J. Pharm. Sci.  1989,  3:  90 
  • 6d Ganjee A. Adair OO. Queener SF. J. Med. Chem.  2003,  46:  5074 
  • 6e Rosowsky A. Chen H. Fu H. Queener SF. Bioorg. Med. Chem.  2003,  11:  59 
  • 6f Dishington AP. Johnson PD. Kettle JG. Tetrahedron Lett.  2004,  45:  3733 
  • 7 Tseng CP. inventors; US  4,838,925. 
  • 8a Hahn WE. Muszynski M. Chem. Stosow.  1986,  30:  421 
  • 8b Muszynski M. Hahn WE. PL 130681, 1984; Chem. Abstr. 1986,  104, 159328a 
  • 9a Chebanov VA. Desenko SM. Curr. Org. Chem.  2006,  10:  297 
  • 9b Chebanov VA. Sakhno YaI. Desenko SM. Chernenko VN. Musatov VI. Shishkina SV. Shishkin OV. Kappe CO. Tetrahedron  2007,  63:  1229 
  • 9c Quiroga J. Insuasty B. Hormaza A. Saitz C. Jullian C. J. Heterocycl. Chem.  1998,  35:  575 
  • 9d Drizin I. Holladay MW. Yi L. Zhang GQ. Gopalakrishnan S. Gopalakrishnan M. Whiteaker KL. Buckner SA. Sullivan JP. Carroll WA. Bioorg. Med. Chem. Lett.  2002,  12:  1481 
  • 9e Chebanov VA. Saraev VE. Desenko SM. Chernenko VN. Shishkina SV. Shishkin OV. Kobzar KM. Kappe CO. Org. Lett.  2007,  9:  1691 
  • 9f Gladkov ES. Chebanov VA. Desenko SM. Shishkin OV. Shishkina SV. Dallinger D. Kappe CO. Heterocycles  2007,  63:  469 
  • 9g Chebanov VA. Sakhno YI. Desenko SM. Shishkina SV. Musatov VI. Shishkin OV. Knyazeva IV. Synthesis  2005,  2597 
  • 9h Chebanov VA. Saraev VE. Desenko SM. Chernenko VN. Knyazeva IV. Groth U. Glasnov TN. Kappe CO. J. Org. Chem.  2008,  73:  5110 
  • 9i Sakhno YaI. Desenko SM. Shishkina SV. Shishkin OV. Sysoyev DO. Groth U. Kappe CO. Chebanov VA. Tetrahedron  2008,  64:  11041 
  • 10 Shirobokova MG. PhD Thesis   Kharkiv National University; Ukraine: 2001. 
  • 11a Aly AA. Phosphorus, Sulfur Silicon Relat. Elem.  2006,  181:  2395 
  • 11b Wamhoff H. Paasch J. Liebigs Ann. Chem.  1990,  995 
  • 11c Hussein AM. El-Emary TI. J. Chem. Res., Synop.  1998,  20 
  • 12 Ahluwalia VK. Dahiya A. Garg VK. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.  1997,  88 
  • 13a Suresh T. Kumar RN. Mohan PS. Heterocycl. Commun.  2003,  9:  203 
  • 13b Khajuria RK. Sharma SR. Jain SM. Sharma S. Kapil A. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.  1993,  981 
  • 14a Shaabani A. Bazgir A. Tetrahedron Lett.  2004,  45:  2575 
  • 14b Drozdz B. Arch. Pharm. (Weinheim, Ger.)  1989,  322:  231 
  • 14c Saini A. Kumar S. Sandhu JS. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.  2004,  43:  2482 
  • 15a Nam NL. Grandberg II. Sorokin VI. Chem. Heterocycl. Compd. (Engl. Transl.)  2000,  36:  281 ; Khim. Geterotsikl. Soedin. 2000, 342
  • 15b Desenko SM. Orlov VD. Azaheterocycles Based on Aromatic Unsaturated Ketones   Folio; Kharkov: 1998. 
  • 16 Brooker L. G. S. Keyes G. H. Sprague R. H. VanDyke R. H. VanLare E. VanZandt G. White F. L. J. Am. Chem. Soc.  1951,  73:  5326 
  • 17 Puchala A. Suontamo R. Rasala D. Lysek R. J. Chem. Soc., Perkin Trans. 2  1996,  2383 
18

Sheldrick G. M. SHELXTL PLUS, PC Version, A system of computer programs for the determination of crystal structure from X-ray diffraction data, Rev.5.1, 1998.

19

The final atomic coordinates, and crystallographic data for molecules 4a and 6h have been deposited with the Cambridge Crystallographic Data Centre, 12 Union Road, CB2 1EZ, UK [fax: +44 (1223)336033, e-mail: deposit@ccdc.cam.ac.uk] and are available on request quoting the deposition numbers CCDC 706772 for 4a and CCDC 706773 for 6h.

    References

  • 1a Dömling A. Ugi I. Angew. Chem. Int. Ed.  2000,  39:  3168 
  • 1b Wender PA. Handy ST. Wright DL. Chem. Ind. (London)  1997,  765 
  • Multicomponent Reactions   Zhu J. Bienayme H. Wiley-VCH; Weinheim: 2005. 
  • 2b Bagley MC. Lubinu MC. Top. Heterocycl. Chem.  2006,  1:  31 
  • 2c Simon C. Constantieux T. Rodriguez J. Eur. J. Org. Chem.  2004,  4957 
  • 2d Orru RVA. de Greef M. Synthesis  2003,  1471 
  • 2e Dömling A. Chem. Rev.  2006,  106:  17 
  • 2f Groenendaal B. Ruijter E. Orru RVA. Chem. Commun.  2008,  5474 
  • See, for example:
  • 3a Kappe CO. Angew. Chem. Int. Ed.  2004,  43:  6250 
  • 3b Hayes BL. Aldrichimica Acta  2004,  37:  266 
  • 3c Roberts BA. Strauss CR. Acc. Chem. Res.  2005,  38:  653 
  • 3d De La Hoz A. Diaz-Ortiz A. Moreno A. Chem. Soc. Rev.  2005,  34:  164 
  • 3e Kappe C. O., Stadler A.; Microwaves in Organic and Medicinal Chemistry; Wiley-VCH: Weinheim, 2005
  • See, for example:
  • 4a Bonrath W. Paz Schmidt R. In Advances in Organic Synthesis   . Bentham Science; Amsterdam: 2005.  Chap. 3. p.81-117  
  • 4b Mason TJ. Luche J.-L. In Chemistry Under Extreme or Non-Classical Conditions   van Eldick R. Hubbard CD. John Wiley; Chichester: 1997. 
  • 4c Cravotto G. Cintas PJ. Chem. Soc. Rev.  2006,  35:  180 
  • 4d Mason TJ. Chem. Soc. Rev.  1997,  26:  443 
  • 4e Muravyova EA. Desenko SM. Musatov VI. Knyazeva IV. Shishkina SV. Shishkin OV. Chebanov VA. J. Comb. Chem.  2007,  9:  798 
  • 5a Huang Z. Ma Q. Bobbitt JM. J. Org. Chem.  1993,  58:  4837 
  • 5b Vicente J. Chicote MT. Guerrero R. de Arellano MCR. Chem. Commun.  1999,  1541 
  • 5c Alajarin R. Avarez-Buila J. Vaquero JJ. Sunkel C. Fau J. Statkov P. Sanz J. Tetrahedron: Asymmetry  1993,  4:  617 
  • 5d Bossert F. Vater W. Med. Res. Rev.  1989,  9:  291 
  • 5e Triggle DJ. Langs DA. Janis RA. Med. Res. Rev.  1989,  9:  123 
  • 5f Tsuda Y, Mishina T, Obata M, Araki K, Inui J, and Nakamura T. inventors; WO  8,504,172. 
  • 5g Tsuda Y, Mishina T, Obata M, Araki K, Inui J, and Nakamura T. inventors; JP  61,227,584. 
  • 5h Tsuda Y, Mishina T, Obata M, Araki K, Inui J, and Nakamura T. inventors; EP  0,217,142. 
  • 5i Atwal KS, Vaccaro W, Lloyd J, Finlay H, Yan L, and Bhandaru RS. inventors; US  2007,099,899. 
  • 5j Atwal KS. Moreland S. Bioorg. Med. Chem. Lett.  1991,  1:  291 
  • 6a Sanghvi YS. Larson SB. Wills RC. Robins RK. Revankar GR. J. Med. Chem.  1989,  32:  945 
  • 6b Bell MR. Ackerman JH. US 4,920,128,  1990, 
  • 6c Farghaly AM. Habib NS. Hazzaa AB. El-Sayed OA. J. Pharm. Sci.  1989,  3:  90 
  • 6d Ganjee A. Adair OO. Queener SF. J. Med. Chem.  2003,  46:  5074 
  • 6e Rosowsky A. Chen H. Fu H. Queener SF. Bioorg. Med. Chem.  2003,  11:  59 
  • 6f Dishington AP. Johnson PD. Kettle JG. Tetrahedron Lett.  2004,  45:  3733 
  • 7 Tseng CP. inventors; US  4,838,925. 
  • 8a Hahn WE. Muszynski M. Chem. Stosow.  1986,  30:  421 
  • 8b Muszynski M. Hahn WE. PL 130681, 1984; Chem. Abstr. 1986,  104, 159328a 
  • 9a Chebanov VA. Desenko SM. Curr. Org. Chem.  2006,  10:  297 
  • 9b Chebanov VA. Sakhno YaI. Desenko SM. Chernenko VN. Musatov VI. Shishkina SV. Shishkin OV. Kappe CO. Tetrahedron  2007,  63:  1229 
  • 9c Quiroga J. Insuasty B. Hormaza A. Saitz C. Jullian C. J. Heterocycl. Chem.  1998,  35:  575 
  • 9d Drizin I. Holladay MW. Yi L. Zhang GQ. Gopalakrishnan S. Gopalakrishnan M. Whiteaker KL. Buckner SA. Sullivan JP. Carroll WA. Bioorg. Med. Chem. Lett.  2002,  12:  1481 
  • 9e Chebanov VA. Saraev VE. Desenko SM. Chernenko VN. Shishkina SV. Shishkin OV. Kobzar KM. Kappe CO. Org. Lett.  2007,  9:  1691 
  • 9f Gladkov ES. Chebanov VA. Desenko SM. Shishkin OV. Shishkina SV. Dallinger D. Kappe CO. Heterocycles  2007,  63:  469 
  • 9g Chebanov VA. Sakhno YI. Desenko SM. Shishkina SV. Musatov VI. Shishkin OV. Knyazeva IV. Synthesis  2005,  2597 
  • 9h Chebanov VA. Saraev VE. Desenko SM. Chernenko VN. Knyazeva IV. Groth U. Glasnov TN. Kappe CO. J. Org. Chem.  2008,  73:  5110 
  • 9i Sakhno YaI. Desenko SM. Shishkina SV. Shishkin OV. Sysoyev DO. Groth U. Kappe CO. Chebanov VA. Tetrahedron  2008,  64:  11041 
  • 10 Shirobokova MG. PhD Thesis   Kharkiv National University; Ukraine: 2001. 
  • 11a Aly AA. Phosphorus, Sulfur Silicon Relat. Elem.  2006,  181:  2395 
  • 11b Wamhoff H. Paasch J. Liebigs Ann. Chem.  1990,  995 
  • 11c Hussein AM. El-Emary TI. J. Chem. Res., Synop.  1998,  20 
  • 12 Ahluwalia VK. Dahiya A. Garg VK. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.  1997,  88 
  • 13a Suresh T. Kumar RN. Mohan PS. Heterocycl. Commun.  2003,  9:  203 
  • 13b Khajuria RK. Sharma SR. Jain SM. Sharma S. Kapil A. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.  1993,  981 
  • 14a Shaabani A. Bazgir A. Tetrahedron Lett.  2004,  45:  2575 
  • 14b Drozdz B. Arch. Pharm. (Weinheim, Ger.)  1989,  322:  231 
  • 14c Saini A. Kumar S. Sandhu JS. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.  2004,  43:  2482 
  • 15a Nam NL. Grandberg II. Sorokin VI. Chem. Heterocycl. Compd. (Engl. Transl.)  2000,  36:  281 ; Khim. Geterotsikl. Soedin. 2000, 342
  • 15b Desenko SM. Orlov VD. Azaheterocycles Based on Aromatic Unsaturated Ketones   Folio; Kharkov: 1998. 
  • 16 Brooker L. G. S. Keyes G. H. Sprague R. H. VanDyke R. H. VanLare E. VanZandt G. White F. L. J. Am. Chem. Soc.  1951,  73:  5326 
  • 17 Puchala A. Suontamo R. Rasala D. Lysek R. J. Chem. Soc., Perkin Trans. 2  1996,  2383 
18

Sheldrick G. M. SHELXTL PLUS, PC Version, A system of computer programs for the determination of crystal structure from X-ray diffraction data, Rev.5.1, 1998.

19

The final atomic coordinates, and crystallographic data for molecules 4a and 6h have been deposited with the Cambridge Crystallographic Data Centre, 12 Union Road, CB2 1EZ, UK [fax: +44 (1223)336033, e-mail: deposit@ccdc.cam.ac.uk] and are available on request quoting the deposition numbers CCDC 706772 for 4a and CCDC 706773 for 6h.

Scheme 1

Scheme 2

Scheme 3

Figure 1 Structure of compound 4a (X-ray diffraction data)

Figure 2 Structure of compound 6h (X-ray diffraction data)