Synthesis 2009(6): 985-999  
DOI: 10.1055/s-0028-1087983
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Partially Saturated Indeno[1,2-b]indole Derivatives via Deoxygenation of Heterocyclic α-Hydroxy-N,O-hemiaminals

Hans-Jörg Hemmerling*a,1, Guido Reissb
a Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
e-Mail: H-J.Hemmerling@web.de;
b Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany

Further Information

Publication History

Received 31 July 2008
Publication Date:
02 March 2009 (online)

Abstract

A series of 3-aminocyclohex-2-enones were reacted with indane-1,2,3-trione monohydrate (ninhydrin) yielding 4b,9b-dihydroxyindeno[1,2-b]indoles that were deoxygenated to indeno[1,2-b]indoles.

Recently we reported on the reaction of indane-1,2,3-trione monohydrate (ninhydrin, 1) and amidines 2, which gave vic-dihydroxy-substituted indeno[1,2-d]imidazoles. [²]

Scheme 1 Indeno[1,2-d]imidazoles via deoxygenation of vic-di­hydroxy-substituted indeno[1,2-d]imidazoles

We found that the resulting N-substituted vic-dihydroxy-indenoimidazoles 3 were deoxygenated by mixtures of thionyl chloride and heterocyclic bases, such as pyridine or imidazole. Furthermore we optimized this reaction and found N,N,N′,N′-tetramethylsulfurous acid diamide (4) or its ethyl analogue as novel reagents, [³] which were well suited to this purpose. In our mechanistic reflections, we postulated the formation of an intermediate β-sultine via an iminium cation and fragmentation with formation of an olefinic bond. [4] Thus the respective indeno[1,2-d]imidazoles 5 were formed by a short and simple procedure in acceptable to good yields. The convenience of this reaction promises to be useful in the preparation of a wide variety of related indene-annulated imidazoles as they are required for structure-activity relationship studies (Scheme  [¹] ).

Continuing this work, we planned to test the synthetic potential of 4 in the deoxygenation of structural different vic-diols, generated by the reaction of 1 with 1,3-dinucleophiles, such as push-pull olefins.

In the literature there is only one short communication on this subject. The reaction of 1 with 4-aminopent-3-en-2-one or 3-aminocrotonic acid derivatives yields vic-dihydroxyindeno[1,2-b]pyrroles. [5]

In our investigations, we chose cyclic enaminones, such as 3-aminocyclohex-2-enones 7, to avoid complications due to E/Z-isomerization of the double bond. Though cyclic enaminones are widely used synthons in heterocyclic chemistry, their reaction with 1 has not been previously reported. [6] [7] Therefore, first the reaction of 1 with cyclic enaminones, such as 7, had to be investigated.

A short retrosynthetic study shows that the reaction of 7 and 1 may provide vic-dihydroxy-indenoindoles 8 or/and 9 (Scheme  [²] ). Both of the possible cyclic products differ from 3 in the presence of only one N,O-hemiaminal substructure, neighboring a tertiary alcohol functionality. The consequences of this structural change on the subsequent deoxygenation reaction with 4 were the second aspect of this investigation. It may lead to the partially saturated indenoindoles 10 or/and its regioisomer, which are new.

Indenoindoles served as an attractive target for pharmacological studies. In the last few years, indeno[1,2-b]indoles have been reported as powerful lipid peroxidation inhibitors, [8] potassium channel openers, [9] DNS intercalators and topoisomerase II inhibitors, [¹0] estrogenic agents, [¹¹] or inhibitors of protein kinase CK 2, [¹²] indicating a growing interest in this class of compounds.

Among the existing procedures for the preparation of indenoindoles, the Fischer indolization starting with an indanone via the respective phenylhydrazones serves as the most common method. [¹³] [¹4] Recently, two new syntheses by transformation and reduction of 2-nitrobenzylidene­phthalide, generated either by intramolecular cyclization of 2-(2-nitrophenylethynyl)benzoic acid [¹5] or by reaction of a phthalidyl-phosphonium bromide with 2-nitrobenzaldehyde, [¹0] and cyclization of the resulting amino compounds, had been published. Some articles have been written about the formation of vic-dihydroxy-indenoindolones by the reaction of 1 with aromatic amines, bearing an electron-donating group para to the amine. [¹6]

We now report on our investigations of the reaction of cyclic enaminones 7 and indane-1,2,3-trione monohydrate (1) to yield vic-dihydroxy-indenoindoles 9 and the subsequent deoxygenation reaction with N,N,N′,N′-tetramethylsulfurous diamide (4), which gave the partially unsaturated indenoindoles 10.

Access to the 3-aminocyclohex-2-enones 7A1-7E2 (Table  [¹] ) was achieved according to published procedures by refluxing cyclohexane-1,3-diones 6 with primary amines in benzene and removal of water as an azeotrope with a Dean-Stark water trap; [¹7] for 7A1, 7A2, 7B1, and 7C1, (R¹ = H, Me) ammonia or methylamine, respectively, was passed through the boiling solution of the cyclohexane-1,3-dione 6. Compound 7B10 was synthesized by mixing equimolar amounts of cyclohexane-1,3-dione (6B1), glycine methyl ester hydrochloride, and triethyl­amine. The heterocyclic enaminone 7F1 (X = N) was prepared from the analogous piperidine-3,5-dione according to published procedures. [¹8] The reaction products 7 were isolated in good to excellent yields. Most of the enaminones were of sufficient purity to use without further purification.

Table 1 Substitution Patterns of 7-10, A1-F1
7-10 X R¹ R² R³ R4
A1 C H H Me Me
A2 C Me H Me Me
A3 C Bn H Me Me
A4 C Ph H Me Me
B1 C H H H H
B2 C Pr H H H
B3 C (CH2)5Me H H H
B4 C (CH2)7Me H H H
B5 C i-Pr H H H
B6 C Bn H H H
B7 C (CH2)2Ph H H H
B8 C (CH2)3Ph H H H
B9 C CH(Me)Ph H H H
B10 C (CH2)3OEt H H H
B11 C 4-MeOC6H4CH2 H H H
B12 C 3,4-(MeO)2C6H3(CH2)2 H H H
B13 C (CH2)2NMe2 H H H
B14 C (CH2)3NMe2 H H H
B15 C 2-pyridylmethyl H H H
B16 C (CH2)2OH H H H
B17 C (CH2)3OH H H H
B18 C CH2CO2Me H H H
B19 C Ph H H H
C1 C H CO2Me Me H
C2 C i-Pr CO2Me Me H
C3 C Bn CO2Me Me H
C4 C Ph CO2Me Me H
D1 C Me H Ph H
D2 C Bn H Ph H
D3 C Ph H Ph H
E1 C i-Pr H Me H
E2 C Bn H Me H
E3 C (CH2)2Ph H Me H
E4 C Ph H Me H
F1 N Bn H Bn H

To prepare the vic-dihydroxy-indenoindoles 9, a solution of equimolar amounts of the corresponding enaminones 7 and 1 in an appropriate solvent were stirred at ambient temperature. The reaction was monitored by TLC and terminated when the substrates had disappeared. Furthermore TLC showed, that only one compound was produced (Table  [²] ). Spectroscopic data (¹H NMR and ¹³C NMR, Table  [³] ) revealed that this was a cyclization product with two ¹H resonances due to OH functionalities, corresponding to the ¹³C resonances in the range of δ = 83-84 and 93-96. However an unambiguous assignment, which of the two isomeric vic-dihydroxy-indenoindolones 8 or 9 had been produced, could not be made. Therefore, the reaction product of 7B1 and 1 was studied by X-ray diffraction analysis, which clearly confirmed the structure of the 4b,9b-dihydroxy-4b,5,6,7,8,9b-hexahydroindeno[1,2-b]indole-9,10-dione (9B1) (Figure  [¹] ). ¹H NMR spectra and ¹³C NMR spectra of 9B9, 9C, 9D, and 9E show a dual set of signals, indicating that mixtures of two diastereomers were obtained.

The deoxygenation of 9 was performed according to a procedure that we have recently published. [4] To a solution of 9 in N,N-dimethylformamide, acetic acid, and 4 were added and the mixture was stirred for 3-8 hours. Immediately after the addition the temperature rose to 30-40 ˚C and the color of the mixture turned red. The products 10 could be isolated by the usual procedures in good to excellent yields (Table  [4] ). Structural proof was obtained from spectroscopic data (¹H NMR, ¹³C NMR, IR, MS, Table  [5] ), elemental analysis, and X-ray diffraction analysis of 10B5 (Figure  [²] ). The shielding effect of the N-phenyl ring in 9/10A4, 9/10B19, 9/10D3, 9/10C4, and 9/10E4 respectively accounts for a significant high field shift of H4 to δ = 6.5-6.75 in their ¹H NMR spectra.

Scheme 2 Synthesis of vic-dihydroxy-indeno[1,2-b]indoles 9. Reagents and conditions: (i) R¹NH2, benzene, reflux, 3-8 h, 60-95%; (ii) indane-1,2,3-trione monohydrate (1), CHCl3 (MeOH), r.t., 8-24 h, 40-90%.

Figure 1 X-ray crystal structure of 9B1˙MeOH; displacement ellipsoids are drawn at the 30% probability level, radii of hydrogen atoms are chosen arbitrarily and the hydrogen atom labels are omitted for clarity

Scheme 3 Synthesis of Indeno[1,2-b]indoles. Reagents and conditions: (i) R4 = H: 5% aq KOH, reflux, 30-40%; (ii) R¹NH2, benzene, reflux, 3-8 h, 40-90%; (iii) 1, CHCl3 (MeOH), r.t., 8-24 h, 40-90%.; (iv) 4, DMF, AcOH, r.t., 3-8 h, 60-95%; (v) R4 = H: R¹NH2, benzene, reflux, 3-8 h, 40-90%; (vi) 1, CHCl3 (MeOH), r.t., 8-24 h, 40-90%.; (vii) 4, DMF, AcOH, r.t., 3-8 h, 60-95%; (viii) 5% aq KOH, reflux, 30-40%.

Hydrolysis and decarboxylation of 6C gave 6E (Scheme  [³] , steps i-iv, route A) in only moderate yields, hence an alternative route B for the preparation of 10E may be more efficient with respect to higher overall yields. Route B (Scheme  [³] , step v-viii) starting with aminolysis of 6C to 7C proceeds in a similar sequence to 10C, which gave 10E by hydrolysis and decarboxylation (Scheme  [³] , step viii). In our hands the synthesis of 10E2 via route B with 38% gave somewhat higher yields than via route A with 31%.

Figure 2 X-ray crystal structure of 10B5; displacement ellipsoids are drawn at the 30% probability level, radii of hydrogen atoms are chosen arbitrarily and the hydrogen atom labels are omitted for clarity

In conclusion, we have found that the reaction of indane-1,2,3-trione monohydrate (1) with cyclic enaminones 7 yields vic-dihydroxy-indeno[1,2-b]indoles 9. The vic-deoxygenation of 9 with N,N,N′,N′-tetramethylsulfurous diamide (4) provides an efficient and facile procedure for the synthesis of partially saturated indeno[1,2-b]indoles 10.

Melting points: Büchi melting point apparatus by Dr. Tottoli, not corrected. IR spectra: Perkin Elmer 177 and FT-IR 1600, using KBr discs. ¹H NMR spectra and ¹³C NMR spectra: Varian FT 80 (80 MHz/20 MHz), Bruker AC 200F (200 MHz/50 MHz) in the designated solvents with TMS as an internal standard; signals, labeled by * exchanged by addition of D2O. MS (EI) spectra: Finnigan 4200 quadrupole mass-spectrometer, equipped with a MASPEC datasystem; 70 eV ionizing potential. Microanalyses: Perkin Elmer Elemental Analyzer 2400/II. MPLC or flash chromatography was performed on 230-400 mesh silica (Merck). Solvents were purified by standard methods and dried over molecular sieves or sodium. N,N,N′,N′-Tetramethylsulfurous diamide (4) was prepared according to the literature. [¹9] Yields refer to products after one crystallization and are not optimized.

3-Aminocyclohex-2-enones 7; General Procedure

Method A: A soln containing equimolar quantities of a primary amine and a cyclohexane-1,3-dione 6 in benzene was refluxed at a Dean-Stark trap until the separation of H2O had finished (ca. 3 h). The solvent was removed in vacuo and the residual solid or viscous oil was triturated (EtOAc) to give 7 as a crystalline solid.

Method B: A soln of a cyclohexane-1,3-dione 6 was refluxed in a Dean-Stark trap and NH3 or MeNH2, respectively was passed through until the separation of H2O had finished (ca. 3 h). The solvent was removed in vacuo and the residual solid or viscous oil was triturated (EtOAc) to give 7A1, 7A2, 7B1, 7C1, 7D1, respectively, as crystalline solids.

4b,9b-Dihydroxy-4b,5,6,7,8,9b-hexahydroindeno[1,2- b ]indole-9,10-diones 9; General Procedure

Equimolar amounts of enaminone 7 (0.05 mol) and 1 (8.91 g, 0.05 mol) were dissolved in CHCl3 or MeOH (100 mL) and stirred at r.t. The solvent was evaporated in vacuo at max. 60 ˚C. The residue was triturated (acetone-H2O or EtOAc) to yield a white solid that was isolated by suction. A second quantity was received from the filtrate.

Table 2 Compound Data of 4b,9b-Dihydroxyindeno[1,2-b]indole-9,10-diones 9 (continued)
Compd Yield (%) Mp (˚C)
(Solvent)
Molecular Formulaa
9A1 66 229-230
(MeOH-H2O)
C17H17NO4 (299.33)
9A2 43 160-161
(EtOAc)
C18H19NO4 (313.35)b
9A3 70 188-189
(MeOH-EtOAc)
C24H23NO4 (389.44)
9A4 95 211-212
(EtOAc)
C23H21NO4 (375.42)
9B1 96 237-238
(MeOH)
C15H13NO4 (271.27)
9B2 94 187
(MeOH-H2O)
C18H19NO4 (313.34)
9B3 86 179
(MeOH)
C21H25NO4 (355.43)
9B4 89 148
(MeOH-H2O)
C23H29NO4 (383.48)
9B5 79 205
(MeOH)
C18H19NO4 (313.34)
9B6 85 209-210
(EtOH)
C22H19NO4 (361.39)
9B7 88 204
(MeCN)
C23H21NO4 (375.42)
9B8 77 128
(acetone)
C24H23NO4 (389.44)c
9B9 64 191
(MeOH)
C23H21NO4 (375.42)d
9B10 71 162
(EtOH)
C20H23NO5 (357.16)
9B11 95 152-153
(MeCN)
C23H21NO5 (391.42)
9B12 63 217-218
(MeOH)
C25H25NO6 (435.47)
9B14 54 183-184
(MeOH)
C20H24N2O4 (356.42)
9B15 81 228-229
(MeCN)
C21H18N2O4 (362.38)
9B16 73 209-210
(MeOH)
C17H17NO5 (315.32)
9B18 65 198-199
(MeOH)
C18H17NO6 (343.33)
9B19 91 212
(MeOH-H2O)
C21H17NO4 (347.36)e
9C2 76 171-172
(MeOH-H2O)
C21H23NO6 (385.41)f
9C3 81 173
(MeOH)
C25H23NO6 (433.46)
9C4 74 148
(MeOH-H2O)
C24H21NO6 (419.44)
9D2 88 136-137
(MeOH)
C28H23NO4 (437.49)g
9D3 77 162-163
(MeOH-H2O)
C27H21NO4 (423.46)
9E2 88 201-202
(MeOH-H2O)
C23H21NO4 (375.42)
9E3 75 202-203
(MeOH-H2O)
C24H23NO4 (389.44)
9F1 73 89
(MeOH-H2O)
C28H24N2O4 (452.50)h

a Analysis C ± 0.25, H ± 0.23, N ± 0.22 except 9F1 C -0.52, 9B9 H -0.33, 9B11 H +0.29.
b Analysis for C18H19NO4˙C4H8O2.
c Analysis for C24H23NO4˙0.5 C3H6O.
d Analysis for C23H21NO4˙CH3OH.
e Analysis for C21H17NO4˙0.5 H2O.
f Analysis for C21H23NO6˙H2O.
g Analysis for C28H23NO4˙2 CH3OH.
h Analysis for C28H24N2O4˙H2O.
Table 3 Spectral Data of 4b,9b-Dihydroxyindeno[1,2-b]indole-9,10-diones 9A1-9F1 (continued)
Compd IR (cm) ¹H NMRa δ, J (Hz) ¹³C NMRa δ MS (EI) m/z (%)
9A1 3407, 3306, 1713, 1605, 1588, 1545, 1501, 1406 0.79 (s, 3 H, CH3), 1.00 (s, 3 H, CH3), 1.92 (s, 2 H, CH2), 2.13-2.16 (AB, 2 H, CH2), 5.49* (s, 1 H, OH), 6.47* (s, 1 H, OH), 7.5-7.85 (m, 4 Harom), 9.05* (s, 1 H, NH) 27.5, 28.4, 33.2, 36.5, 51.1, 83.8, 92.8, 104.0, 122.5, 124.7, 129.8, 134.5, 135.3, 149.7, 164.2, 188.2, 198.1 299 (40) [M+], 282 (12), 281 (19), 242 (10), 225 (20), 215 (13), 197 (17), 166 (55), 139 (11), 130 (15), 105 (44), 104 (37), 83 (100), 77 (31)
9A2 1720, 1715, 1598, 1522, 1500, 1404, 1215 0.82 (s, 3 H, CH3), 1.02 (s, 3 H, CH3), 1.93 (s, 2 H, CH2), 2.2-2.35 (AB, 2 H, CH2), 3.17 (s, 3 H, NCH3), 5.61* (s, 1 H, OH), 6.74* (s, 1 H, OH), 7.5-7.9 (m, 4 Harom) 27.3, 27.9, 28.4, 32.6, 35.4, 50.9, 83.2, 95.0, 103.2, 123.0, 124.6, 130.0, 134.6, 135.2, 147.1, 163.9, 187.5, 197.4
9A3 3391, 2955, 1732, 1719, 1605, 1590, 1580, 1542, 1520, 1494, 1454, 1434, 1403, 1388, 1354, 1340, 1329, 1288, 1276, 1220 0.70 (s, 3 H, CH3), 0.83 (s, 3 H, CH3), 1.92 (s, 2 H, CH2), 2.01 (s, 2 H, CH2), 4.67-5.25 (AB, 2 H, CH 2Ph), 5.76* (s, 1 H, OH), 6.88* (s, 1 H, OH), 7.14-7.77 (m, 9 Harom) 27.7, 28.0, 32.9, 36.0, 44.6, 50.9, 83.4, 95.3, 103.9, 122.9, 124.8, 126.6, 126.8, 128.2, 130.0, 134.6, 135.1, 138.4, 148.0, 164.1, 187.9, 197.4 389 (7) [M+], 298 (45), 256 (17), 229 (11), 224 (11), 173 (10), 144 (28), 105 (18), 104 (34), 91 (100), 76 (25)
9A4 3470, 3230, 1720, 1604, 1545, 1492, 1455, 1440, 1403, 1279, 1204, 1146 0.89 (s, 3 H, CH3), 0.96 (s, 3 H, CH3), 1.76-2.47 (2 AB, 4 H, 2 CH2), 6.04* (s, 1 H, OH), 6.60-6.45 (m, 1 H, H4), 7.31* (s, 1 H, OH), 7.25-7.76 (m, 8 Harom) 26.4, 29.2, 33.3, 36.9, 51.1, 83.3, 96.6, 105.4, 123.1, 124.7, 127.8, 128.8, 129.2, 130.1, 134.6, 134.7, 135.9, 147.1, 163.2, 189.1, 197.5
9B1 3248, 1705, 1605, 1592, 1510 1.6-1.85 (m, 2 H, CH2), 2.0-2.1 (m, 2 H, CH2), 2.2-2.4 (m, 2 H, CH2), 5.47* (s, 1 H, OH), 6.44* (s, 1 H, OH), 7.5-7.8 (m, 4 Harom), 9.08* (s, 1 H, NH) 21.4, 23.1, 37.0, 83.9, 92.5, 105.3, 122.6, 124.7, 129.8, 134.5, 135.3, 149.8, 165.2, 189.0, 198.2 271 (7) [M+], 353 (45), 251 (18), 225 (15), 223 (13), 197 (23), 169 (11), 130 (12), 105 (14), 104 (36), 83 (39), 76 (100)
9B2 3395, 1720, 1603, 1540, 1492, 1438, 1405, 1362, 1328, 1288, 1222, 1194, 1157, 1123 0.93 (t, J = 7.5, 3 H, CH3), 1.4-2.0 (m, 4 H, 2 CH2), 2.0-2.1 (m, 2 H, CH2), 2.3-2.6 (m, 2 H, CH2), 3.35-3.8 (m, 2 H, CH2), 5.65* (s, 1 H, OH), 6.68* (s, 1 H, OH), 7.5-8.0 (m, 4 Harom) 313 (1) [M+], 295 (1), 266 (1), 228 (2), 210 (1), 180 (2), 153 (3), 105 (15), 104 (18), 76 (58), 56 (100)
9B3 3340, 1724, 1606, 1591, 1579, 1521, 1500, 1494 0.8-1.0 (m, 3 H, CH3), 1.2-2.6 (div. m, 14 H, 7 CH2), 3.4-3.8 (m, 2 H, CH2), 5.64* (s, 1 H, OH), 6.69* (s, 1 H, OH), 7.5-8.0 (m, 4 Harom) 355 (3) [M+], 337 (6), 321 (11), 319 (10), 264 (11), 195 (7), 124 (8), 110 (11), 105 (11), 104 (33), 97 (22), 96 (13), 76 (53), 55 (100)
9B4 3388, 2926, 2853, 1727, 1605, 1520, 1500, 1465, 1436, 1410, 1368 0.8-2.6 (m, 21 Haliphat), 3.3-3.8 (m, 2 H, NCH2), 5.64*, 6.68* (2 s, 2 H, 2 OH), 7.5-8.0 (m, 4 Harom) 383 (0.2) [M+], 365 (2), 349 (1), 347 (1), 266 (1), 223 (1), 180 (2), 152 (3), 138 (5), 110 (14), 104 (13), 97 (25), 55 (100)
9B5 3552, 3404, 2963, 1736, 1732, 1720, 1716, 1621, 1604, 1543, 1494, 1460, 1418, 1370, 1282, 1257, 1233, 1159 1.24 (d, J = 7.0, 3 H, CH3), 1.45 (d, J = 7.0, 3 H, CH3), 1.79 (m, 2 H, CH2), 2.05 (m, 2 H, CH2), 2.39-2.77 (m, 2 H, CH2), 4.59 (m, 1 H, CH), 5.66* (s, 1 H, OH), 6.71* (s, 1 H, OH), 7.54-7.97 (m, 4 Harom) 313 (17) [M+], 270 (32), 153 (19), 138 (18), 105 (59), 104 (62), 96 (44), 83 (24), 82 (27), 77 (55), 76 (75), 68 (29), 67 (23), 66 (20), 65 (26), 58 (33), 55 (100)
9B6 3383, 1717, 1604, 1548, 1516, 1488, 1453, 1434, 1407, 1356, 1226, 1194, 1140 1.4-1.65 (m, 2 H, CH2), 1.65-2.3 (m, 4 H, 2 CH2), 4.7-5.25 (AB, 2 H, CH 2Ph), 5.81* (s, 1 H, OH), 6.95* (s, 1 H, OH), 7.2-7.35 (m, 5 Harom), 7.5-7.9 (m, 4 Harom) 22.2, 22.9, 36.8, 44.9, 83.6, 95.1, 105.3, 123.0, 124.9, 126.8, 126.9, 128.3, 130.1, 134.7, 135.2, 138.2, 148.1, 165.4, 188.8, 197.5 361 (10) [M+], 271 (17), 270 (100), 252 (16), 242 (12), 228 (34), 106 (12), 105 (18), 104 (16), 91 (90)
9B7 3362, 1724, 1595, 1529, 1491, 1353, 1136 1.5-1.8 (m, 2 H, CH2), 1.95-2.05 (m, 2 H, CH2), 2.15-2.4 (m, 2 H, CH2), 2.8-3.1 (m, 2 H, CH2), 3.6-4.1 (dm, 2 H, CH2), 5.74* (s, 1 H, OH), 6.84* (s, 1 H, OH), 7.2-7.4 (m, 5 Harom), 7.5-8.05 (m, 4 Harom) 21.3, 22.3, 36.81, 36.86, 43.4, 83.5, 95.6, 104.8, 123.1, 124.7, 126.3, 128.4, 129.0, 130.1, 134.7, 135.5, 138.9, 148.2, 165.1, 188.7, 197.5 375 (12) [M+], 358 (10), 228 (12), 215 (22), 132 (14), 124 (53), 103 (31), 104 (100), 96 (29), 91 (19), 77 (19), 76 (46)
9B8 3340, 1724, 1603, 1538, 1495, 1420, 1410, 1366, 1216, 1139 1.6-2.7 (m, 10 H, 5 CH2), 3.45-3.85 (m, 2 H, NCH2), 5.67*, 6.72* (2 s, 2 H, 2 OH), 7.15-7.85 (m, 9 Harom)b 21.4, 22.4, 32.1, 32.4, 36.8, 41.2, 83.4, 95.3, 104.6, 123.1, 124.6, 125.8, 128.2, 130.1, 134.7, 135.3, 141.3, 148.2, 165.0, 188.6, 197.5b 389 (1) [M+], 371 (2), 353 (2), 229 (6), 132 (12), 125 (33), 118 (18), 117 (24), 104 (64), 97 (71), 91 (55), 76 (100)
9B9 3280, 3090, 1729, 1701, 1602, 1530, 1483, 1456 1.4-2.4 (m, 6 H, 3 CH2), 1.60, 1.86 (2 d, J 1 = 7.3, J 2 = 7.0, 3 H, CH3), 5.5-5.7 (m, 1 H, CH), 5.80*, 5.85* (2 s, 1 H, OH), 6.7-6.8 (m, 1 Harom), 6.99*, 7.01* (2 s, 1 H, OH), 7.1-8.1 (m, 8 Harom) 19.6, 20.6, 21.4, 21.6, 24.1, 24.8, 36.68, 36.73, 39.7, 40.1, 49.8, 50.6, 83.1, 83.3, 95.0, 96.3, 105.47, 105.51, 123.2, 123.5, 124.97, 125.04, 125.6, 126.5, 126.6, 126.9, 128.1, 128.2, 130.16, 130.22, 134.78, 134.81, 135.27, 135.34, 141.4, 142.0, 148.1, 148.5, 164.7, 188.8, 188.9, 197.3, 197.5 375 (3) [M+], 357 (3), 270 (11), 253 (13), 251 (5), 242 (5), 215 (15), 187 (12), 172 (12), 132 (12), 151 (6), 111 (7), 105 (75), 102 (5), 83 (18), 77 (100)
9B10 3446, 1720, 1594, 1582, 1509, 1502, 1448, 1415, 1366, 1352, 1317, 1247, 1217, 1191, 1150, 1112, 1086 1.15 (t, J = 7.0, 3 H, CH3), 1.65-2.1 (m, 6 H, 3 CH2), 2.35-2.6 (m, 2 H, CH2), 3.3-3.5 (2 m, 4 H, CH2OCH2), 3.6-3.8 (m, 2 H, NCH2), 5.67* (s, 1 H, OH), 6.70* (s, 1 H, OH), 7.54-7.95 (m, 4 Harom) 357 (2) [M+], 339 (6), 266 (12), 228 (7), 224 (7), 197 (18), 168 (34), 153 (28), 140 (46), 132 (30), 125 (68), 124 (51), 110 (22), 105 (21), 104 (93), 97 (100), 76 (67)
9B11 3358, 2940, 1724, 1606, 1538, 1512, 1488, 1417, 1247, 1178 1.5-1.8 (m, 2 H, CH2), 1.9-2.3 (m, 4 H, 2 CH2), 3.73 (s, 3 H, OCH3), 4.67-5.10 (AB, 2 H, CH2Ph), 5.77* (s, 1 H, OH), 6.85-7.22 (AA′BB′, 4 Harom), 5.77* (s, 1 H, OH), 7.5-7.9 (m, 4 Harom) 20.2, 22.0, 35.7, 43.4, 53.9, 82.6, 94.0, 104.2, 112.7, 122.0, 123.8, 127.2, 128.9, 129.0, 133.7, 134.2, 147.0, 157.2, 164.3, 187.7, 196.5 391 (0.5) [M+], 270 (6), 231 (7), 121 (100), 104 (24), 76 (24)
9B12 3423, 3064, 2946, 1730, 1611, 1536, 1487, 1357, 1261, 1186, 1145, 1132 1.5-1.8 (br m, 2 H, CH2), 2.00 (m (t), 2 H, CH2), 2.0-2.2 (m, 2 H, CH2), 2.8-3.0 (m, 2 H, CH2), 3.5-4.0 (m, 2 H, CH2), 3.73, 3.75 (2 s, 6 H, 2 OCH3), 5.75* (s, 1 H, OH), 6.85* (s, 1 H, OH), 6.8-6.95 (m, 3 H, H2′′, H3′′, H6′′), 7.5-8.05 (m, 4 Harom) 435 (1) [M+], 417 (3), 399 (2), 266 (7), 165 (16), 164 (47), 152 (20), 151 (77), 132 (11), 124 (16), 107 (12), 105 (13), 104 (55), 96 (13), 91 (14), 79 (14), 79 (14), 78 (14), 77 (31), 76 (100)
9B13 c 3190, 1714, 1628, 1602, 1546, 1482, 1396, 1223, 1178, 1150 1.55-2.0 (m, 2 H, CH2), 2.0-2.2 (m, 2 H, CH2), 2.27 (s, 6 H, 2 CH3), 2.3-2.7 (m, 4 H, 2 CH2), 3.5-4.0 (m, 2 H, CH2), 7.5-8.0 (4 m, 4 Harom)b 21.3, 22.3, 30.6, 40.0, 45.2, 59.1, 83.6, 94.9, 105.4, 122.9, 124.6, 130.1, 134.8, 135.4, 148.6, 164.8, 188.8, 197.7 342 (8) [M+], 266 (16), 105 (21), 76 (36), 66 (71), 57 (100)
9B14 3074, 1728, 1604, 1534, 1491, 1468, 1417, 1408, 1226, 1208, 1172 1.6-2.0 (m, 4 H, 2 CH2), 2.0-2.3 (m, 2 H, CH2), 2.16 [s, 6 H, N(CH3)2], 2.25-2.3 (m, 4 H, 2 CH2), 3.5-4.0 (m, 2 H, CH2), 5.5* (br, 1 H, OH), 7.5-7.9 (4 m, 4 Harom), 8.3* (br, 1 H, OH) 21.4, 22.4, 26.9, 36.8, 44.5, 56.1, 83.5, 95.5, 105.1, 122.7, 124.4, 130.0, 134.7, 135.2, 148.1, 164.8, 188.5, 197.8b
9B15 3332, 1719, 1615, 1600, 1537, 1478, 1459, 1425, 1407, 1189 1.55-1.9 (m, 2 H, CH2), 2.0-2.1 (m, 2 H, CH2), 2.1-2.4 (m, 2 H, CH2), 4.9-5.2 (AB, 2 H, CH2), 5.75*, 7.03* (2 br s, 2 H, 2 OH), 7.2-7.45 (m, 2 Harom), 7.5-7.85 (m, 5 Harom), 8.45-8.5 (m, 1 Harom) 21.2, 22.7, 36.9, 46.6, 83.7, 95.1, 105.5, 121.5, 122.3, 123.0, 124.9, 130.1, 134.7, 135.1, 136.9, 148.2, 148.8, 157.5, 165.5, 188.9, 197.6 362 (2) [M+], 344 (4), 288 (4), 270 (7), 146 (6), 107 (9), 104 (14), 93 (110)
9B16 3429, 3287, 1726, 1588, 1530, 1500, 1433, 1151 1.5-2.2 (m, 2 H, CH2), 1.95-2.25 (m, 2 H, CH2), 2.3-2.75 (m, 2 H, CH2), 3.5-3.95 (2 m, 4 H, 2 CH2), 4.96*, 5.65*, 6.69* (3 br s, 3 H, 3 OH), 7.5-8.0 (m, 4 Harom) 21.5, 22.6, 36.8, 44.0, 60.8, 83.4, 95.3, 104.8, 123.1, 124.6, 130.1, 134.8, 135.4, 148.2, 165.6, 188.7, 197.5b 315 (3) [M+], 297 (12) [M - 18], 279
9B18 3476, 3068, 1751, 1710, 1614, 1551, 1480, 1432, 1396, 1283, 1219, 1203, 1174 1.6-2.6 (m, 6 H, 3 CH2), 3.59 (s, 3 H, OCH3), 4.57 (s, 2 H, CH2CO), 5.74* (s, 1 H, OH), 6.74* (s, 1 H, OH), 7.5-7.75 (m, 4 Harom) 343 (12) [M+], 325 (12), 267 (15), 266 (35), 224 (20), 210 (42), 183 (43), 155 (23), 149 (36), 132 (24), 127 (20), 123 (25), 104 (100)
9B19 3278, 1729, 1605, 1540, 1495, 1461, 1443, 1194 1.6-2.5 (m, 6 H, 3 CH2), 5.98* (s, 1 H, OH), 6.5-6.65 (m, 1 H, H4), 7.23* (s, 1 H, OH), 7.3-7.8 (m, 8 Harom) 347 (100) [M+], 329 (25), 318 (32), 300 (64), 214 (71), 159 (38), 130 (57), 104 (54), 77 (85)
9C1 c 3526, 3430, 3312, 1744, 1730, 1720, 1712, 1605, 1590, 1514, 1504 0.88 (d, J = 4.8, 3 H, CH3), 2.0-2.5 (2 m, 3 H, CH2, CH), 2.93-3.04 (2 d, 1 H, H8), 3.59, 3.61 (2 s, 3 H, OCH3), 5.63*, 5.67* (2 s, 1 H, OH), 6.61*, 6.63* (2 s, 1 H, OH), 7.5-7.9 (m, 4 Harom), 9.38* (s, 1 H, NH) 19.50, 19.55, 29.9, 32.1, 32.4, 51.5, 51.6, 60.7, 61.2, 83.8, 84.1, 93.1, 93.3, 104.1, 123.0, 123.1, 125.1, 130.2, 134.6, 134.8, 135.7, 135.8, 149.7, 149.9, 165.0, 165.1, 171.5, 171.7, 184.1, 184.2, 197.4, 198.3 343 (2) [M+], 341 (2), 327 (4), 325 (6), 293 (16), 279 (15), 265 (43), 254 (21), 250 (27), 226 (24), 209 (18), 197 (27), 185 (15), 180 (26), 169 (20), 165 (18), 152 (22), 139 (26), 132 (18), 130 (28), 126 (22), 120 (22), 105 (37), 103 (100)
9C2 2976, 2938, 1720, 1593, 1526, 1494, 1459, 1419, 1369, 1218, 1200, 1126 0.91 (m, 3 H, OCH3), 1.26 (d, J = 7.0, 3 H, CH3), 1.42, 1.49 (2 d, J = 7.0, 3 H, CH3), 2.05-2.6 (m, 2 H, CH2), 2.6-3.1 (m, 2 H, CH2), 3.60, 3.62 (2 s, 3 H, OCH3), 4.60 (m, 1 H, CHMe2), 5.71*, 5.79* (br, 1 H, OH), 6.79*, 6.85* (2 s, 1 H, OH), 7.5-8.0 (m, 4 Harom) 19.2, 19.3, 22.0, 22.3, 22.6, 28.9, 30.5, 30.7, 32.2, 40.1, 44.9, 45.1, 51.1, 51.3, 60.2, 60.5, 82.5, 82.8, 95.9, 96.0, 103.6, 103.7, 123.0, 132.3, 124.3, 124.7, 130.18, 130.24, 134.57, 134.63, 134.8, 135.4, 147.6, 148.1, 163.9, 164.0, 171.2, 171.3, 183.3, 183.4, 196.6, 197.3 385 (5) [M+], 342 (7), 252 (6), 225 (13), 194 (8), 166 (9), 152 (9), 132 (14), 125 (25), 110 (17), 105 (32), 104 (29), 96 (74), 83 (19), 82 (26), 77 (29), 76 (62), 69 (100)
9C3 3406, 1732, 1604, 1542, 1518, 1496, 1453, 1358, 1286, 1204, 1147, 950 0.77 (d, J = 6.2, 3 H, CH3), 1.65-2.5 (m, 3 H, CH2, CH), 2.97, 3.03 (2 d, 1 H, CH), 3.58, 3.61 (2 s, 3 H, OCH3), 4.85-5.15 (2 AB, 2 H, CH2), 5.90*, 5.93* (2 s, 1 H, OH), 7.03*, 7.06* (2 s, 1 H, OH), 7.12-7.86 (m, 9 Harom) 19.16, 19.23, 29.2, 31.7, 31.9, 44.7, 44.9, 51.25, 51.35, 60.2, 60.6, 83.2, 83.4, 95.3, 95.6, 103.8, 103.9, 123.05, 123.13, 125.0, 126.4, 126.7, 126.9, 127.1, 128.29, 128.31, 130.3, 134.5, 134.7, 135.3, 135.4, 137.8, 138.1, 147.8, 164.95, 165.05, 171.2, 171.3, 183.6, 183.7, 197.0, 197.3
9C4 3408, 1723, 1636, 1558, 1496, 1461, 1416, 1288, 1245, 1158 0.75-0.9 (d, 3 H, CH3), 1.85-2.45 (m, 3 H, CH2, CH), 3.05-3.15 (m, 1 H, CH), 3.63 (s, 3 H, OCH3), 6.03*, 6.12* (2 s, 0.3 + 0.7 H, OH), 6.55-6.62, 6.67-6.71 (2 m, 0.7 + 0.3 H, CH), 7.30*, 7.37*(2 s, 1 H, OH), 7.25-7.8 (3 m, 8 Harom) 19.1, 19.3, 25.4, 32.4, 51.3, 51.4, 60.6, 60.8, 61.9, 83.1, 83.3, 96.6, 96.9, 104.9, 105.2, 123.2, 123.3, 124.7, 125.0, 128.0, 128.4, 128.9, 129.0, 130.1, 130.2, 134.6, 134.8, 135.4, 135.6, 146.9, 147.4, 164.0, 164.2, 171.1, 184.4, 184.7, 197.0, 197.5 419 (10) [M+], 401, 343 (13), 286 (16), 273 (70), 245 (21), 181 (14), 159 (39), 77 (100)
9D1 c 3394, 1720, 1603, 1506, 1406 2.0-3.4 (mm, 5 H, 2 CH2, CH), 3.18, 3.22 (2 s, 3 H, CH3), 5.65*; 5.72* (2 s, 1 H, OH), 6.77*, 6.83* (2 s, 1 H, OH), 7.1-7.35 (m, 5 Harom), 7.55-7.95 (m, 4 Harom) 27.4, 29.2, 29.7, 40.2, 44.36, 44.44, 83.1, 83.4, 95.1, 95.2, 104.2, 104.4, 123.0, 123.2, 124.69, 124.74, 126.4, 126.9, 128.26, 128.28, 130.1, 134.6, 134.9, 135.3, 135.5, 143.5, 146.8, 147.5, 164.4, 164.7, 187.0, 187.4, 197.1, 197.7
9D2 3356, 3060, 3037, 1724, 1604, 1540, 1488, 1452, 1435, 1406, 1352, 1289 2.02-3.25 (m, 2 H, CH2), 2.3-2.6 (m, 2 H, CH2), 2.9-3.2 (m, 1 H, CH), 4.76-5.22 (AB, 2 H, CH 2Ph), 5.86*, 5.90* (2 s, 1 H, OH), 6.98*, 7.03* (2 s, 1 H, OH), 7.05-7.89 (m, 14 Harom)b 29.8, 30.4, 39.6, 39.2, 44.2, 44.3, 44.7, 44.8, 83.3, 83.5, 95.4, 95.5, 104.9, 105.1, 122.9, 123.1, 124.89, 124.94, 126.4, 126.68, 126.73, 126.77, 126.9, 127.0, 128.2, 128.3, 130.2, 134.6, 134.9, 135.1, 135.4, 138.1, 138.3, 143.2, 147.8, 148.1, 164.65, 164.73, 187.5, 187.7b 437 (1) [M+], 419 (4), 346 (4), 304 (2), 277 (8), 173 (12), 144 (27), 132 (10), 131 (8), 105 (13), 104 (45), 91 (100), 76 (34)
9D3 3408, 1717, 1603, 1548, 1493, 1458, 1445, 1284, 1203, 1158 2.0-3.0 (m, 4 H, 2 CH2), 3.1-3.4 (m, 1 H, CH), 6.01*, 6.12* (2 s, 0.33 + 0.66 H, 1 OH), 6.59-6.63, 6.68-6.75 (2 m, 0.66 + 0.33 H, CH), 7.1-7.8 (m, 13 Harom + 1 H*, OH) 31.4, 42.2, 44.5, 83.2, 83.5, 96.6, 96.9, 106.2, 106.4, 123.1, 123.3, 124.7, 125.0, 126.2, 126.4, 126.6, 126.8, 126.9, 127.8, 128.3, 128.3, 128.5, 128.85, 128.93, 130.0, 130.1, 134.6, 134.7, 134.9, 135.6, 135.8, 143.3, 143.4, 146.9, 147.6, 163.6, 163.9, 188.5, 188.7, 197.3, 197.8 423 (15) [M+], 405 (46), 387 (80), 273 (64), 263 (49), 256 (76), 159 (100), 130 (46), 104 (60), 77 (86)
9E2 3380, 1731, 1718, 1604, 1543, 1490, 1453, 1434, 1347, 1142 0.79 [m (t), 3 H, CH3], 1.5-2.4 (m, 5 H, 2 CH2, CH), 4.7-5.2 (AB, 2 H, CH2), 5.79*, 5.81* (2 s, 1 H, 1 OH), 6.90*, 6.94* (2 s, 1 H, OH), 7.1-7.9 (m, 9 Harom) 375 (2) [M+], 357 (18), 288 (8), 284 (15), 242 (7), 145 (7), 106 (32), 91 (100)
9E3 3466, 1716, 1606, 1534, 1495, 1454, 1407, 1362, 1350, 1283, 1250, 1223, 1137 0.80, 0.88 (2 d, J = 4.6, 3 H, CH3), 1.6-2.5 (m, 5 H, 2 CH2, CH), 2.8-3.2 (m, 2 H, CH2), 3.6-4.2 (2 m, 2 H, CH2), 5.72*, 5.76* (2 s, 1 H, OH), 6.83*, 6.84* (2 s, 1 H, 1 OH), 7.2-7.4 (m, 5 H, HPh), 7.5-8.0 (m, 4 H, Hindene) 371 (3) [M+ - 18], 355 (2), 296 (3), 294 (4), 280 (3), 229 (13), 138 (42), 132 (8), 104 (100)96 (11), 91 (20)
9F1 3383, 1723, 1604, 1551, 1496, 1453, 1438, 1347, 1289, 1230, 1147 2.7-2.8 (AB, 2 H, CH2), 2.8-3.2 (AB, 2 H, CH2), 3.3-3.5 (AB, 2 H, CH2), 4.68-5.14 (AB, 2 H, CH2), 5.99* (s, 1 H, OH), 7.0-7.9 (m, 14 H + 1 H*, Harom + OH) 45.1, 48.5, 59.9, 60.1, 83.2, 95.8, 103.4, 123.1, 125.0, 127.1, 127.2, 128.1, 128.2, 128.3, 128.7, 130.3, 134.7, 135.5, 136.5, 137.5, 147.8, 163.6, 185.5, 197.2 452 (1) [M+], 291 (4), 288 (5), 201 (60), 173 (25), 144 (43), 104 (45), 91 (100)

a Solvent DMSO-d 6 unless otherwise indicated.
b Solvent CDCl3.
c No satisfactory elemental analysis. Method F.

5,6,7,8-Tetrahydroindeno[1,2- b ]indole-9,10-diones 10; General Procedures

Method C: 9 (5 mmol) was dissolved in DMF (15 mL) and AcOH (3 mL) was added. After addition of 4 (2.72 g, 20 mmol), the soln was stirred for 12 h. A precipitate had deposited that was separated by suction. The filtrate was evaporated in vacuo, the viscous residue was diluted with H2O, and the soln was basified with NaHCO3. Extraction with CHCl3 gave a second quantity, which was purified by MPLC (silica gel, EtOAc-hexane or CHCl3-EtOAc).

Method D: 9 (5 mmol) was dissolved in DMF (15 mL) and AcOH (3 mL) was added. After addition of 4 (2.72 g, 20 mmol), the soln was stirred for 12 h. The soln was then poured into H2O (500 mL). The suspension was stirred for 3 h and the solid separated by filtration. The solid was air dried and crystallized. The filtrate was evaporated to a small volume and worked up as described under method C.

Method E: 10C (3.51 g, 0.01 mol) was suspended in 5% aq NaOH (100 mL) and refluxed for 36 h. The soln was then neutralized with 10% aq H2SO4. The precipitate was separated, washed with H2O (3 × 20 mL), suspended in 5% aq H2SO4 (30 mL), and refluxed for 24 h. The solid was separated, washed with H2O, air dried, and crystallized to give 10E.

Method F: (One-pot synthesis) Equimolar amounts of 1 (0.89 g, 5 mmol) and 7 (5 mmol) were dissolved in CHCl3 (50 mL) and stirred at r.t. for 12 h. The solvent was then evaporated in vacuo and the residue dissolved in DMF (15 mL). To the soln AcOH (3 mL) and 4 (2.72 g, 20 mmol) were added and the mixture stirred for 12 h. The mixture was then worked up as described in method D to give 10.

Table 4 Compound Data of Indeno[1,2-b]indole-9,10-diones 10 (continued)
Compd Yield (%) Mp (˚C)
(solvent)
Molecular Formulaa
10A1 58 >315
(MeCN)
C17N15NO2 (265.31)
10A2 65 259
(MeOH)
C18H17NO2 (279.33)b
10A3 87 281-282
(MeCN)
C24H21NO2 (355.43)
10A4 72 297-298
(EtOAc)
C23H19NO2 (341.14)
10B1 58 332-333c C15H11NO2 (237.25)
10B2 56 178
(EtOAc)
C18H17NO2 (279.33)
10B3 85 136
(EtOAc)
C21H23NO2 (321.41)
10B4 d 89 146
(EtOAc)
C23H27NO2 (349.47)
10B5 71 201
(EtOAc)
C18H17NO2 (279.33)
10B6 95 185
(EtOAc)
C22H17NO2 (327.38)
10B7 62 189-190
(EtOAc)
C23H19NO2 (341.40)
10B8 74 222-223
(MeOH)
C24H21NO2 (355.43)
10B9 95 201
(EtOAc)
C23H19NO2 (341.40)
10B10 92 129
(EtOAc)
C20H21NO3 (323.39)
10B11 86 198-199
(EtOAc)
C23H19NO3 (357.40)
10B12 90 189-190
(DMF-H2O)
C25H23NO4 (401.45)
10B13 52e 178
(MeOH)
C19H20N2O2 (308.37)
10B15 63 241-242
(MeOH)
C21H16N2O2 (328.36)
10B16 78 262-263
(MeOH)
C17H15NO3 (281.31)
10B17 64e 241
(MeOH)
C18H17NO3 (295.33)
10B18 88 256-257
(EtOAc)
C18H15NO4 (309.32)
10B19 68 288
(MeCN)
C21H15NO2 (313.35)
10C1 74e 287
(DMSO-H2O)
C18H15NO4 (309.32)
10C2 73 207-208
(EtOAc)
C21H21NO4 (351.41)
10C3 71 194-195
(MeOH)
C25H21NO4 (399.46)
10C4 49 249-250
(EtOAc)
C24H19NO4 (385.41)
10D1 73e 276-277 (MeCN) C22H17NO2 (327.38)
10D2 80 252
(toluene)
C28H21NO2 (403.49)
10D3 81 289-290
(toluene)
C27H19NO2 (389.45)
10E1 57f 264-265
(EtOAc)
C19H19NO2 (293.36)
10E2 83f; 98 273-274
(MeCN)
C25H19NO2 (341.40)
10E3 96 228-229
(MeCN)
C24H21NO2 (355.43)
10E4 90f >325
(MeCN)
C22H17NO2 (327.38)
10F1 74 295
(MeCN)
C28H22N2O2 (418.49)

a Analysis C ± 0.28, H ± 0.24, N ± 0.30 except 10C3, 10C4, 10D1 C ± 0.35, , 10B1 C -0.60, 10B5 C -0.47, 10E4 C -0.44, 10B11 H -0.31, 10B2 H -0.39.
b Analysis for C18H17NO2˙0.33 CH3OH.
c To the refluxing aqueous suspension 1,4-dioxane was added until dissolution was complete. Crystallization occurred on cooling.
d No spectral data, strong spectral similarities to 10B2, 10B3.
e Method F.
f Method E.
Table 5 Spectral Data of Indeno[1,2-b]indole-9,10-diones 10A1-10F1 (continued)
Compd IR (cm) ¹H NMRa δ, J (Hz) ¹³C NMRa δ MS (EI) m/z (%)
10A1 1694, 1640, 1600, 1502, 1448, 1432, 1308, 1287 1.06 (s, 6 H, 2 CH3), 2.26 (s, 2 H, CH2), 2.70 (s, 2 H, CH2), 7.0-7.4 (m, 4 Harom), 12.4* (br, 1 H, NH)b 265 (62) [M+], 263 (15), 209 (38), 181 (100)
10A2 2950, 1698, 1667, 1605, 1530, 1506, 1302, 1272 1.10 (s, 6 H, 2 CH3), 2.26 (s, 2 H, CH2), 2.53 (s, 2 H, CH2), 3.65 (s, 3 H, NCH3), 6.9-7.5 (m, 4 Harom) 28.7, 32.4, 35.0, 35.7, 116.6, 117.0, 119.4, 123.7, 128.2, 132.3, 135.2, 138.9, 149.1, 153.3, 184.1, 191.5 279 (50) [M+], 264 (11), 250 (8), 224 (13), 223 (32), 196 (16), 195 (100), 167 (16), 166 (18), 140 (17), 139 (24)
10A3 1701, 1659, 1602, 1532, 1499, 1478, 1458, 1355, 1302, 1268 1.08 (s, 6 H, 2 CH3), 2.35, 2.51, 5.25 (3 s, 6 H, 3 CH2), 6.75-6.8, 7.0-7.15, 7.3-7.5 (3 m, 9 Harom)b 27.9, 34.7, 34.8, 48.3, 51.5, 118.0, 118.6, 122.9, 126.1, 127.7, 128.3, 128.9, 132.8, 134.3, 136.0, 137.9, 150.3, 153.0, 183.5, 190.8b 355 (48) [M+], 300 (4), 299 (10), 298 (3), 272 (4), 271 (14), 270 (11), 208 (11), 180 (4), 152 (3), 92 (8), 91 (100)
10A4 1702, 1663, 1604, 1595, 1522, 1502, 1483, 1368, 1296, 1277 1.09 (s, 6 H, 2 CH3), 2.39 (s, 2 H, CH2), 2.47 (s, 2 H, CH2), 6.24-6.34 (m, 1 H, CH), 6.97-7.08 (m, 2 Harom), 7.4-7.7 (m, 6 Harom)
10B1 3243, 1694, 1651, 1612, 1600, 1497, 1430, 1294 1.9-2.0 (m, 2 H, CH2), 2.3-2.4 (m, 2 H, CH2), 2.7-2.9 (m, 2 H, CH2), 7.0-7.5 (m, 4 Harom), 12.47* (s, 1 H, NH)b 22.5, 23.0, 38.0, 116.8, 117.3, 118.8, 122.7, 128.2, 132.7, 134.9, 138.1, 150.7, 152.4, 183.8, 191.2b 237 (61) [M+], 235 (26), 209 (31), 181 (100), 153 (18), 152 (21), 130 (14), 126 (23), 104 (34), 102 (17), 90 (18), 76 (78)
10B2 1695, 1658, 1605, 1522, 1477, 1429, 1294 1.03 (t, J = 7.4, 3 H, CH3), 1.77-1.96 (m, 2 H, CH2), 2.13-2.22 (m, 2 H, CH2), 2.46-2.52 [m (t), 2 H, CH2], 2.75 (t, J = 6.1, 2 H, CH2), 3.95 (t, J = 7.3, 2 H, CH2), 6.9-7.5 (4 m, 4 Harom) 279 (41) [M+], 278 (19), 277 (17), 264 (20), 223 (24), 194 (22)
10B3 1700, 1658, 1608, 1522, 1431, 1293 0.85-0.95 (m, 3 H, CH3), 1.2-1.5 (m, 6 H, 3 CH2), 1.7-1.9 (m, 2 H, CH2), 2.1-2.25 (m, 2 H, CH2), 2.4-2.6 [m (t), 2 H, CH2], 2.7-2.8 [m (t), 2 H, CH2], 3.96 (t, J = 7.5, 2 H, NCH2), 6.9-7.5 (m, 4 Harom) 13.9, 22.0, 22.5, 23.1, 26.4, 30.7, 37.9, 46.1, 117.0, 117.7, 119.9, 123.7, 128.3, 132.3, 135.0, 139.0, 149.7, 152.5, 184.1, 192.0 321 (71) [M+], 319 (100), 264 (53), 262 (26), 250 (23), 248 (32), 237 (19), 235 (40)
10B5 2944, 1707, 1665, 1609, 1520, 1485, 1426, 1319, 1297 1.65 (d, J = 7.0, 6 H, 2 CH3), 2.1-2.2 (m, 2 H, CH2), 2.4-2.5 [m (t), 2 H, CH2], 2.8-2.9 [m (t), 2 H, CH2], 4.5-4.7 (m, 1 H, CH), 7.0-7.5 (m, 4 Harom) 279 (49) [M+], 209 (25), 208 (22), 181 (43), 180 (18), 153 (22), 152 (19), 130 (15), 43 (98), 41 (100)
10B6 1703, 1666, 1607, 1526, 1499, 1453, 1443, 1431, 1293 2.0-2.2 (m, 2 H, CH2), 2.41 [m (t), 2 H, CH2], 2.62 [m (t), 2 H, CH2], 5.17 (s, 2 H, CH 2Ph), 6.68-6.72 (m, 1 H), 7.00-7.2 (m, 4 H), 7.29-7.41 (m, 4 Harom) 21.7, 22.9, 37.7, 49.1, 117.2, 117.9, 119.8, 123.4, 125.9, 126.0, 128.2, 128.3, 129.3, 132.4, 134.7, 134.9, 138.7, 150.7, 153.0, 184.2, 192.3 327 (38) [M+], 326 (12), 299 (4), 298 (3), 272 (3), 271 (5), 270 (6), 250 (5), 208 (5), 180 (4), 152 (4), 92 (8), 91 (100)
10B7 1697, 1659, 1606, 1524, 1499, 1476, 1296 1.7-1.9 (m, 2 H, CH2), 2.2-2.4 (2 m, 4 H, 2 CH2), 2.9-3.1 (m, 2 H, CH2), 4.3-4.4 (m, 2 H, CH2), 7.0-7.4 (m, 9 Harom)b 341 (100) [M+], 285 (12), 250 (8), 249 (10), 237 (38), 209 (37), 194 (19), 121 (25), 105 (19), 104 (15), 91 (11)
10B8 1703, 1566, 1605, 1525, 1503, 1441, 1431, 1319 2.0-2.25 (2 m, 4 H, 2 CH2), 2.4-2.5 (t, 2 H, CH2), 2.6-2.8 (2 t, 4 H, 2 CH2), 3.85-4.0 (t, 2 H, CH2), 6.3-6.45 (m, 1 H, H4), 7.0-7.5 (m, 8 Harom) 355 (58) [M+], 353 (27), 264 (30), 251 (14), 250 (11), 223 (21), 195 (14), 151 (20), 104 (16), 91 (100)
10B9 1704, 1666, 1605, 1523, 1483, 1449, 1426, 1321, 1295 1.99 (d, J = 7.1, 3 H, CH3), 2.0-2.2 (m, 2 H, CH2), 2.4-2.8 (m, 4 H, 2 CH2), 5.71 (q, J = 7.1, 1 H, CH), 6.4-6.5 (m, 1 Harom), 6.95-7.1 (m, 2 Harom), 7.2-7.5 (m, 6 Harom) 19.4, 23.2, 54.9, 118.1, 118.4, 120.9, 123.5, 125.9, 128.0, 128.2, 129.1, 132.0, 135.1, 138.6, 138.7, 149.7, 152.3, 184.2, 192.1 341 (21) [M+], 237 (56), 235 (13), 209 (17), 181 (20), 180 (11), 152 (12), 106 (16), 105 (60), 104 (21), 103 (38), 79 (43), 77 (100)
10B10 2854, 1699, 1662, 1606, 1522, 1443, 1434, 1374, 1297, 1274, 1113 1.10 (t, J = 7.0, 3 H, CH3), 1.9-2.1 (2 m, 4 H, 2 CH2), 2.32-2.39 [m (t), 2 H, CH2], 2.78-2.81 [m (t), 2 H, CH2], 3.3-3.45 (2 m, 4 H, CH2OCH2), 4.15-4.22 [m (t), 2 H, NCH2], 7.1-7.4 (m, 4 Harom) 323 (100) [M+], 294 (19), 264 (59), 251 (37), 250 (31), 236 (46), 223 (64), 222 (49), 208 (47), 195 (47), 194 (24), 181 (20), 179 (20), 152 (18), 139 (18)
10B11 1701, 1662, 1609, 1514, 1293, 1248 2.0-2.2 (m, 2 H, CH2), 2.43 (t, J = 6.9, 2 H, CH2), 2.63 (t, J = 7.0, 2 H, CH2), 3.78 (s, 3 H, OCH3), 5.13 (s, 2 H, CH 2Ph), 6.7-7.5 (m, 8 Harom) 21.9, 23.0, 37.8, 48.8, 55.4, 114.7, 117.2, 118.1, 120.0, 123.7, 126.9, 127.4, 128.3, 132.4, 134.9, 138.9, 150.3, 152.9, 159.6, 184.1, 192.1 357 (12) [M+], 121 (100)
10B12 1699, 1663, 1605, 1516, 1502, 1450, 1430, 1292, 1264, 1245 1.8-1.95 (m, 2 H, CH2), 2.07 (t, J = 6.0, 2 H, CH2), 2.35 (t, J = 6.0, 2 H, CH2), 3.02 (t, J = 6.0, 2 H, CH2), 3.74, 3.82 (2 s, 6 H, 2 OCH3), 4.16 (t, J = 6.0, 2 H, NCH2), 6.42 (d, J = 1.7, 1 H, H2′), 6.53 (dd, J 1 = 1.7, J 2 = 8.0, 1 H, H6′), 6.75 (d, J = 8.0, 1 H, H5), 6.85-7.5 (m, 4 Harom) 401 (22) [M+], 400 (7), 399 (10), 165 (25), 164 (29), 163 (5), 151 (100), 150 (12), 149 (17), 107 (14), 105 (11), 102 (11)
10B13 1695, 1659, 1605, 1523, 1501, 1443, 1293 2.1-2.25 (m, 2 H, CH2), 2.32 (s, 6 H, 2 CH3), 2.51 (t, J = 5.9, 2 H, CH2), 2.68 (t, J = 7.1, 2 H, CH2), 2.79 (t, J = 5.9, 2 H, CH2), 4.07 (t, J = 7.1, 2 H, CH2), 6.9-7.5 (m, 4 Harom) 308 (1) [M+], 58 (100)
10B14 c 3564, 3408, 2944, 1692, 1655, 1608, 1527, 1292 1.9-2.1, 2.1-2.3 (2 m, 4 H, 2 CH2), 2.17 [s, 6 H, N(CH3)2], 2.35-2.55 [2 m (t), 4 H, 2 CH2], 2.75-2.85 (t, 2 H, NCH2), 4.05-4.15 (t, 2 H, NCH2), 7.0-7.5 (m, 4 Harom) 322 (4) [M+], 251 (9), 223 (8), 84 (19), 71 (48), 58 (100)
10B15 1704, 1566, 1606, 1589, 1529, 1503, 1474, 1435, 1297, 1197 2.05-2.25 (m, 2 H, CH2), 2.45-2.55 [m (t), 2 H, CH2], 2.7-2.8 [m (t), 2 H, CH2], 5.32 (s, 2 H, NCH2), 6.7-8.7 (m, 8 H, HPyridine + Harom) 328 [M+] (27), 326 (9), 271 (11), 236 (24), 93 (100)
10B16 1.95-2.1 (m, 2 H, CH2), 2.35 (t, J = 6.8, 2 H, CH2), 2.83 (t, J = 6.0, 2 H, CH2), 3.72 (dd, J 1 = 5.3, J 2 = 5.4, after D2O addition t, 2 H, HOCH2), 4.18 (t, J = 5.2, 2 H, NCH2), 5.11* (t, J = 5.4, 1 H, OH), 7.1-7.4 (m, 4 Harom)b 281 (100) [M+], 280 (37), 279 (48), 264 (42), 250 (15), 248 (30), 237 (27), 225 (28), 209 (42), 194 (42), 165 (15), 139 (27)
10B17 3519, 1692, 1657, 1606, 1529, 1503, 1432, 1083 1.8-1.95 (m, 2 H, CH2), 1.95-2.10 (m, 2 H, CH2), 2.3-2.45 (m, 2 H, CH2), 2.75-2.9 (m, 2 H, CH2), 3.4-3.6 (m, 2 H, CH2), 4.1-4.25 (m, 2 H, CH2), 4.75-4.85* (m, 1 H, OH), 7.1-7.4 (m, 4 Harom)b 295 (64) [M+], 293 (17), 264 (47), 237 (10), 223 (11), 209 (11), 208 (17), 195 (12), 181 (14), 149 (14), 104 (10), 76 (42), 58 (100)
10B18 1736, 1698, 1666, 1607, 1529, 1504, 1429, 1366, 1295, 1223 2.1-2.25 (m, 2 H, CH2), 2.52 (t, J = 6.5, 2 H, CH2), 2.72 (t, J = 6.1, 2 H, CH2), 3.85 (s, 3 H, OCH3), 4.76 (s, 2 H, CH2), 7.08-7.48 (m, 4 Harom) 309 (100) [M+], 281 (14), 152 (51), 250 (18), 236 (21), 222 (16), 194 (69), 166 (14), 139 (24), 83 (14)
10C1 3440, 3221, 1738, 1695, 1658 1.05 (d, J = 6.0, 3 H, CH3), 2.5-3.0 (2 m, 3 H, CH, CH2), 3.3-3.5 (m, 1 H, CH), 3.68 (s, 3 H, OCH3), 7.05-7.4 (m, 4 Harom), 12.63* (s, 1 H, NH)b 19.2, 29.2, 33.9, 51.6, 51.7, 61.3, 115.0, 117.6, 118.5, 122.8, 128.4, 132.9, 134.6, 137.8, 150.3, 153.1, 170.6, 183.7, 186.6b 309 (11) [M+], 277 (45), 275 (27), 250 (100), 220 (27), 209 (29), 191 (29), 181 (98), 164 (25), 152 (50), 130 (24), 125 (40), 104 (29), 102 (28), 96 (25), 89 (34)
10C2 1746, 1707, 1666, 1604, 1522, 1498, 1486, 1429, 1351, 1315, 1292, 1263 1.17 (d, J = 6.0, 3 H, CH3), 1.64, 1.65 (2 d, J = 7.0, 6 H, 2 CH3), 2.5-3.25 (m, 4 H, 2 CH, CH2), 3.76 (s, 3 H, OCH3), 4.5-4.7 (m, 1 H, CH), 7.0-7.45 (m, 4 Harom) 19.9, 21.8, 21.9, 30.4, 33.5, 49.5, 52.0, 61.2, 116.0, 118.9, 120.9, 123.7, 128.2, 132.2, 135.1, 138.7, 147.7, 152.1, 170.4, 183.7, 186.3 351 (12) [M+], 292 (20), 250 (28), 208 (15), 181 (12), 180 (10), 153 (13), 152 (10), 130 (11), 102 (10)
10C3 1736, 1732, 1704, 1680, 1666, 1607, 1504, 1444, 1431 1.08 (d, J = 6.4, 1.14, d, J = 5.0, 3 H, CH3), 2.31-2.46 (m, 1 H, CH), 2.58-2.88 (m, 2 H, CH2), 3.15, 3.49 (2 d, 1 H, CH), 3.66, 3.76 (2 s, 3 H, CH3), 5.23 (s, 2 H, CH2), 6.73-6.78 (m, 1 H, H4), 7.0-7.45 (2 m, 8 Harom) 18.4, 19.9, 28.7, 32.9, 33.5, 49.1, 52.0, 52.1, 61.3, 116.2, 116.3, 117.3, 117.5, 119.9, 123.7, 125.9, 128.4, 129.4, 132.5, 134.5, 134.7, 138.5, 149.3, 150.9, 153.7, 168.9, 170.5, 183.9, 186.3, 186.7 399 (29) [M+], 340 (18), 91 (100)
10C4 2956, 1744, 1709, 1670, 1607, 1526, 1505, 1487, 1428, 1282, 1263, 1157 1.07 (d, J = 6.2, 3 H, CH3), 2.4-2.8 (2 m, 3 H, CH, CH2), 3.18, 3.50 (2 m, 1 H, CH), 3.69, 3.75 (2 s, 3 H, OCH3), 6.25-6.34 (m, 1 H, H4), 6.93-7.02 (m, 2 Harom), 7.30-7.38 (m, 1 Harom), 7.44-7.72 (br m, 5 Harom) 19.7, 29.4, 33.7, 52.0, 61.5, 116.2, 117.4, 119.8, 123.6, 126.6, 128.4, 129.8, 130.0, 132.1, 134.4, 135.3, 138.2, 149.4, 153.3, 170.4, 183.8, 186.8 385 (9) [M+], 327 (14), 326 (60), 325 (14), 311 (12), 257 (15), 256 (58), 228 (13), 227 (17), 201 (8), 140 (7), 127 (11), 126 (8), 114 (9), 78 (7), 77 (36)
10D1 1705, 1665, 1605, 1504 2.4-3.5 (m, 5 H, 2 CH2, CH), 3.77 (s, 3 H, CH3), 7.1-7.5 (m, 9 Harom)b 327 (51) [M+], 223 (51), 196 (13), 195 (100), 167 (12), 166 (18), 140 (19), 139 (22), 77 (15)
10D2 1705, 1669, 1605, 1499 2.64-3.01 (m, 4 H, 2 CH2), 3.42-3.57 (m, 1 H, CH), 5.22 (s, 2 H, CH 2Ph), 6.73-6.82 (m, 1 H, H4), 7.06-7.52 (m, 13 Harom) 29.8, 41.4, 44.7, 49.2, 117.2, 117.8, 120.0, 123.9, 125.3, 125.9, 126.8, 127.2, 128.2, 128.4, 128.5, 128.8, 129.0, 129.4, 132.4, 134.6, 134.8, 138.7, 142.5, 149.2, 153.4, 184.1, 191.0 403 (4) [M+], 312 (3), 299 (12), 271 (13), 208 (13), 180 (4), 152 (5), 104 (4), 91 (100)
10D3 3058, 1706, 1666, 1605, 1523, 1503, 1485, 1289 2.55-3.15 (m, 4 H, 2 CH2), 3.54 (m, 1 H, CH), 6.32-6.35 (m, 1 H, H4), 7.1-7.5 (m, 8 Harom), 7.66 (s, 5 Harom)b 30.6 (CH2), 41.8 (CH), 45.0 (CH2), 117.4 (CH), 117.8, 120.0, 123.8 (CH), 125.3, 126.7 (CH), 126.8 (CH), 127.2 (CH), 128.2 (CH), 128.5 (CH), 128.8 (CH), 129.0 (CH), 129.9 (CH), 130.0 (CH), 132.2 (CH), 134.8, 135.7, 138.6, 142.7, 150.0, 153.3, 184.2, 191.0b 389 (54) [M+], 387 (46), 285 (41), 256 (100), 228 (18), 227 (29), 201 (19), 194 (14), 178 (16), 170 (10), 164 (24), 157 (11), 148 (22), 101 (13), 78 (15), 77 (47), 71 (16), 70 (12), 56 (28)
10E1 2952, 1703, 1663, 1602, 1518, 1498, 1483, 1296 1.18 (d, J = 6.0, 3 H, CH3), 1.64 + 1.65 (2 d, J = 6.0, 6 H, 2 CH3), 2.1-3.0 (m, 5 H, 2 CH2, CH), 4.5-4.7 (m, 1 H, CH), 7.0-7.5 (m, 4 Harom) 293 (100) [M+], 278 (23), 251 (38), 223 (38), 209 (41), 208 (47), 182 (18), 181 (65), 180 (28), 153 (28), 152 (16), 130 (16), 126 (12)
10E2 1699, 1662, 1600, 1531, 1498, 1443, 1434, 1297, 1268 1.10 (d, J = 5.9, 3 H, CH3), 2.1-2.8 (m, 5 H, 2 CH2, CH), 5.24 (s, 2 H, CH2), 6.75-6.8 (m, 1 Harom), 7.0-7.2 (m, 4 Harom), 7.3-7.5 (m, 4 Harom) 21.1, 29.8, 30.9, 46.1, 49.1, 117.1, 117.7, 119.9, 123.7, 125.9, 128.27, 128.31, 129.3, 132.3, 134.83, 134.89, 138.8, 149.8, 153.1, 184.1, 191.7 341 (80) [M+], 299 (17), 271 (22), 270 (21), 208 (20), 180 (10), 151 (17), 150 (14), 91 (100), 64 (50)
10E3 1698, 1662, 1603, 1522, 1500, 1444, 1298 0.93 (d, J = 5.8, 3 H, CH3), 1.6-1.75 (m, 1 H, CH), 1.9-2.2, 2.3-2.5 (2 m, 4 H, 2 CH2), 3.09 (t, J = 6.3, 2 H, CH2), 4.1-4.3 (m, 2 H, CH), 6.9-7.5 (m, 9 Harom) 355 (100) [M+], 353 (46), 285 (20), 262 (46), 251 (29), 209 (41), 105 (20), 104 (24)
10E4 1703, 1665, 1604, 1595, 1522, 1504, 1426, 1282 1.08 (d, J = 5.6, 3 H, CH3), 2.1-2.7 (m, 5 H, 2 CH2, CH), 6.2-6.35 (m, 1 H, H4), 6.9-7.1 (m, 2 H, H2′, H6′), 7.35-7.7 (m, 6 Harom) 327 (100) [M+], 325 (22), 324 (14), 285 (10), 257 (48), 227 (10), 114 (12), 101 (17), 77 (31), 51 (83)
10F1 1706, 1674, 1604, 1500, 1442, 1433, 1300 3.32 (s, 2 H, CH2), 3.58 (s, 2 H, CH2), 3.70 (s, 2 H, CH2), 5.15 (s, 2 H, CH2), 6.81-6.85 (m, 1 H, H4), 7.0-7.5 (m, 13 Harom) 47.3, 48.8, 59.7, 60.5, 115.0, 118.3, 118.5, 123.1, 126.3, 127.2, 127.8, 128.2, 128.6, 128.7, 129.0, 132.9, 134.1, 135.6, 137.0, 137.7, 149.8, 153.1, 183.3, 188.4b 418 (17) [M+], 327 (15), 326 (26), 300 (16), 299 (66), 272 (11), 271 (45), 270 (30), 256 (11), 208 (20), 91 (100), 65 (24)

a Solvent CDCl3 unless otherwise indicated.
b Solvent DMSO-d 6.
c No satisfactory elemental analysis.

Crystal Data [¹9]

9B1: C16H17NO5, M w  = 303.31, monoclinic, P21/c, a = 10.571(7) Å, b = 10.740(9) Å, c = 13.639(14) Å, γ = 111.12(7)˚, V = 1444(2) ų, Z = 4, D calcd = 1.395 g˙cm, MoKα radiation (λ = 0.71073 Å), 8.24˚ < 2θ < 50.00˚ (17071 measured reflections), intensity data were collected at 295(2) K with a STOE CCD diffractometer employing ω scans. The structure was solved by direct methods, [²0] all non-hydrogen atoms were refined using anisotropic displacement parameters. Including the hydrogen atoms in the latest stages of the refinement the model converged to R 1 = 0.0618 [I >2σ(I)], wR 2 = 0.1238 based on 2535 unique reflections (99.3% completeness). [²¹]

10B5: C18H17NO2, M w  = 279.33, monoclinic, P21/a, a = 9.667(5) Å, b = 9.120(4) Å, c = 15.890(8) Å, γ = 100.92(6)˚, V = 1375.6(12) ų, Z = 4, D calcd = 1.349 g˙cm, MoKα radiation (λ = 0.71073 Å), 6.2˚ < 2θ < 25.0˚ (14245 measured reflections), intensity data were collected at 295(2) K with a STOE IPDS1 diffractometer employing ω scans. The structure was solved by direct methods, [²0] all non-hydrogen atoms were refined using anisotropic displacement parameters. Including the hydrogen atoms in the latest stages of the refinement the model converged to R 1 = 0.0369 [I >2σ(I)], wR 2 = 0.0626 based on 2296 unique reflections (94.8% completeness). [²¹]

    References

  • 2 Hemmerling H.-J. Janoschka M. Wunderlich H. Z. Naturforsch.  1993,  48b:  1094 
  • 3 Dorlars A. In Houben-Weyl   4th ed., Vol. 11/2:  Georg Thieme Verlag; Stuttgart: 1958.  p.737 
  • 4 Hemmerling H.-J. Merschenz-Quack A. Wunderlich H. Z. Naturforsch.  2004,  59b:  1143 
  • 5 Chatterjie N. Shapiro R. Quo S.-G. Stephani RA. Tetrahedron Lett.  1975,  16:  2535 
  • 6a Greenhill JV. Chem. Soc. Rev.  1977,  277 
  • 6b Kuckländer U. In The Chemistry of Enamines   Rappoport Z. John Wiley & Sons; Chichester: 1994.  p.523 
  • 6c Lue P. Greenhill JV. Adv. Heterocycl. Chem.  1997,  67:  207 
  • 7a McCaldin DJ. Chem. Rev.  1960,  60:  39 
  • 7b Schönberg A. Singer E. Tetrahedron  1978,  34:  1285 
  • 8a Brown DW. Graupner PR. Sainsbury M. Shertzer HG. Tetrahedron  1991,  47:  4383 
  • 9a Butera JA. Antane SA. Hirth B. Lennox JR. Sheldon JH. Norton NW. Warga D. Argentieri TM. Bioorg. Med. Chem. Lett.  2001,  11:  2093 
  • 9b Antane SA, Butera JA, and Lennox JR. inventors; US  2001047026. 
  • 10a Bal Ch. Baldeyrou B. Moz F. Lansiaux A. Colson P. Kraus-Berthier L. Léonce S. Pierre A. Boussard M. Rousseau A. Wierzbicki M. Bailly Ch. Biochem. Pharmacol.  2004,  68:  1911 
  • 10b Wierzbicki M, Boussard M.-F, Rousseau A, Boutin A, and Delagrange P. inventors; EP  1245565. 
  • 11 Miller CP, Collini MD, and Tran BD. inventors; US  6107292. 
  • 12a

    Hemmerling H.-J., Götz C., Jose J.; Annual Meeting of the German Pharmaceutical Society (DPhG), Marburg 2006, Poster P32.

  • 12b Hemmerling H.-J, Götz C, and Jose J. inventors; EP  2007/008624.  ; WO 2008040547, 2008
  • 13 Robinson B. The Fischer Indole Synthesis   John Wiley & Sons; Chichester: 1982. 
  • 14a Graham J. Ninan A. Reza K. Sainsbury M. Shertzer HG. Tetrahedron  1992,  48:  167 
  • 14b Brown DW. Mahon MF. Ninan A. Sainsbury M. Shertzer HG. Tetrahedron  1993,  49:  8919 
  • 14c Wang J.-B. Ji Q.-G. Xu J. Wu X.-H. Xie Y.-Y. Synth. Commun.  2005,  35:  581 
  • 15a Estevez JC. Estevez RJ. Castedo L. Tetrahedron Lett.  1993,  34:  6479 
  • 15b Reboredo FJ. Treus M. Estévez JC. Castedo L. Estévez RJ. Synlett  2002,  999 
  • 16a Shapiro R. Chatterjie NJ. J. Org. Chem.  1970,  35:  447 
  • 16b Bullington JL. Dodd JH. J. Org. Chem.  1993,  58:  4833 
  • 16c Black DStC. Bowyer MC. Condie GC. Craig DC. Kumar N. Tetrahedron  1994,  50:  10983 
  • 17a Edafiogho IO. Hinko CN. Chang H. Moore JA. Mulzac D. Nicholson JM. Scott KR. J. Med. Chem.  1992,  35:  2798 
  • 17b Scott KR. Edafiogho IO. Richardson EL. Farrar VA. Moore JA. Tietz EI. Hinko CN. El-Assadi A. Nicholson JM. J. Med. Chem.  1993,  36:  1947 
  • 17c Greenhill JV. Chaaban I. Steel PJ. J. Heterocycl. Chem.  1992,  29:  1375 
  • 17d Kesten SJ. Degnan MJ. Hung J. McNamara DJ. Ortwine DF. Uhlendorf SE. Werbel LM. J. Med. Chem.  1992,  35:  3429 
  • 18a King JA. McMillan FH. J. Am. Chem. Soc.  1950,  72:  1238 
  • 18b Ziegler FE. Bennett GB. J. Am. Chem. Soc.  1973,  95:  7458 
1

Present address: Dr. Hans-J. Hemmerling, Großes Feld 21, 40822 Mettmann, Germany.

19

Scattering factors, dispersion corrections and absorption coefficients were taken from International Tables for Crystallography (1992, Vol. C). Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication No. CCDC 694526 (9B1) and CCDC 694527 (10B5). Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44(1223)336033; or
e-mail: deposit@ccdc.cam.ac.uk].

20

SHELXS-86: Sheldrick, G. M., Universität Göttingen, 1985.

21

SHELXL-97: Sheldrick, G. M., Universität Göttingen, 1997.

    References

  • 2 Hemmerling H.-J. Janoschka M. Wunderlich H. Z. Naturforsch.  1993,  48b:  1094 
  • 3 Dorlars A. In Houben-Weyl   4th ed., Vol. 11/2:  Georg Thieme Verlag; Stuttgart: 1958.  p.737 
  • 4 Hemmerling H.-J. Merschenz-Quack A. Wunderlich H. Z. Naturforsch.  2004,  59b:  1143 
  • 5 Chatterjie N. Shapiro R. Quo S.-G. Stephani RA. Tetrahedron Lett.  1975,  16:  2535 
  • 6a Greenhill JV. Chem. Soc. Rev.  1977,  277 
  • 6b Kuckländer U. In The Chemistry of Enamines   Rappoport Z. John Wiley & Sons; Chichester: 1994.  p.523 
  • 6c Lue P. Greenhill JV. Adv. Heterocycl. Chem.  1997,  67:  207 
  • 7a McCaldin DJ. Chem. Rev.  1960,  60:  39 
  • 7b Schönberg A. Singer E. Tetrahedron  1978,  34:  1285 
  • 8a Brown DW. Graupner PR. Sainsbury M. Shertzer HG. Tetrahedron  1991,  47:  4383 
  • 9a Butera JA. Antane SA. Hirth B. Lennox JR. Sheldon JH. Norton NW. Warga D. Argentieri TM. Bioorg. Med. Chem. Lett.  2001,  11:  2093 
  • 9b Antane SA, Butera JA, and Lennox JR. inventors; US  2001047026. 
  • 10a Bal Ch. Baldeyrou B. Moz F. Lansiaux A. Colson P. Kraus-Berthier L. Léonce S. Pierre A. Boussard M. Rousseau A. Wierzbicki M. Bailly Ch. Biochem. Pharmacol.  2004,  68:  1911 
  • 10b Wierzbicki M, Boussard M.-F, Rousseau A, Boutin A, and Delagrange P. inventors; EP  1245565. 
  • 11 Miller CP, Collini MD, and Tran BD. inventors; US  6107292. 
  • 12a

    Hemmerling H.-J., Götz C., Jose J.; Annual Meeting of the German Pharmaceutical Society (DPhG), Marburg 2006, Poster P32.

  • 12b Hemmerling H.-J, Götz C, and Jose J. inventors; EP  2007/008624.  ; WO 2008040547, 2008
  • 13 Robinson B. The Fischer Indole Synthesis   John Wiley & Sons; Chichester: 1982. 
  • 14a Graham J. Ninan A. Reza K. Sainsbury M. Shertzer HG. Tetrahedron  1992,  48:  167 
  • 14b Brown DW. Mahon MF. Ninan A. Sainsbury M. Shertzer HG. Tetrahedron  1993,  49:  8919 
  • 14c Wang J.-B. Ji Q.-G. Xu J. Wu X.-H. Xie Y.-Y. Synth. Commun.  2005,  35:  581 
  • 15a Estevez JC. Estevez RJ. Castedo L. Tetrahedron Lett.  1993,  34:  6479 
  • 15b Reboredo FJ. Treus M. Estévez JC. Castedo L. Estévez RJ. Synlett  2002,  999 
  • 16a Shapiro R. Chatterjie NJ. J. Org. Chem.  1970,  35:  447 
  • 16b Bullington JL. Dodd JH. J. Org. Chem.  1993,  58:  4833 
  • 16c Black DStC. Bowyer MC. Condie GC. Craig DC. Kumar N. Tetrahedron  1994,  50:  10983 
  • 17a Edafiogho IO. Hinko CN. Chang H. Moore JA. Mulzac D. Nicholson JM. Scott KR. J. Med. Chem.  1992,  35:  2798 
  • 17b Scott KR. Edafiogho IO. Richardson EL. Farrar VA. Moore JA. Tietz EI. Hinko CN. El-Assadi A. Nicholson JM. J. Med. Chem.  1993,  36:  1947 
  • 17c Greenhill JV. Chaaban I. Steel PJ. J. Heterocycl. Chem.  1992,  29:  1375 
  • 17d Kesten SJ. Degnan MJ. Hung J. McNamara DJ. Ortwine DF. Uhlendorf SE. Werbel LM. J. Med. Chem.  1992,  35:  3429 
  • 18a King JA. McMillan FH. J. Am. Chem. Soc.  1950,  72:  1238 
  • 18b Ziegler FE. Bennett GB. J. Am. Chem. Soc.  1973,  95:  7458 
1

Present address: Dr. Hans-J. Hemmerling, Großes Feld 21, 40822 Mettmann, Germany.

19

Scattering factors, dispersion corrections and absorption coefficients were taken from International Tables for Crystallography (1992, Vol. C). Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication No. CCDC 694526 (9B1) and CCDC 694527 (10B5). Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44(1223)336033; or
e-mail: deposit@ccdc.cam.ac.uk].

20

SHELXS-86: Sheldrick, G. M., Universität Göttingen, 1985.

21

SHELXL-97: Sheldrick, G. M., Universität Göttingen, 1997.

Scheme 1 Indeno[1,2-d]imidazoles via deoxygenation of vic-di­hydroxy-substituted indeno[1,2-d]imidazoles

Scheme 2 Synthesis of vic-dihydroxy-indeno[1,2-b]indoles 9. Reagents and conditions: (i) R¹NH2, benzene, reflux, 3-8 h, 60-95%; (ii) indane-1,2,3-trione monohydrate (1), CHCl3 (MeOH), r.t., 8-24 h, 40-90%.

Figure 1 X-ray crystal structure of 9B1˙MeOH; displacement ellipsoids are drawn at the 30% probability level, radii of hydrogen atoms are chosen arbitrarily and the hydrogen atom labels are omitted for clarity

Scheme 3 Synthesis of Indeno[1,2-b]indoles. Reagents and conditions: (i) R4 = H: 5% aq KOH, reflux, 30-40%; (ii) R¹NH2, benzene, reflux, 3-8 h, 40-90%; (iii) 1, CHCl3 (MeOH), r.t., 8-24 h, 40-90%.; (iv) 4, DMF, AcOH, r.t., 3-8 h, 60-95%; (v) R4 = H: R¹NH2, benzene, reflux, 3-8 h, 40-90%; (vi) 1, CHCl3 (MeOH), r.t., 8-24 h, 40-90%.; (vii) 4, DMF, AcOH, r.t., 3-8 h, 60-95%; (viii) 5% aq KOH, reflux, 30-40%.

Figure 2 X-ray crystal structure of 10B5; displacement ellipsoids are drawn at the 30% probability level, radii of hydrogen atoms are chosen arbitrarily and the hydrogen atom labels are omitted for clarity