Subscribe to RSS
DOI: 10.1055/s-0028-1087983
Partially Saturated Indeno[1,2-b]indole Derivatives via Deoxygenation of Heterocyclic α-Hydroxy-N,O-hemiaminals
Publication History
Publication Date:
02 March 2009 (online)
Abstract
A series of 3-aminocyclohex-2-enones were reacted with indane-1,2,3-trione monohydrate (ninhydrin) yielding 4b,9b-dihydroxyindeno[1,2-b]indoles that were deoxygenated to indeno[1,2-b]indoles.
Key words
ninhydrin - deoxygenation - 3-aminocyclohex-2-enones - indeno[1,2-b]indoles - N,O-hemiaminals
Recently we reported on the reaction of indane-1,2,3-trione monohydrate (ninhydrin, 1) and amidines 2, which gave vic-dihydroxy-substituted indeno[1,2-d]imidazoles. [²]

Scheme 1 Indeno[1,2-d]imidazoles via deoxygenation of vic-dihydroxy-substituted indeno[1,2-d]imidazoles
We found that the resulting N-substituted vic-dihydroxy-indenoimidazoles 3 were deoxygenated by mixtures of thionyl chloride and heterocyclic bases, such as pyridine or imidazole. Furthermore we optimized this reaction and found N,N,N′,N′-tetramethylsulfurous acid diamide (4) or its ethyl analogue as novel reagents, [³] which were well suited to this purpose. In our mechanistic reflections, we postulated the formation of an intermediate β-sultine via an iminium cation and fragmentation with formation of an olefinic bond. [4] Thus the respective indeno[1,2-d]imidazoles 5 were formed by a short and simple procedure in acceptable to good yields. The convenience of this reaction promises to be useful in the preparation of a wide variety of related indene-annulated imidazoles as they are required for structure-activity relationship studies (Scheme [¹] ).
Continuing this work, we planned to test the synthetic potential of 4 in the deoxygenation of structural different vic-diols, generated by the reaction of 1 with 1,3-dinucleophiles, such as push-pull olefins.
In the literature there is only one short communication on this subject. The reaction of 1 with 4-aminopent-3-en-2-one or 3-aminocrotonic acid derivatives yields vic-dihydroxyindeno[1,2-b]pyrroles. [5]
In our investigations, we chose cyclic enaminones, such as 3-aminocyclohex-2-enones 7, to avoid complications due to E/Z-isomerization of the double bond. Though cyclic enaminones are widely used synthons in heterocyclic chemistry, their reaction with 1 has not been previously reported. [6] [7] Therefore, first the reaction of 1 with cyclic enaminones, such as 7, had to be investigated.
A short retrosynthetic study shows that the reaction of 7 and 1 may provide vic-dihydroxy-indenoindoles 8 or/and 9 (Scheme [²] ). Both of the possible cyclic products differ from 3 in the presence of only one N,O-hemiaminal substructure, neighboring a tertiary alcohol functionality. The consequences of this structural change on the subsequent deoxygenation reaction with 4 were the second aspect of this investigation. It may lead to the partially saturated indenoindoles 10 or/and its regioisomer, which are new.
Indenoindoles served as an attractive target for pharmacological studies. In the last few years, indeno[1,2-b]indoles have been reported as powerful lipid peroxidation inhibitors, [8] potassium channel openers, [9] DNS intercalators and topoisomerase II inhibitors, [¹0] estrogenic agents, [¹¹] or inhibitors of protein kinase CK 2, [¹²] indicating a growing interest in this class of compounds.
Among the existing procedures for the preparation of indenoindoles, the Fischer indolization starting with an indanone via the respective phenylhydrazones serves as the most common method. [¹³] [¹4] Recently, two new syntheses by transformation and reduction of 2-nitrobenzylidenephthalide, generated either by intramolecular cyclization of 2-(2-nitrophenylethynyl)benzoic acid [¹5] or by reaction of a phthalidyl-phosphonium bromide with 2-nitrobenzaldehyde, [¹0] and cyclization of the resulting amino compounds, had been published. Some articles have been written about the formation of vic-dihydroxy-indenoindolones by the reaction of 1 with aromatic amines, bearing an electron-donating group para to the amine. [¹6]
We now report on our investigations of the reaction of cyclic enaminones 7 and indane-1,2,3-trione monohydrate (1) to yield vic-dihydroxy-indenoindoles 9 and the subsequent deoxygenation reaction with N,N,N′,N′-tetramethylsulfurous diamide (4), which gave the partially unsaturated indenoindoles 10.
Access to the 3-aminocyclohex-2-enones 7A1-7E2 (Table [¹] ) was achieved according to published procedures by refluxing cyclohexane-1,3-diones 6 with primary amines in benzene and removal of water as an azeotrope with a Dean-Stark water trap; [¹7] for 7A1, 7A2, 7B1, and 7C1, (R¹ = H, Me) ammonia or methylamine, respectively, was passed through the boiling solution of the cyclohexane-1,3-dione 6. Compound 7B10 was synthesized by mixing equimolar amounts of cyclohexane-1,3-dione (6B1), glycine methyl ester hydrochloride, and triethylamine. The heterocyclic enaminone 7F1 (X = N) was prepared from the analogous piperidine-3,5-dione according to published procedures. [¹8] The reaction products 7 were isolated in good to excellent yields. Most of the enaminones were of sufficient purity to use without further purification.
7-10 | X | R¹ | R² | R³ | R4 |
A1 | C | H | H | Me | Me |
A2 | C | Me | H | Me | Me |
A3 | C | Bn | H | Me | Me |
A4 | C | Ph | H | Me | Me |
B1 | C | H | H | H | H |
B2 | C | Pr | H | H | H |
B3 | C | (CH2)5Me | H | H | H |
B4 | C | (CH2)7Me | H | H | H |
B5 | C | i-Pr | H | H | H |
B6 | C | Bn | H | H | H |
B7 | C | (CH2)2Ph | H | H | H |
B8 | C | (CH2)3Ph | H | H | H |
B9 | C | CH(Me)Ph | H | H | H |
B10 | C | (CH2)3OEt | H | H | H |
B11 | C | 4-MeOC6H4CH2 | H | H | H |
B12 | C | 3,4-(MeO)2C6H3(CH2)2 | H | H | H |
B13 | C | (CH2)2NMe2 | H | H | H |
B14 | C | (CH2)3NMe2 | H | H | H |
B15 | C | 2-pyridylmethyl | H | H | H |
B16 | C | (CH2)2OH | H | H | H |
B17 | C | (CH2)3OH | H | H | H |
B18 | C | CH2CO2Me | H | H | H |
B19 | C | Ph | H | H | H |
C1 | C | H | CO2Me | Me | H |
C2 | C | i-Pr | CO2Me | Me | H |
C3 | C | Bn | CO2Me | Me | H |
C4 | C | Ph | CO2Me | Me | H |
D1 | C | Me | H | Ph | H |
D2 | C | Bn | H | Ph | H |
D3 | C | Ph | H | Ph | H |
E1 | C | i-Pr | H | Me | H |
E2 | C | Bn | H | Me | H |
E3 | C | (CH2)2Ph | H | Me | H |
E4 | C | Ph | H | Me | H |
F1 | N | Bn | H | Bn | H |
To prepare the vic-dihydroxy-indenoindoles 9, a solution of equimolar amounts of the corresponding enaminones 7 and 1 in an appropriate solvent were stirred at ambient temperature. The reaction was monitored by TLC and terminated when the substrates had disappeared. Furthermore TLC showed, that only one compound was produced (Table [²] ). Spectroscopic data (¹H NMR and ¹³C NMR, Table [³] ) revealed that this was a cyclization product with two ¹H resonances due to OH functionalities, corresponding to the ¹³C resonances in the range of δ = 83-84 and 93-96. However an unambiguous assignment, which of the two isomeric vic-dihydroxy-indenoindolones 8 or 9 had been produced, could not be made. Therefore, the reaction product of 7B1 and 1 was studied by X-ray diffraction analysis, which clearly confirmed the structure of the 4b,9b-dihydroxy-4b,5,6,7,8,9b-hexahydroindeno[1,2-b]indole-9,10-dione (9B1) (Figure [¹] ). ¹H NMR spectra and ¹³C NMR spectra of 9B9, 9C, 9D, and 9E show a dual set of signals, indicating that mixtures of two diastereomers were obtained.
The deoxygenation of 9 was performed according to a procedure that we have recently published. [4] To a solution of 9 in N,N-dimethylformamide, acetic acid, and 4 were added and the mixture was stirred for 3-8 hours. Immediately after the addition the temperature rose to 30-40 ˚C and the color of the mixture turned red. The products 10 could be isolated by the usual procedures in good to excellent yields (Table [4] ). Structural proof was obtained from spectroscopic data (¹H NMR, ¹³C NMR, IR, MS, Table [5] ), elemental analysis, and X-ray diffraction analysis of 10B5 (Figure [²] ). The shielding effect of the N-phenyl ring in 9/10A4, 9/10B19, 9/10D3, 9/10C4, and 9/10E4 respectively accounts for a significant high field shift of H4 to δ = 6.5-6.75 in their ¹H NMR spectra.

Scheme 2 Synthesis of vic-dihydroxy-indeno[1,2-b]indoles 9. Reagents and conditions: (i) R¹NH2, benzene, reflux, 3-8 h, 60-95%; (ii) indane-1,2,3-trione monohydrate (1), CHCl3 (MeOH), r.t., 8-24 h, 40-90%.

Figure 1 X-ray crystal structure of 9B1˙MeOH; displacement ellipsoids are drawn at the 30% probability level, radii of hydrogen atoms are chosen arbitrarily and the hydrogen atom labels are omitted for clarity

Scheme 3 Synthesis of Indeno[1,2-b]indoles. Reagents and conditions: (i) R4 = H: 5% aq KOH, reflux, 30-40%; (ii) R¹NH2, benzene, reflux, 3-8 h, 40-90%; (iii) 1, CHCl3 (MeOH), r.t., 8-24 h, 40-90%.; (iv) 4, DMF, AcOH, r.t., 3-8 h, 60-95%; (v) R4 = H: R¹NH2, benzene, reflux, 3-8 h, 40-90%; (vi) 1, CHCl3 (MeOH), r.t., 8-24 h, 40-90%.; (vii) 4, DMF, AcOH, r.t., 3-8 h, 60-95%; (viii) 5% aq KOH, reflux, 30-40%.
Hydrolysis and decarboxylation of 6C gave 6E (Scheme [³] , steps i-iv, route A) in only moderate yields, hence an alternative route B for the preparation of 10E may be more efficient with respect to higher overall yields. Route B (Scheme [³] , step v-viii) starting with aminolysis of 6C to 7C proceeds in a similar sequence to 10C, which gave 10E by hydrolysis and decarboxylation (Scheme [³] , step viii). In our hands the synthesis of 10E2 via route B with 38% gave somewhat higher yields than via route A with 31%.

Figure 2 X-ray crystal structure of 10B5; displacement ellipsoids are drawn at the 30% probability level, radii of hydrogen atoms are chosen arbitrarily and the hydrogen atom labels are omitted for clarity
In conclusion, we have found that the reaction of indane-1,2,3-trione monohydrate (1) with cyclic enaminones 7 yields vic-dihydroxy-indeno[1,2-b]indoles 9. The vic-deoxygenation of 9 with N,N,N′,N′-tetramethylsulfurous diamide (4) provides an efficient and facile procedure for the synthesis of partially saturated indeno[1,2-b]indoles 10.
Melting points: Büchi melting point apparatus by Dr. Tottoli, not corrected. IR spectra: Perkin Elmer 177 and FT-IR 1600, using KBr discs. ¹H NMR spectra and ¹³C NMR spectra: Varian FT 80 (80 MHz/20 MHz), Bruker AC 200F (200 MHz/50 MHz) in the designated solvents with TMS as an internal standard; signals, labeled by * exchanged by addition of D2O. MS (EI) spectra: Finnigan 4200 quadrupole mass-spectrometer, equipped with a MASPEC datasystem; 70 eV ionizing potential. Microanalyses: Perkin Elmer Elemental Analyzer 2400/II. MPLC or flash chromatography was performed on 230-400 mesh silica (Merck). Solvents were purified by standard methods and dried over molecular sieves or sodium. N,N,N′,N′-Tetramethylsulfurous diamide (4) was prepared according to the literature. [¹9] Yields refer to products after one crystallization and are not optimized.
3-Aminocyclohex-2-enones 7; General Procedure
Method A: A soln containing equimolar quantities of a primary amine and a cyclohexane-1,3-dione 6 in benzene was refluxed at a Dean-Stark trap until the separation of H2O had finished (ca. 3 h). The solvent was removed in vacuo and the residual solid or viscous oil was triturated (EtOAc) to give 7 as a crystalline solid.
Method B: A soln of a cyclohexane-1,3-dione 6 was refluxed in a Dean-Stark trap and NH3 or MeNH2, respectively was passed through until the separation of H2O had finished (ca. 3 h). The solvent was removed in vacuo and the residual solid or viscous oil was triturated (EtOAc) to give 7A1, 7A2, 7B1, 7C1, 7D1, respectively, as crystalline solids.
4b,9b-Dihydroxy-4b,5,6,7,8,9b-hexahydroindeno[1,2- b ]indole-9,10-diones 9; General Procedure
Equimolar amounts of enaminone 7 (0.05 mol) and 1 (8.91 g, 0.05 mol) were dissolved in CHCl3 or MeOH (100 mL) and stirred at r.t. The solvent was evaporated in vacuo at max. 60 ˚C. The residue was triturated (acetone-H2O or EtOAc) to yield a white solid that was isolated by suction. A second quantity was received from the filtrate.
Compd | Yield (%) |
Mp (˚C) (Solvent) | Molecular Formulaa | ||||||||||||||||
9A1 | 66 |
229-230 (MeOH-H2O) | C17H17NO4 (299.33) | ||||||||||||||||
9A2 | 43 |
160-161 (EtOAc) | C18H19NO4 (313.35)b | ||||||||||||||||
9A3 | 70 |
188-189 (MeOH-EtOAc) | C24H23NO4 (389.44) | ||||||||||||||||
9A4 | 95 |
211-212 (EtOAc) | C23H21NO4 (375.42) | ||||||||||||||||
9B1 | 96 |
237-238 (MeOH) | C15H13NO4 (271.27) | ||||||||||||||||
9B2 | 94 |
187 (MeOH-H2O) | C18H19NO4 (313.34) | ||||||||||||||||
9B3 | 86 |
179 (MeOH) | C21H25NO4 (355.43) | ||||||||||||||||
9B4 | 89 |
148 (MeOH-H2O) | C23H29NO4 (383.48) | ||||||||||||||||
9B5 | 79 |
205 (MeOH) | C18H19NO4 (313.34) | ||||||||||||||||
9B6 | 85 |
209-210 (EtOH) | C22H19NO4 (361.39) | ||||||||||||||||
9B7 | 88 |
204 (MeCN) | C23H21NO4 (375.42) | ||||||||||||||||
9B8 | 77 |
128 (acetone) | C24H23NO4 (389.44)c | ||||||||||||||||
9B9 | 64 |
191 (MeOH) | C23H21NO4 (375.42)d | ||||||||||||||||
9B10 | 71 |
162 (EtOH) | C20H23NO5 (357.16) | ||||||||||||||||
9B11 | 95 |
152-153 (MeCN) | C23H21NO5 (391.42) | ||||||||||||||||
9B12 | 63 |
217-218 (MeOH) | C25H25NO6 (435.47) | ||||||||||||||||
9B14 | 54 |
183-184 (MeOH) | C20H24N2O4 (356.42) | ||||||||||||||||
9B15 | 81 |
228-229 (MeCN) | C21H18N2O4 (362.38) | ||||||||||||||||
9B16 | 73 |
209-210 (MeOH) | C17H17NO5 (315.32) | ||||||||||||||||
9B18 | 65 |
198-199 (MeOH) | C18H17NO6 (343.33) | ||||||||||||||||
9B19 | 91 |
212 (MeOH-H2O) | C21H17NO4 (347.36)e | ||||||||||||||||
9C2 | 76 |
171-172 (MeOH-H2O) | C21H23NO6 (385.41)f | ||||||||||||||||
9C3 | 81 |
173 (MeOH) | C25H23NO6 (433.46) | ||||||||||||||||
9C4 | 74 |
148 (MeOH-H2O) | C24H21NO6 (419.44) | ||||||||||||||||
9D2 | 88 |
136-137 (MeOH) | C28H23NO4 (437.49)g | ||||||||||||||||
9D3 | 77 |
162-163 (MeOH-H2O) | C27H21NO4 (423.46) | ||||||||||||||||
9E2 | 88 |
201-202 (MeOH-H2O) | C23H21NO4 (375.42) | ||||||||||||||||
9E3 | 75 |
202-203 (MeOH-H2O) | C24H23NO4 (389.44) | ||||||||||||||||
9F1 | 73 |
89 (MeOH-H2O) | C28H24N2O4 (452.50)h | ||||||||||||||||
| |||||||||||||||||||
a Analysis
C ± 0.25, H ± 0.23, N ± 0.22 except 9F1 C -0.52, 9B9 H -0.33, 9B11 H +0.29. b Analysis for C18H19NO4˙C4H8O2. c Analysis for C24H23NO4˙0.5 C3H6O. d Analysis for C23H21NO4˙CH3OH. e Analysis for C21H17NO4˙0.5 H2O. f Analysis for C21H23NO6˙H2O. g Analysis for C28H23NO4˙2 CH3OH. h Analysis for C28H24N2O4˙H2O. |
Compd | IR (cm-¹) | ¹H NMRa δ, J (Hz) | ¹³C NMRa δ | MS (EI) m/z (%) | |||||||||||||||
9A1 | 3407, 3306, 1713, 1605, 1588, 1545, 1501, 1406 | 0.79 (s, 3 H, CH3), 1.00 (s, 3 H, CH3), 1.92 (s, 2 H, CH2), 2.13-2.16 (AB, 2 H, CH2), 5.49* (s, 1 H, OH), 6.47* (s, 1 H, OH), 7.5-7.85 (m, 4 Harom), 9.05* (s, 1 H, NH) | 27.5, 28.4, 33.2, 36.5, 51.1, 83.8, 92.8, 104.0, 122.5, 124.7, 129.8, 134.5, 135.3, 149.7, 164.2, 188.2, 198.1 | 299 (40) [M+], 282 (12), 281 (19), 242 (10), 225 (20), 215 (13), 197 (17), 166 (55), 139 (11), 130 (15), 105 (44), 104 (37), 83 (100), 77 (31) | |||||||||||||||
9A2 | 1720, 1715, 1598, 1522, 1500, 1404, 1215 | 0.82 (s, 3 H, CH3), 1.02 (s, 3 H, CH3), 1.93 (s, 2 H, CH2), 2.2-2.35 (AB, 2 H, CH2), 3.17 (s, 3 H, NCH3), 5.61* (s, 1 H, OH), 6.74* (s, 1 H, OH), 7.5-7.9 (m, 4 Harom) | 27.3, 27.9, 28.4, 32.6, 35.4, 50.9, 83.2, 95.0, 103.2, 123.0, 124.6, 130.0, 134.6, 135.2, 147.1, 163.9, 187.5, 197.4 | ||||||||||||||||
9A3 | 3391, 2955, 1732, 1719, 1605, 1590, 1580, 1542, 1520, 1494, 1454, 1434, 1403, 1388, 1354, 1340, 1329, 1288, 1276, 1220 | 0.70 (s, 3 H, CH3), 0.83 (s, 3 H, CH3), 1.92 (s, 2 H, CH2), 2.01 (s, 2 H, CH2), 4.67-5.25 (AB, 2 H, CH 2Ph), 5.76* (s, 1 H, OH), 6.88* (s, 1 H, OH), 7.14-7.77 (m, 9 Harom) | 27.7, 28.0, 32.9, 36.0, 44.6, 50.9, 83.4, 95.3, 103.9, 122.9, 124.8, 126.6, 126.8, 128.2, 130.0, 134.6, 135.1, 138.4, 148.0, 164.1, 187.9, 197.4 | 389 (7) [M+], 298 (45), 256 (17), 229 (11), 224 (11), 173 (10), 144 (28), 105 (18), 104 (34), 91 (100), 76 (25) | |||||||||||||||
9A4 | 3470, 3230, 1720, 1604, 1545, 1492, 1455, 1440, 1403, 1279, 1204, 1146 | 0.89 (s, 3 H, CH3), 0.96 (s, 3 H, CH3), 1.76-2.47 (2 AB, 4 H, 2 CH2), 6.04* (s, 1 H, OH), 6.60-6.45 (m, 1 H, H4), 7.31* (s, 1 H, OH), 7.25-7.76 (m, 8 Harom) | 26.4, 29.2, 33.3, 36.9, 51.1, 83.3, 96.6, 105.4, 123.1, 124.7, 127.8, 128.8, 129.2, 130.1, 134.6, 134.7, 135.9, 147.1, 163.2, 189.1, 197.5 | ||||||||||||||||
9B1 | 3248, 1705, 1605, 1592, 1510 | 1.6-1.85 (m, 2 H, CH2), 2.0-2.1 (m, 2 H, CH2), 2.2-2.4 (m, 2 H, CH2), 5.47* (s, 1 H, OH), 6.44* (s, 1 H, OH), 7.5-7.8 (m, 4 Harom), 9.08* (s, 1 H, NH) | 21.4, 23.1, 37.0, 83.9, 92.5, 105.3, 122.6, 124.7, 129.8, 134.5, 135.3, 149.8, 165.2, 189.0, 198.2 | 271 (7) [M+], 353 (45), 251 (18), 225 (15), 223 (13), 197 (23), 169 (11), 130 (12), 105 (14), 104 (36), 83 (39), 76 (100) | |||||||||||||||
9B2 | 3395, 1720, 1603, 1540, 1492, 1438, 1405, 1362, 1328, 1288, 1222, 1194, 1157, 1123 | 0.93 (t, J = 7.5, 3 H, CH3), 1.4-2.0 (m, 4 H, 2 CH2), 2.0-2.1 (m, 2 H, CH2), 2.3-2.6 (m, 2 H, CH2), 3.35-3.8 (m, 2 H, CH2), 5.65* (s, 1 H, OH), 6.68* (s, 1 H, OH), 7.5-8.0 (m, 4 Harom) | 313 (1) [M+], 295 (1), 266 (1), 228 (2), 210 (1), 180 (2), 153 (3), 105 (15), 104 (18), 76 (58), 56 (100) | ||||||||||||||||
9B3 | 3340, 1724, 1606, 1591, 1579, 1521, 1500, 1494 | 0.8-1.0 (m, 3 H, CH3), 1.2-2.6 (div. m, 14 H, 7 CH2), 3.4-3.8 (m, 2 H, CH2), 5.64* (s, 1 H, OH), 6.69* (s, 1 H, OH), 7.5-8.0 (m, 4 Harom) | 355 (3) [M+], 337 (6), 321 (11), 319 (10), 264 (11), 195 (7), 124 (8), 110 (11), 105 (11), 104 (33), 97 (22), 96 (13), 76 (53), 55 (100) | ||||||||||||||||
9B4 | 3388, 2926, 2853, 1727, 1605, 1520, 1500, 1465, 1436, 1410, 1368 | 0.8-2.6 (m, 21 Haliphat), 3.3-3.8 (m, 2 H, NCH2), 5.64*, 6.68* (2 s, 2 H, 2 OH), 7.5-8.0 (m, 4 Harom) | 383 (0.2) [M+], 365 (2), 349 (1), 347 (1), 266 (1), 223 (1), 180 (2), 152 (3), 138 (5), 110 (14), 104 (13), 97 (25), 55 (100) | ||||||||||||||||
9B5 | 3552, 3404, 2963, 1736, 1732, 1720, 1716, 1621, 1604, 1543, 1494, 1460, 1418, 1370, 1282, 1257, 1233, 1159 | 1.24 (d, J = 7.0, 3 H, CH3), 1.45 (d, J = 7.0, 3 H, CH3), 1.79 (m, 2 H, CH2), 2.05 (m, 2 H, CH2), 2.39-2.77 (m, 2 H, CH2), 4.59 (m, 1 H, CH), 5.66* (s, 1 H, OH), 6.71* (s, 1 H, OH), 7.54-7.97 (m, 4 Harom) | 313 (17) [M+], 270 (32), 153 (19), 138 (18), 105 (59), 104 (62), 96 (44), 83 (24), 82 (27), 77 (55), 76 (75), 68 (29), 67 (23), 66 (20), 65 (26), 58 (33), 55 (100) | ||||||||||||||||
9B6 | 3383, 1717, 1604, 1548, 1516, 1488, 1453, 1434, 1407, 1356, 1226, 1194, 1140 | 1.4-1.65 (m, 2 H, CH2), 1.65-2.3 (m, 4 H, 2 CH2), 4.7-5.25 (AB, 2 H, CH 2Ph), 5.81* (s, 1 H, OH), 6.95* (s, 1 H, OH), 7.2-7.35 (m, 5 Harom), 7.5-7.9 (m, 4 Harom) | 22.2, 22.9, 36.8, 44.9, 83.6, 95.1, 105.3, 123.0, 124.9, 126.8, 126.9, 128.3, 130.1, 134.7, 135.2, 138.2, 148.1, 165.4, 188.8, 197.5 | 361 (10) [M+], 271 (17), 270 (100), 252 (16), 242 (12), 228 (34), 106 (12), 105 (18), 104 (16), 91 (90) | |||||||||||||||
9B7 | 3362, 1724, 1595, 1529, 1491, 1353, 1136 | 1.5-1.8 (m, 2 H, CH2), 1.95-2.05 (m, 2 H, CH2), 2.15-2.4 (m, 2 H, CH2), 2.8-3.1 (m, 2 H, CH2), 3.6-4.1 (dm, 2 H, CH2), 5.74* (s, 1 H, OH), 6.84* (s, 1 H, OH), 7.2-7.4 (m, 5 Harom), 7.5-8.05 (m, 4 Harom) | 21.3, 22.3, 36.81, 36.86, 43.4, 83.5, 95.6, 104.8, 123.1, 124.7, 126.3, 128.4, 129.0, 130.1, 134.7, 135.5, 138.9, 148.2, 165.1, 188.7, 197.5 | 375 (12) [M+], 358 (10), 228 (12), 215 (22), 132 (14), 124 (53), 103 (31), 104 (100), 96 (29), 91 (19), 77 (19), 76 (46) | |||||||||||||||
9B8 | 3340, 1724, 1603, 1538, 1495, 1420, 1410, 1366, 1216, 1139 | 1.6-2.7 (m, 10 H, 5 CH2), 3.45-3.85 (m, 2 H, NCH2), 5.67*, 6.72* (2 s, 2 H, 2 OH), 7.15-7.85 (m, 9 Harom)b | 21.4, 22.4, 32.1, 32.4, 36.8, 41.2, 83.4, 95.3, 104.6, 123.1, 124.6, 125.8, 128.2, 130.1, 134.7, 135.3, 141.3, 148.2, 165.0, 188.6, 197.5b | 389 (1) [M+], 371 (2), 353 (2), 229 (6), 132 (12), 125 (33), 118 (18), 117 (24), 104 (64), 97 (71), 91 (55), 76 (100) | |||||||||||||||
9B9 | 3280, 3090, 1729, 1701, 1602, 1530, 1483, 1456 | 1.4-2.4 (m, 6 H, 3 CH2), 1.60, 1.86 (2 d, J 1 = 7.3, J 2 = 7.0, 3 H, CH3), 5.5-5.7 (m, 1 H, CH), 5.80*, 5.85* (2 s, 1 H, OH), 6.7-6.8 (m, 1 Harom), 6.99*, 7.01* (2 s, 1 H, OH), 7.1-8.1 (m, 8 Harom) | 19.6, 20.6, 21.4, 21.6, 24.1, 24.8, 36.68, 36.73, 39.7, 40.1, 49.8, 50.6, 83.1, 83.3, 95.0, 96.3, 105.47, 105.51, 123.2, 123.5, 124.97, 125.04, 125.6, 126.5, 126.6, 126.9, 128.1, 128.2, 130.16, 130.22, 134.78, 134.81, 135.27, 135.34, 141.4, 142.0, 148.1, 148.5, 164.7, 188.8, 188.9, 197.3, 197.5 | 375 (3) [M+], 357 (3), 270 (11), 253 (13), 251 (5), 242 (5), 215 (15), 187 (12), 172 (12), 132 (12), 151 (6), 111 (7), 105 (75), 102 (5), 83 (18), 77 (100) | |||||||||||||||
9B10 | 3446, 1720, 1594, 1582, 1509, 1502, 1448, 1415, 1366, 1352, 1317, 1247, 1217, 1191, 1150, 1112, 1086 | 1.15 (t, J = 7.0, 3 H, CH3), 1.65-2.1 (m, 6 H, 3 CH2), 2.35-2.6 (m, 2 H, CH2), 3.3-3.5 (2 m, 4 H, CH2OCH2), 3.6-3.8 (m, 2 H, NCH2), 5.67* (s, 1 H, OH), 6.70* (s, 1 H, OH), 7.54-7.95 (m, 4 Harom) | 357 (2) [M+], 339 (6), 266 (12), 228 (7), 224 (7), 197 (18), 168 (34), 153 (28), 140 (46), 132 (30), 125 (68), 124 (51), 110 (22), 105 (21), 104 (93), 97 (100), 76 (67) | ||||||||||||||||
9B11 | 3358, 2940, 1724, 1606, 1538, 1512, 1488, 1417, 1247, 1178 | 1.5-1.8 (m, 2 H, CH2), 1.9-2.3 (m, 4 H, 2 CH2), 3.73 (s, 3 H, OCH3), 4.67-5.10 (AB, 2 H, CH2Ph), 5.77* (s, 1 H, OH), 6.85-7.22 (AA′BB′, 4 Harom), 5.77* (s, 1 H, OH), 7.5-7.9 (m, 4 Harom) | 20.2, 22.0, 35.7, 43.4, 53.9, 82.6, 94.0, 104.2, 112.7, 122.0, 123.8, 127.2, 128.9, 129.0, 133.7, 134.2, 147.0, 157.2, 164.3, 187.7, 196.5 | 391 (0.5) [M+], 270 (6), 231 (7), 121 (100), 104 (24), 76 (24) | |||||||||||||||
9B12 | 3423, 3064, 2946, 1730, 1611, 1536, 1487, 1357, 1261, 1186, 1145, 1132 | 1.5-1.8 (br m, 2 H, CH2), 2.00 (m (t), 2 H, CH2), 2.0-2.2 (m, 2 H, CH2), 2.8-3.0 (m, 2 H, CH2), 3.5-4.0 (m, 2 H, CH2), 3.73, 3.75 (2 s, 6 H, 2 OCH3), 5.75* (s, 1 H, OH), 6.85* (s, 1 H, OH), 6.8-6.95 (m, 3 H, H2′′, H3′′, H6′′), 7.5-8.05 (m, 4 Harom) | 435 (1) [M+], 417 (3), 399 (2), 266 (7), 165 (16), 164 (47), 152 (20), 151 (77), 132 (11), 124 (16), 107 (12), 105 (13), 104 (55), 96 (13), 91 (14), 79 (14), 79 (14), 78 (14), 77 (31), 76 (100) | ||||||||||||||||
9B13 c | 3190, 1714, 1628, 1602, 1546, 1482, 1396, 1223, 1178, 1150 | 1.55-2.0 (m, 2 H, CH2), 2.0-2.2 (m, 2 H, CH2), 2.27 (s, 6 H, 2 CH3), 2.3-2.7 (m, 4 H, 2 CH2), 3.5-4.0 (m, 2 H, CH2), 7.5-8.0 (4 m, 4 Harom)b | 21.3, 22.3, 30.6, 40.0, 45.2, 59.1, 83.6, 94.9, 105.4, 122.9, 124.6, 130.1, 134.8, 135.4, 148.6, 164.8, 188.8, 197.7 | 342 (8) [M+], 266 (16), 105 (21), 76 (36), 66 (71), 57 (100) | |||||||||||||||
9B14 | 3074, 1728, 1604, 1534, 1491, 1468, 1417, 1408, 1226, 1208, 1172 | 1.6-2.0 (m, 4 H, 2 CH2), 2.0-2.3 (m, 2 H, CH2), 2.16 [s, 6 H, N(CH3)2], 2.25-2.3 (m, 4 H, 2 CH2), 3.5-4.0 (m, 2 H, CH2), 5.5* (br, 1 H, OH), 7.5-7.9 (4 m, 4 Harom), 8.3* (br, 1 H, OH) | 21.4, 22.4, 26.9, 36.8, 44.5, 56.1, 83.5, 95.5, 105.1, 122.7, 124.4, 130.0, 134.7, 135.2, 148.1, 164.8, 188.5, 197.8b | ||||||||||||||||
9B15 | 3332, 1719, 1615, 1600, 1537, 1478, 1459, 1425, 1407, 1189 | 1.55-1.9 (m, 2 H, CH2), 2.0-2.1 (m, 2 H, CH2), 2.1-2.4 (m, 2 H, CH2), 4.9-5.2 (AB, 2 H, CH2), 5.75*, 7.03* (2 br s, 2 H, 2 OH), 7.2-7.45 (m, 2 Harom), 7.5-7.85 (m, 5 Harom), 8.45-8.5 (m, 1 Harom) | 21.2, 22.7, 36.9, 46.6, 83.7, 95.1, 105.5, 121.5, 122.3, 123.0, 124.9, 130.1, 134.7, 135.1, 136.9, 148.2, 148.8, 157.5, 165.5, 188.9, 197.6 | 362 (2) [M+], 344 (4), 288 (4), 270 (7), 146 (6), 107 (9), 104 (14), 93 (110) | |||||||||||||||
9B16 | 3429, 3287, 1726, 1588, 1530, 1500, 1433, 1151 | 1.5-2.2 (m, 2 H, CH2), 1.95-2.25 (m, 2 H, CH2), 2.3-2.75 (m, 2 H, CH2), 3.5-3.95 (2 m, 4 H, 2 CH2), 4.96*, 5.65*, 6.69* (3 br s, 3 H, 3 OH), 7.5-8.0 (m, 4 Harom) | 21.5, 22.6, 36.8, 44.0, 60.8, 83.4, 95.3, 104.8, 123.1, 124.6, 130.1, 134.8, 135.4, 148.2, 165.6, 188.7, 197.5b | 315 (3) [M+], 297 (12) [M - 18], 279 | |||||||||||||||
9B18 | 3476, 3068, 1751, 1710, 1614, 1551, 1480, 1432, 1396, 1283, 1219, 1203, 1174 | 1.6-2.6 (m, 6 H, 3 CH2), 3.59 (s, 3 H, OCH3), 4.57 (s, 2 H, CH2CO), 5.74* (s, 1 H, OH), 6.74* (s, 1 H, OH), 7.5-7.75 (m, 4 Harom) | 343 (12) [M+], 325 (12), 267 (15), 266 (35), 224 (20), 210 (42), 183 (43), 155 (23), 149 (36), 132 (24), 127 (20), 123 (25), 104 (100) | ||||||||||||||||
9B19 | 3278, 1729, 1605, 1540, 1495, 1461, 1443, 1194 | 1.6-2.5 (m, 6 H, 3 CH2), 5.98* (s, 1 H, OH), 6.5-6.65 (m, 1 H, H4), 7.23* (s, 1 H, OH), 7.3-7.8 (m, 8 Harom) | 347 (100) [M+], 329 (25), 318 (32), 300 (64), 214 (71), 159 (38), 130 (57), 104 (54), 77 (85) | ||||||||||||||||
9C1 c | 3526, 3430, 3312, 1744, 1730, 1720, 1712, 1605, 1590, 1514, 1504 | 0.88 (d, J = 4.8, 3 H, CH3), 2.0-2.5 (2 m, 3 H, CH2, CH), 2.93-3.04 (2 d, 1 H, H8), 3.59, 3.61 (2 s, 3 H, OCH3), 5.63*, 5.67* (2 s, 1 H, OH), 6.61*, 6.63* (2 s, 1 H, OH), 7.5-7.9 (m, 4 Harom), 9.38* (s, 1 H, NH) | 19.50, 19.55, 29.9, 32.1, 32.4, 51.5, 51.6, 60.7, 61.2, 83.8, 84.1, 93.1, 93.3, 104.1, 123.0, 123.1, 125.1, 130.2, 134.6, 134.8, 135.7, 135.8, 149.7, 149.9, 165.0, 165.1, 171.5, 171.7, 184.1, 184.2, 197.4, 198.3 | 343 (2) [M+], 341 (2), 327 (4), 325 (6), 293 (16), 279 (15), 265 (43), 254 (21), 250 (27), 226 (24), 209 (18), 197 (27), 185 (15), 180 (26), 169 (20), 165 (18), 152 (22), 139 (26), 132 (18), 130 (28), 126 (22), 120 (22), 105 (37), 103 (100) | |||||||||||||||
9C2 | 2976, 2938, 1720, 1593, 1526, 1494, 1459, 1419, 1369, 1218, 1200, 1126 | 0.91 (m, 3 H, OCH3), 1.26 (d, J = 7.0, 3 H, CH3), 1.42, 1.49 (2 d, J = 7.0, 3 H, CH3), 2.05-2.6 (m, 2 H, CH2), 2.6-3.1 (m, 2 H, CH2), 3.60, 3.62 (2 s, 3 H, OCH3), 4.60 (m, 1 H, CHMe2), 5.71*, 5.79* (br, 1 H, OH), 6.79*, 6.85* (2 s, 1 H, OH), 7.5-8.0 (m, 4 Harom) | 19.2, 19.3, 22.0, 22.3, 22.6, 28.9, 30.5, 30.7, 32.2, 40.1, 44.9, 45.1, 51.1, 51.3, 60.2, 60.5, 82.5, 82.8, 95.9, 96.0, 103.6, 103.7, 123.0, 132.3, 124.3, 124.7, 130.18, 130.24, 134.57, 134.63, 134.8, 135.4, 147.6, 148.1, 163.9, 164.0, 171.2, 171.3, 183.3, 183.4, 196.6, 197.3 | 385 (5) [M+], 342 (7), 252 (6), 225 (13), 194 (8), 166 (9), 152 (9), 132 (14), 125 (25), 110 (17), 105 (32), 104 (29), 96 (74), 83 (19), 82 (26), 77 (29), 76 (62), 69 (100) | |||||||||||||||
9C3 | 3406, 1732, 1604, 1542, 1518, 1496, 1453, 1358, 1286, 1204, 1147, 950 | 0.77 (d, J = 6.2, 3 H, CH3), 1.65-2.5 (m, 3 H, CH2, CH), 2.97, 3.03 (2 d, 1 H, CH), 3.58, 3.61 (2 s, 3 H, OCH3), 4.85-5.15 (2 AB, 2 H, CH2), 5.90*, 5.93* (2 s, 1 H, OH), 7.03*, 7.06* (2 s, 1 H, OH), 7.12-7.86 (m, 9 Harom) | 19.16, 19.23, 29.2, 31.7, 31.9, 44.7, 44.9, 51.25, 51.35, 60.2, 60.6, 83.2, 83.4, 95.3, 95.6, 103.8, 103.9, 123.05, 123.13, 125.0, 126.4, 126.7, 126.9, 127.1, 128.29, 128.31, 130.3, 134.5, 134.7, 135.3, 135.4, 137.8, 138.1, 147.8, 164.95, 165.05, 171.2, 171.3, 183.6, 183.7, 197.0, 197.3 | ||||||||||||||||
9C4 | 3408, 1723, 1636, 1558, 1496, 1461, 1416, 1288, 1245, 1158 | 0.75-0.9 (d, 3 H, CH3), 1.85-2.45 (m, 3 H, CH2, CH), 3.05-3.15 (m, 1 H, CH), 3.63 (s, 3 H, OCH3), 6.03*, 6.12* (2 s, 0.3 + 0.7 H, OH), 6.55-6.62, 6.67-6.71 (2 m, 0.7 + 0.3 H, CH), 7.30*, 7.37*(2 s, 1 H, OH), 7.25-7.8 (3 m, 8 Harom) | 19.1, 19.3, 25.4, 32.4, 51.3, 51.4, 60.6, 60.8, 61.9, 83.1, 83.3, 96.6, 96.9, 104.9, 105.2, 123.2, 123.3, 124.7, 125.0, 128.0, 128.4, 128.9, 129.0, 130.1, 130.2, 134.6, 134.8, 135.4, 135.6, 146.9, 147.4, 164.0, 164.2, 171.1, 184.4, 184.7, 197.0, 197.5 | 419 (10) [M+], 401, 343 (13), 286 (16), 273 (70), 245 (21), 181 (14), 159 (39), 77 (100) | |||||||||||||||
9D1 c | 3394, 1720, 1603, 1506, 1406 | 2.0-3.4 (mm, 5 H, 2 CH2, CH), 3.18, 3.22 (2 s, 3 H, CH3), 5.65*; 5.72* (2 s, 1 H, OH), 6.77*, 6.83* (2 s, 1 H, OH), 7.1-7.35 (m, 5 Harom), 7.55-7.95 (m, 4 Harom) | 27.4, 29.2, 29.7, 40.2, 44.36, 44.44, 83.1, 83.4, 95.1, 95.2, 104.2, 104.4, 123.0, 123.2, 124.69, 124.74, 126.4, 126.9, 128.26, 128.28, 130.1, 134.6, 134.9, 135.3, 135.5, 143.5, 146.8, 147.5, 164.4, 164.7, 187.0, 187.4, 197.1, 197.7 | ||||||||||||||||
9D2 | 3356, 3060, 3037, 1724, 1604, 1540, 1488, 1452, 1435, 1406, 1352, 1289 | 2.02-3.25 (m, 2 H, CH2), 2.3-2.6 (m, 2 H, CH2), 2.9-3.2 (m, 1 H, CH), 4.76-5.22 (AB, 2 H, CH 2Ph), 5.86*, 5.90* (2 s, 1 H, OH), 6.98*, 7.03* (2 s, 1 H, OH), 7.05-7.89 (m, 14 Harom)b | 29.8, 30.4, 39.6, 39.2, 44.2, 44.3, 44.7, 44.8, 83.3, 83.5, 95.4, 95.5, 104.9, 105.1, 122.9, 123.1, 124.89, 124.94, 126.4, 126.68, 126.73, 126.77, 126.9, 127.0, 128.2, 128.3, 130.2, 134.6, 134.9, 135.1, 135.4, 138.1, 138.3, 143.2, 147.8, 148.1, 164.65, 164.73, 187.5, 187.7b | 437 (1) [M+], 419 (4), 346 (4), 304 (2), 277 (8), 173 (12), 144 (27), 132 (10), 131 (8), 105 (13), 104 (45), 91 (100), 76 (34) | |||||||||||||||
9D3 | 3408, 1717, 1603, 1548, 1493, 1458, 1445, 1284, 1203, 1158 | 2.0-3.0 (m, 4 H, 2 CH2), 3.1-3.4 (m, 1 H, CH), 6.01*, 6.12* (2 s, 0.33 + 0.66 H, 1 OH), 6.59-6.63, 6.68-6.75 (2 m, 0.66 + 0.33 H, CH), 7.1-7.8 (m, 13 Harom + 1 H*, OH) | 31.4, 42.2, 44.5, 83.2, 83.5, 96.6, 96.9, 106.2, 106.4, 123.1, 123.3, 124.7, 125.0, 126.2, 126.4, 126.6, 126.8, 126.9, 127.8, 128.3, 128.3, 128.5, 128.85, 128.93, 130.0, 130.1, 134.6, 134.7, 134.9, 135.6, 135.8, 143.3, 143.4, 146.9, 147.6, 163.6, 163.9, 188.5, 188.7, 197.3, 197.8 | 423 (15) [M+], 405 (46), 387 (80), 273 (64), 263 (49), 256 (76), 159 (100), 130 (46), 104 (60), 77 (86) | |||||||||||||||
9E2 | 3380, 1731, 1718, 1604, 1543, 1490, 1453, 1434, 1347, 1142 | 0.79 [m (t), 3 H, CH3], 1.5-2.4 (m, 5 H, 2 CH2, CH), 4.7-5.2 (AB, 2 H, CH2), 5.79*, 5.81* (2 s, 1 H, 1 OH), 6.90*, 6.94* (2 s, 1 H, OH), 7.1-7.9 (m, 9 Harom) | 375 (2) [M+], 357 (18), 288 (8), 284 (15), 242 (7), 145 (7), 106 (32), 91 (100) | ||||||||||||||||
9E3 | 3466, 1716, 1606, 1534, 1495, 1454, 1407, 1362, 1350, 1283, 1250, 1223, 1137 | 0.80, 0.88 (2 d, J = 4.6, 3 H, CH3), 1.6-2.5 (m, 5 H, 2 CH2, CH), 2.8-3.2 (m, 2 H, CH2), 3.6-4.2 (2 m, 2 H, CH2), 5.72*, 5.76* (2 s, 1 H, OH), 6.83*, 6.84* (2 s, 1 H, 1 OH), 7.2-7.4 (m, 5 H, HPh), 7.5-8.0 (m, 4 H, Hindene) | 371 (3) [M+ - 18], 355 (2), 296 (3), 294 (4), 280 (3), 229 (13), 138 (42), 132 (8), 104 (100)96 (11), 91 (20) | ||||||||||||||||
9F1 | 3383, 1723, 1604, 1551, 1496, 1453, 1438, 1347, 1289, 1230, 1147 | 2.7-2.8 (AB, 2 H, CH2), 2.8-3.2 (AB, 2 H, CH2), 3.3-3.5 (AB, 2 H, CH2), 4.68-5.14 (AB, 2 H, CH2), 5.99* (s, 1 H, OH), 7.0-7.9 (m, 14 H + 1 H*, Harom + OH) | 45.1, 48.5, 59.9, 60.1, 83.2, 95.8, 103.4, 123.1, 125.0, 127.1, 127.2, 128.1, 128.2, 128.3, 128.7, 130.3, 134.7, 135.5, 136.5, 137.5, 147.8, 163.6, 185.5, 197.2 | 452 (1) [M+], 291 (4), 288 (5), 201 (60), 173 (25), 144 (43), 104 (45), 91 (100) | |||||||||||||||
| |||||||||||||||||||
a Solvent
DMSO-d
6 unless otherwise indicated. b Solvent CDCl3. c No satisfactory elemental analysis. Method F. |
5,6,7,8-Tetrahydroindeno[1,2- b ]indole-9,10-diones 10; General Procedures
Method C: 9 (5 mmol) was dissolved in DMF (15 mL) and AcOH (3 mL) was added. After addition of 4 (2.72 g, 20 mmol), the soln was stirred for 12 h. A precipitate had deposited that was separated by suction. The filtrate was evaporated in vacuo, the viscous residue was diluted with H2O, and the soln was basified with NaHCO3. Extraction with CHCl3 gave a second quantity, which was purified by MPLC (silica gel, EtOAc-hexane or CHCl3-EtOAc).
Method D: 9 (5 mmol) was dissolved in DMF (15 mL) and AcOH (3 mL) was added. After addition of 4 (2.72 g, 20 mmol), the soln was stirred for 12 h. The soln was then poured into H2O (500 mL). The suspension was stirred for 3 h and the solid separated by filtration. The solid was air dried and crystallized. The filtrate was evaporated to a small volume and worked up as described under method C.
Method E: 10C (3.51 g, 0.01 mol) was suspended in 5% aq NaOH (100 mL) and refluxed for 36 h. The soln was then neutralized with 10% aq H2SO4. The precipitate was separated, washed with H2O (3 × 20 mL), suspended in 5% aq H2SO4 (30 mL), and refluxed for 24 h. The solid was separated, washed with H2O, air dried, and crystallized to give 10E.
Method F: (One-pot synthesis) Equimolar amounts of 1 (0.89 g, 5 mmol) and 7 (5 mmol) were dissolved in CHCl3 (50 mL) and stirred at r.t. for 12 h. The solvent was then evaporated in vacuo and the residue dissolved in DMF (15 mL). To the soln AcOH (3 mL) and 4 (2.72 g, 20 mmol) were added and the mixture stirred for 12 h. The mixture was then worked up as described in method D to give 10.
Compd | Yield (%) |
Mp (˚C) (solvent) | Molecular Formulaa | ||||||||||||||||
10A1 | 58 |
>315 (MeCN) | C17N15NO2 (265.31) | ||||||||||||||||
10A2 | 65 |
259 (MeOH) | C18H17NO2 (279.33)b | ||||||||||||||||
10A3 | 87 |
281-282 (MeCN) | C24H21NO2 (355.43) | ||||||||||||||||
10A4 | 72 |
297-298 (EtOAc) | C23H19NO2 (341.14) | ||||||||||||||||
10B1 | 58 | 332-333c | C15H11NO2 (237.25) | ||||||||||||||||
10B2 | 56 |
178 (EtOAc) | C18H17NO2 (279.33) | ||||||||||||||||
10B3 | 85 |
136 (EtOAc) | C21H23NO2 (321.41) | ||||||||||||||||
10B4 d | 89 |
146 (EtOAc) | C23H27NO2 (349.47) | ||||||||||||||||
10B5 | 71 |
201 (EtOAc) | C18H17NO2 (279.33) | ||||||||||||||||
10B6 | 95 |
185 (EtOAc) | C22H17NO2 (327.38) | ||||||||||||||||
10B7 | 62 |
189-190 (EtOAc) | C23H19NO2 (341.40) | ||||||||||||||||
10B8 | 74 |
222-223 (MeOH) | C24H21NO2 (355.43) | ||||||||||||||||
10B9 | 95 |
201 (EtOAc) | C23H19NO2 (341.40) | ||||||||||||||||
10B10 | 92 |
129 (EtOAc) | C20H21NO3 (323.39) | ||||||||||||||||
10B11 | 86 |
198-199 (EtOAc) | C23H19NO3 (357.40) | ||||||||||||||||
10B12 | 90 |
189-190 (DMF-H2O) | C25H23NO4 (401.45) | ||||||||||||||||
10B13 | 52e |
178 (MeOH) | C19H20N2O2 (308.37) | ||||||||||||||||
10B15 | 63 |
241-242 (MeOH) | C21H16N2O2 (328.36) | ||||||||||||||||
10B16 | 78 |
262-263 (MeOH) | C17H15NO3 (281.31) | ||||||||||||||||
10B17 | 64e |
241 (MeOH) | C18H17NO3 (295.33) | ||||||||||||||||
10B18 | 88 |
256-257 (EtOAc) | C18H15NO4 (309.32) | ||||||||||||||||
10B19 | 68 |
288 (MeCN) | C21H15NO2 (313.35) | ||||||||||||||||
10C1 | 74e |
287 (DMSO-H2O) | C18H15NO4 (309.32) | ||||||||||||||||
10C2 | 73 |
207-208 (EtOAc) | C21H21NO4 (351.41) | ||||||||||||||||
10C3 | 71 |
194-195 (MeOH) | C25H21NO4 (399.46) | ||||||||||||||||
10C4 | 49 |
249-250 (EtOAc) | C24H19NO4 (385.41) | ||||||||||||||||
10D1 | 73e | 276-277 (MeCN) | C22H17NO2 (327.38) | ||||||||||||||||
10D2 | 80 |
252 (toluene) | C28H21NO2 (403.49) | ||||||||||||||||
10D3 | 81 |
289-290 (toluene) | C27H19NO2 (389.45) | ||||||||||||||||
10E1 | 57f |
264-265 (EtOAc) | C19H19NO2 (293.36) | ||||||||||||||||
10E2 | 83f; 98 |
273-274 (MeCN) | C25H19NO2 (341.40) | ||||||||||||||||
10E3 | 96 |
228-229 (MeCN) | C24H21NO2 (355.43) | ||||||||||||||||
10E4 | 90f |
>325 (MeCN) | C22H17NO2 (327.38) | ||||||||||||||||
10F1 | 74 |
295 (MeCN) | C28H22N2O2 (418.49) | ||||||||||||||||
| |||||||||||||||||||
a Analysis
C ± 0.28, H ± 0.24, N ± 0.30 except 10C3, 10C4, 10D1 C ± 0.35, , 10B1 C -0.60, 10B5 C -0.47, 10E4 C -0.44, 10B11 H -0.31, 10B2 H -0.39. b Analysis for C18H17NO2˙0.33 CH3OH. c To the refluxing aqueous suspension 1,4-dioxane was added until dissolution was complete. Crystallization occurred on cooling. d No spectral data, strong spectral similarities to 10B2, 10B3. e Method F. f Method E. |
Compd | IR (cm-¹) | ¹H NMRa δ, J (Hz) | ¹³C NMRa δ | MS (EI) m/z (%) | |||||||||||||||
10A1 | 1694, 1640, 1600, 1502, 1448, 1432, 1308, 1287 | 1.06 (s, 6 H, 2 CH3), 2.26 (s, 2 H, CH2), 2.70 (s, 2 H, CH2), 7.0-7.4 (m, 4 Harom), 12.4* (br, 1 H, NH)b | 265 (62) [M+], 263 (15), 209 (38), 181 (100) | ||||||||||||||||
10A2 | 2950, 1698, 1667, 1605, 1530, 1506, 1302, 1272 | 1.10 (s, 6 H, 2 CH3), 2.26 (s, 2 H, CH2), 2.53 (s, 2 H, CH2), 3.65 (s, 3 H, NCH3), 6.9-7.5 (m, 4 Harom) | 28.7, 32.4, 35.0, 35.7, 116.6, 117.0, 119.4, 123.7, 128.2, 132.3, 135.2, 138.9, 149.1, 153.3, 184.1, 191.5 | 279 (50) [M+], 264 (11), 250 (8), 224 (13), 223 (32), 196 (16), 195 (100), 167 (16), 166 (18), 140 (17), 139 (24) | |||||||||||||||
10A3 | 1701, 1659, 1602, 1532, 1499, 1478, 1458, 1355, 1302, 1268 | 1.08 (s, 6 H, 2 CH3), 2.35, 2.51, 5.25 (3 s, 6 H, 3 CH2), 6.75-6.8, 7.0-7.15, 7.3-7.5 (3 m, 9 Harom)b | 27.9, 34.7, 34.8, 48.3, 51.5, 118.0, 118.6, 122.9, 126.1, 127.7, 128.3, 128.9, 132.8, 134.3, 136.0, 137.9, 150.3, 153.0, 183.5, 190.8b | 355 (48) [M+], 300 (4), 299 (10), 298 (3), 272 (4), 271 (14), 270 (11), 208 (11), 180 (4), 152 (3), 92 (8), 91 (100) | |||||||||||||||
10A4 | 1702, 1663, 1604, 1595, 1522, 1502, 1483, 1368, 1296, 1277 | 1.09 (s, 6 H, 2 CH3), 2.39 (s, 2 H, CH2), 2.47 (s, 2 H, CH2), 6.24-6.34 (m, 1 H, CH), 6.97-7.08 (m, 2 Harom), 7.4-7.7 (m, 6 Harom) | |||||||||||||||||
10B1 | 3243, 1694, 1651, 1612, 1600, 1497, 1430, 1294 | 1.9-2.0 (m, 2 H, CH2), 2.3-2.4 (m, 2 H, CH2), 2.7-2.9 (m, 2 H, CH2), 7.0-7.5 (m, 4 Harom), 12.47* (s, 1 H, NH)b | 22.5, 23.0, 38.0, 116.8, 117.3, 118.8, 122.7, 128.2, 132.7, 134.9, 138.1, 150.7, 152.4, 183.8, 191.2b | 237 (61) [M+], 235 (26), 209 (31), 181 (100), 153 (18), 152 (21), 130 (14), 126 (23), 104 (34), 102 (17), 90 (18), 76 (78) | |||||||||||||||
10B2 | 1695, 1658, 1605, 1522, 1477, 1429, 1294 | 1.03 (t, J = 7.4, 3 H, CH3), 1.77-1.96 (m, 2 H, CH2), 2.13-2.22 (m, 2 H, CH2), 2.46-2.52 [m (t), 2 H, CH2], 2.75 (t, J = 6.1, 2 H, CH2), 3.95 (t, J = 7.3, 2 H, CH2), 6.9-7.5 (4 m, 4 Harom) | 279 (41) [M+], 278 (19), 277 (17), 264 (20), 223 (24), 194 (22) | ||||||||||||||||
10B3 | 1700, 1658, 1608, 1522, 1431, 1293 | 0.85-0.95 (m, 3 H, CH3), 1.2-1.5 (m, 6 H, 3 CH2), 1.7-1.9 (m, 2 H, CH2), 2.1-2.25 (m, 2 H, CH2), 2.4-2.6 [m (t), 2 H, CH2], 2.7-2.8 [m (t), 2 H, CH2], 3.96 (t, J = 7.5, 2 H, NCH2), 6.9-7.5 (m, 4 Harom) | 13.9, 22.0, 22.5, 23.1, 26.4, 30.7, 37.9, 46.1, 117.0, 117.7, 119.9, 123.7, 128.3, 132.3, 135.0, 139.0, 149.7, 152.5, 184.1, 192.0 | 321 (71) [M+], 319 (100), 264 (53), 262 (26), 250 (23), 248 (32), 237 (19), 235 (40) | |||||||||||||||
10B5 | 2944, 1707, 1665, 1609, 1520, 1485, 1426, 1319, 1297 | 1.65 (d, J = 7.0, 6 H, 2 CH3), 2.1-2.2 (m, 2 H, CH2), 2.4-2.5 [m (t), 2 H, CH2], 2.8-2.9 [m (t), 2 H, CH2], 4.5-4.7 (m, 1 H, CH), 7.0-7.5 (m, 4 Harom) | 279 (49) [M+], 209 (25), 208 (22), 181 (43), 180 (18), 153 (22), 152 (19), 130 (15), 43 (98), 41 (100) | ||||||||||||||||
10B6 | 1703, 1666, 1607, 1526, 1499, 1453, 1443, 1431, 1293 | 2.0-2.2 (m, 2 H, CH2), 2.41 [m (t), 2 H, CH2], 2.62 [m (t), 2 H, CH2], 5.17 (s, 2 H, CH 2Ph), 6.68-6.72 (m, 1 H), 7.00-7.2 (m, 4 H), 7.29-7.41 (m, 4 Harom) | 21.7, 22.9, 37.7, 49.1, 117.2, 117.9, 119.8, 123.4, 125.9, 126.0, 128.2, 128.3, 129.3, 132.4, 134.7, 134.9, 138.7, 150.7, 153.0, 184.2, 192.3 | 327 (38) [M+], 326 (12), 299 (4), 298 (3), 272 (3), 271 (5), 270 (6), 250 (5), 208 (5), 180 (4), 152 (4), 92 (8), 91 (100) | |||||||||||||||
10B7 | 1697, 1659, 1606, 1524, 1499, 1476, 1296 | 1.7-1.9 (m, 2 H, CH2), 2.2-2.4 (2 m, 4 H, 2 CH2), 2.9-3.1 (m, 2 H, CH2), 4.3-4.4 (m, 2 H, CH2), 7.0-7.4 (m, 9 Harom)b | 341 (100) [M+], 285 (12), 250 (8), 249 (10), 237 (38), 209 (37), 194 (19), 121 (25), 105 (19), 104 (15), 91 (11) | ||||||||||||||||
10B8 | 1703, 1566, 1605, 1525, 1503, 1441, 1431, 1319 | 2.0-2.25 (2 m, 4 H, 2 CH2), 2.4-2.5 (t, 2 H, CH2), 2.6-2.8 (2 t, 4 H, 2 CH2), 3.85-4.0 (t, 2 H, CH2), 6.3-6.45 (m, 1 H, H4), 7.0-7.5 (m, 8 Harom) | 355 (58) [M+], 353 (27), 264 (30), 251 (14), 250 (11), 223 (21), 195 (14), 151 (20), 104 (16), 91 (100) | ||||||||||||||||
10B9 | 1704, 1666, 1605, 1523, 1483, 1449, 1426, 1321, 1295 | 1.99 (d, J = 7.1, 3 H, CH3), 2.0-2.2 (m, 2 H, CH2), 2.4-2.8 (m, 4 H, 2 CH2), 5.71 (q, J = 7.1, 1 H, CH), 6.4-6.5 (m, 1 Harom), 6.95-7.1 (m, 2 Harom), 7.2-7.5 (m, 6 Harom) | 19.4, 23.2, 54.9, 118.1, 118.4, 120.9, 123.5, 125.9, 128.0, 128.2, 129.1, 132.0, 135.1, 138.6, 138.7, 149.7, 152.3, 184.2, 192.1 | 341 (21) [M+], 237 (56), 235 (13), 209 (17), 181 (20), 180 (11), 152 (12), 106 (16), 105 (60), 104 (21), 103 (38), 79 (43), 77 (100) | |||||||||||||||
10B10 | 2854, 1699, 1662, 1606, 1522, 1443, 1434, 1374, 1297, 1274, 1113 | 1.10 (t, J = 7.0, 3 H, CH3), 1.9-2.1 (2 m, 4 H, 2 CH2), 2.32-2.39 [m (t), 2 H, CH2], 2.78-2.81 [m (t), 2 H, CH2], 3.3-3.45 (2 m, 4 H, CH2OCH2), 4.15-4.22 [m (t), 2 H, NCH2], 7.1-7.4 (m, 4 Harom) | 323 (100) [M+], 294 (19), 264 (59), 251 (37), 250 (31), 236 (46), 223 (64), 222 (49), 208 (47), 195 (47), 194 (24), 181 (20), 179 (20), 152 (18), 139 (18) | ||||||||||||||||
10B11 | 1701, 1662, 1609, 1514, 1293, 1248 | 2.0-2.2 (m, 2 H, CH2), 2.43 (t, J = 6.9, 2 H, CH2), 2.63 (t, J = 7.0, 2 H, CH2), 3.78 (s, 3 H, OCH3), 5.13 (s, 2 H, CH 2Ph), 6.7-7.5 (m, 8 Harom) | 21.9, 23.0, 37.8, 48.8, 55.4, 114.7, 117.2, 118.1, 120.0, 123.7, 126.9, 127.4, 128.3, 132.4, 134.9, 138.9, 150.3, 152.9, 159.6, 184.1, 192.1 | 357 (12) [M+], 121 (100) | |||||||||||||||
10B12 | 1699, 1663, 1605, 1516, 1502, 1450, 1430, 1292, 1264, 1245 | 1.8-1.95 (m, 2 H, CH2), 2.07 (t, J = 6.0, 2 H, CH2), 2.35 (t, J = 6.0, 2 H, CH2), 3.02 (t, J = 6.0, 2 H, CH2), 3.74, 3.82 (2 s, 6 H, 2 OCH3), 4.16 (t, J = 6.0, 2 H, NCH2), 6.42 (d, J = 1.7, 1 H, H2′), 6.53 (dd, J 1 = 1.7, J 2 = 8.0, 1 H, H6′), 6.75 (d, J = 8.0, 1 H, H5), 6.85-7.5 (m, 4 Harom) | 401 (22) [M+], 400 (7), 399 (10), 165 (25), 164 (29), 163 (5), 151 (100), 150 (12), 149 (17), 107 (14), 105 (11), 102 (11) | ||||||||||||||||
10B13 | 1695, 1659, 1605, 1523, 1501, 1443, 1293 | 2.1-2.25 (m, 2 H, CH2), 2.32 (s, 6 H, 2 CH3), 2.51 (t, J = 5.9, 2 H, CH2), 2.68 (t, J = 7.1, 2 H, CH2), 2.79 (t, J = 5.9, 2 H, CH2), 4.07 (t, J = 7.1, 2 H, CH2), 6.9-7.5 (m, 4 Harom) | 308 (1) [M+], 58 (100) | ||||||||||||||||
10B14 c | 3564, 3408, 2944, 1692, 1655, 1608, 1527, 1292 | 1.9-2.1, 2.1-2.3 (2 m, 4 H, 2 CH2), 2.17 [s, 6 H, N(CH3)2], 2.35-2.55 [2 m (t), 4 H, 2 CH2], 2.75-2.85 (t, 2 H, NCH2), 4.05-4.15 (t, 2 H, NCH2), 7.0-7.5 (m, 4 Harom) | 322 (4) [M+], 251 (9), 223 (8), 84 (19), 71 (48), 58 (100) | ||||||||||||||||
10B15 | 1704, 1566, 1606, 1589, 1529, 1503, 1474, 1435, 1297, 1197 | 2.05-2.25 (m, 2 H, CH2), 2.45-2.55 [m (t), 2 H, CH2], 2.7-2.8 [m (t), 2 H, CH2], 5.32 (s, 2 H, NCH2), 6.7-8.7 (m, 8 H, HPyridine + Harom) | 328 [M+] (27), 326 (9), 271 (11), 236 (24), 93 (100) | ||||||||||||||||
10B16 | 1.95-2.1 (m, 2 H, CH2), 2.35 (t, J = 6.8, 2 H, CH2), 2.83 (t, J = 6.0, 2 H, CH2), 3.72 (dd, J 1 = 5.3, J 2 = 5.4, after D2O addition t, 2 H, HOCH2), 4.18 (t, J = 5.2, 2 H, NCH2), 5.11* (t, J = 5.4, 1 H, OH), 7.1-7.4 (m, 4 Harom)b | 281 (100) [M+], 280 (37), 279 (48), 264 (42), 250 (15), 248 (30), 237 (27), 225 (28), 209 (42), 194 (42), 165 (15), 139 (27) | |||||||||||||||||
10B17 | 3519, 1692, 1657, 1606, 1529, 1503, 1432, 1083 | 1.8-1.95 (m, 2 H, CH2), 1.95-2.10 (m, 2 H, CH2), 2.3-2.45 (m, 2 H, CH2), 2.75-2.9 (m, 2 H, CH2), 3.4-3.6 (m, 2 H, CH2), 4.1-4.25 (m, 2 H, CH2), 4.75-4.85* (m, 1 H, OH), 7.1-7.4 (m, 4 Harom)b | 295 (64) [M+], 293 (17), 264 (47), 237 (10), 223 (11), 209 (11), 208 (17), 195 (12), 181 (14), 149 (14), 104 (10), 76 (42), 58 (100) | ||||||||||||||||
10B18 | 1736, 1698, 1666, 1607, 1529, 1504, 1429, 1366, 1295, 1223 | 2.1-2.25 (m, 2 H, CH2), 2.52 (t, J = 6.5, 2 H, CH2), 2.72 (t, J = 6.1, 2 H, CH2), 3.85 (s, 3 H, OCH3), 4.76 (s, 2 H, CH2), 7.08-7.48 (m, 4 Harom) | 309 (100) [M+], 281 (14), 152 (51), 250 (18), 236 (21), 222 (16), 194 (69), 166 (14), 139 (24), 83 (14) | ||||||||||||||||
10C1 | 3440, 3221, 1738, 1695, 1658 | 1.05 (d, J = 6.0, 3 H, CH3), 2.5-3.0 (2 m, 3 H, CH, CH2), 3.3-3.5 (m, 1 H, CH), 3.68 (s, 3 H, OCH3), 7.05-7.4 (m, 4 Harom), 12.63* (s, 1 H, NH)b | 19.2, 29.2, 33.9, 51.6, 51.7, 61.3, 115.0, 117.6, 118.5, 122.8, 128.4, 132.9, 134.6, 137.8, 150.3, 153.1, 170.6, 183.7, 186.6b | 309 (11) [M+], 277 (45), 275 (27), 250 (100), 220 (27), 209 (29), 191 (29), 181 (98), 164 (25), 152 (50), 130 (24), 125 (40), 104 (29), 102 (28), 96 (25), 89 (34) | |||||||||||||||
10C2 | 1746, 1707, 1666, 1604, 1522, 1498, 1486, 1429, 1351, 1315, 1292, 1263 | 1.17 (d, J = 6.0, 3 H, CH3), 1.64, 1.65 (2 d, J = 7.0, 6 H, 2 CH3), 2.5-3.25 (m, 4 H, 2 CH, CH2), 3.76 (s, 3 H, OCH3), 4.5-4.7 (m, 1 H, CH), 7.0-7.45 (m, 4 Harom) | 19.9, 21.8, 21.9, 30.4, 33.5, 49.5, 52.0, 61.2, 116.0, 118.9, 120.9, 123.7, 128.2, 132.2, 135.1, 138.7, 147.7, 152.1, 170.4, 183.7, 186.3 | 351 (12) [M+], 292 (20), 250 (28), 208 (15), 181 (12), 180 (10), 153 (13), 152 (10), 130 (11), 102 (10) | |||||||||||||||
10C3 | 1736, 1732, 1704, 1680, 1666, 1607, 1504, 1444, 1431 | 1.08 (d, J = 6.4, 1.14, d, J = 5.0, 3 H, CH3), 2.31-2.46 (m, 1 H, CH), 2.58-2.88 (m, 2 H, CH2), 3.15, 3.49 (2 d, 1 H, CH), 3.66, 3.76 (2 s, 3 H, CH3), 5.23 (s, 2 H, CH2), 6.73-6.78 (m, 1 H, H4), 7.0-7.45 (2 m, 8 Harom) | 18.4, 19.9, 28.7, 32.9, 33.5, 49.1, 52.0, 52.1, 61.3, 116.2, 116.3, 117.3, 117.5, 119.9, 123.7, 125.9, 128.4, 129.4, 132.5, 134.5, 134.7, 138.5, 149.3, 150.9, 153.7, 168.9, 170.5, 183.9, 186.3, 186.7 | 399 (29) [M+], 340 (18), 91 (100) | |||||||||||||||
10C4 | 2956, 1744, 1709, 1670, 1607, 1526, 1505, 1487, 1428, 1282, 1263, 1157 | 1.07 (d, J = 6.2, 3 H, CH3), 2.4-2.8 (2 m, 3 H, CH, CH2), 3.18, 3.50 (2 m, 1 H, CH), 3.69, 3.75 (2 s, 3 H, OCH3), 6.25-6.34 (m, 1 H, H4), 6.93-7.02 (m, 2 Harom), 7.30-7.38 (m, 1 Harom), 7.44-7.72 (br m, 5 Harom) | 19.7, 29.4, 33.7, 52.0, 61.5, 116.2, 117.4, 119.8, 123.6, 126.6, 128.4, 129.8, 130.0, 132.1, 134.4, 135.3, 138.2, 149.4, 153.3, 170.4, 183.8, 186.8 | 385 (9) [M+], 327 (14), 326 (60), 325 (14), 311 (12), 257 (15), 256 (58), 228 (13), 227 (17), 201 (8), 140 (7), 127 (11), 126 (8), 114 (9), 78 (7), 77 (36) | |||||||||||||||
10D1 | 1705, 1665, 1605, 1504 | 2.4-3.5 (m, 5 H, 2 CH2, CH), 3.77 (s, 3 H, CH3), 7.1-7.5 (m, 9 Harom)b | 327 (51) [M+], 223 (51), 196 (13), 195 (100), 167 (12), 166 (18), 140 (19), 139 (22), 77 (15) | ||||||||||||||||
10D2 | 1705, 1669, 1605, 1499 | 2.64-3.01 (m, 4 H, 2 CH2), 3.42-3.57 (m, 1 H, CH), 5.22 (s, 2 H, CH 2Ph), 6.73-6.82 (m, 1 H, H4), 7.06-7.52 (m, 13 Harom) | 29.8, 41.4, 44.7, 49.2, 117.2, 117.8, 120.0, 123.9, 125.3, 125.9, 126.8, 127.2, 128.2, 128.4, 128.5, 128.8, 129.0, 129.4, 132.4, 134.6, 134.8, 138.7, 142.5, 149.2, 153.4, 184.1, 191.0 | 403 (4) [M+], 312 (3), 299 (12), 271 (13), 208 (13), 180 (4), 152 (5), 104 (4), 91 (100) | |||||||||||||||
10D3 | 3058, 1706, 1666, 1605, 1523, 1503, 1485, 1289 | 2.55-3.15 (m, 4 H, 2 CH2), 3.54 (m, 1 H, CH), 6.32-6.35 (m, 1 H, H4), 7.1-7.5 (m, 8 Harom), 7.66 (s, 5 Harom)b | 30.6 (CH2), 41.8 (CH), 45.0 (CH2), 117.4 (CH), 117.8, 120.0, 123.8 (CH), 125.3, 126.7 (CH), 126.8 (CH), 127.2 (CH), 128.2 (CH), 128.5 (CH), 128.8 (CH), 129.0 (CH), 129.9 (CH), 130.0 (CH), 132.2 (CH), 134.8, 135.7, 138.6, 142.7, 150.0, 153.3, 184.2, 191.0b | 389 (54) [M+], 387 (46), 285 (41), 256 (100), 228 (18), 227 (29), 201 (19), 194 (14), 178 (16), 170 (10), 164 (24), 157 (11), 148 (22), 101 (13), 78 (15), 77 (47), 71 (16), 70 (12), 56 (28) | |||||||||||||||
10E1 | 2952, 1703, 1663, 1602, 1518, 1498, 1483, 1296 | 1.18 (d, J = 6.0, 3 H, CH3), 1.64 + 1.65 (2 d, J = 6.0, 6 H, 2 CH3), 2.1-3.0 (m, 5 H, 2 CH2, CH), 4.5-4.7 (m, 1 H, CH), 7.0-7.5 (m, 4 Harom) | 293 (100) [M+], 278 (23), 251 (38), 223 (38), 209 (41), 208 (47), 182 (18), 181 (65), 180 (28), 153 (28), 152 (16), 130 (16), 126 (12) | ||||||||||||||||
10E2 | 1699, 1662, 1600, 1531, 1498, 1443, 1434, 1297, 1268 | 1.10 (d, J = 5.9, 3 H, CH3), 2.1-2.8 (m, 5 H, 2 CH2, CH), 5.24 (s, 2 H, CH2), 6.75-6.8 (m, 1 Harom), 7.0-7.2 (m, 4 Harom), 7.3-7.5 (m, 4 Harom) | 21.1, 29.8, 30.9, 46.1, 49.1, 117.1, 117.7, 119.9, 123.7, 125.9, 128.27, 128.31, 129.3, 132.3, 134.83, 134.89, 138.8, 149.8, 153.1, 184.1, 191.7 | 341 (80) [M+], 299 (17), 271 (22), 270 (21), 208 (20), 180 (10), 151 (17), 150 (14), 91 (100), 64 (50) | |||||||||||||||
10E3 | 1698, 1662, 1603, 1522, 1500, 1444, 1298 | 0.93 (d, J = 5.8, 3 H, CH3), 1.6-1.75 (m, 1 H, CH), 1.9-2.2, 2.3-2.5 (2 m, 4 H, 2 CH2), 3.09 (t, J = 6.3, 2 H, CH2), 4.1-4.3 (m, 2 H, CH), 6.9-7.5 (m, 9 Harom) | 355 (100) [M+], 353 (46), 285 (20), 262 (46), 251 (29), 209 (41), 105 (20), 104 (24) | ||||||||||||||||
10E4 | 1703, 1665, 1604, 1595, 1522, 1504, 1426, 1282 | 1.08 (d, J = 5.6, 3 H, CH3), 2.1-2.7 (m, 5 H, 2 CH2, CH), 6.2-6.35 (m, 1 H, H4), 6.9-7.1 (m, 2 H, H2′, H6′), 7.35-7.7 (m, 6 Harom) | 327 (100) [M+], 325 (22), 324 (14), 285 (10), 257 (48), 227 (10), 114 (12), 101 (17), 77 (31), 51 (83) | ||||||||||||||||
10F1 | 1706, 1674, 1604, 1500, 1442, 1433, 1300 | 3.32 (s, 2 H, CH2), 3.58 (s, 2 H, CH2), 3.70 (s, 2 H, CH2), 5.15 (s, 2 H, CH2), 6.81-6.85 (m, 1 H, H4), 7.0-7.5 (m, 13 Harom) | 47.3, 48.8, 59.7, 60.5, 115.0, 118.3, 118.5, 123.1, 126.3, 127.2, 127.8, 128.2, 128.6, 128.7, 129.0, 132.9, 134.1, 135.6, 137.0, 137.7, 149.8, 153.1, 183.3, 188.4b | 418 (17) [M+], 327 (15), 326 (26), 300 (16), 299 (66), 272 (11), 271 (45), 270 (30), 256 (11), 208 (20), 91 (100), 65 (24) | |||||||||||||||
| |||||||||||||||||||
a Solvent
CDCl3 unless otherwise indicated. b Solvent DMSO-d 6. c No satisfactory elemental analysis. |
Crystal Data [¹9]
9B1: C16H17NO5, M w = 303.31, monoclinic, P21/c, a = 10.571(7) Å, b = 10.740(9) Å, c = 13.639(14) Å, γ = 111.12(7)˚, V = 1444(2) ų, Z = 4, D calcd = 1.395 g˙cm-³, MoKα radiation (λ = 0.71073 Å), 8.24˚ < 2θ < 50.00˚ (17071 measured reflections), intensity data were collected at 295(2) K with a STOE CCD diffractometer employing ω scans. The structure was solved by direct methods, [²0] all non-hydrogen atoms were refined using anisotropic displacement parameters. Including the hydrogen atoms in the latest stages of the refinement the model converged to R 1 = 0.0618 [I >2σ(I)], wR 2 = 0.1238 based on 2535 unique reflections (99.3% completeness). [²¹]
10B5: C18H17NO2, M w = 279.33, monoclinic, P21/a, a = 9.667(5) Å, b = 9.120(4) Å, c = 15.890(8) Å, γ = 100.92(6)˚, V = 1375.6(12) ų, Z = 4, D calcd = 1.349 g˙cm-³, MoKα radiation (λ = 0.71073 Å), 6.2˚ < 2θ < 25.0˚ (14245 measured reflections), intensity data were collected at 295(2) K with a STOE IPDS1 diffractometer employing ω scans. The structure was solved by direct methods, [²0] all non-hydrogen atoms were refined using anisotropic displacement parameters. Including the hydrogen atoms in the latest stages of the refinement the model converged to R 1 = 0.0369 [I >2σ(I)], wR 2 = 0.0626 based on 2296 unique reflections (94.8% completeness). [²¹]
- 2
Hemmerling H.-J.Janoschka M.Wunderlich H. Z. Naturforsch. 1993, 48b: 1094 - 3
Dorlars A. In Houben-Weyl 4th ed., Vol. 11/2: Georg Thieme Verlag; Stuttgart: 1958. p.737 - 4
Hemmerling H.-J.Merschenz-Quack A.Wunderlich H. Z. Naturforsch. 2004, 59b: 1143 - 5
Chatterjie N.Shapiro R.Quo S.-G.Stephani RA. Tetrahedron Lett. 1975, 16: 2535 - 6a
Greenhill JV. Chem. Soc. Rev. 1977, 277 - 6b
Kuckländer U. In The Chemistry of EnaminesRappoport Z. John Wiley & Sons; Chichester: 1994. p.523 - 6c
Lue P.Greenhill JV. Adv. Heterocycl. Chem. 1997, 67: 207 - 7a
McCaldin DJ. Chem. Rev. 1960, 60: 39 - 7b
Schönberg A.Singer E. Tetrahedron 1978, 34: 1285 - 8a
Brown DW.Graupner PR.Sainsbury M.Shertzer HG. Tetrahedron 1991, 47: 4383 - 9a
Butera JA.Antane SA.Hirth B.Lennox JR.Sheldon JH.Norton NW.Warga D.Argentieri TM. Bioorg. Med. Chem. Lett. 2001, 11: 2093 - 9b
Antane SA,Butera JA, andLennox JR. inventors; US 2001047026. - 10a
Bal Ch.Baldeyrou B.Moz F.Lansiaux A.Colson P.Kraus-Berthier L.Léonce S.Pierre A.Boussard M.Rousseau A.Wierzbicki M.Bailly Ch. Biochem. Pharmacol. 2004, 68: 1911 - 10b
Wierzbicki M,Boussard M.-F,Rousseau A,Boutin A, andDelagrange P. inventors; EP 1245565. - 11
Miller CP,Collini MD, andTran BD. inventors; US 6107292. - 12a
Hemmerling H.-J., Götz C., Jose J.; Annual Meeting of the German Pharmaceutical Society (DPhG), Marburg 2006, Poster P32.
- 12b
Hemmerling H.-J,Götz C, andJose J. inventors; EP 2007/008624. ; WO 2008040547, 2008 - 13
Robinson B. The Fischer Indole Synthesis John Wiley & Sons; Chichester: 1982. - 14a
Graham J.Ninan A.Reza K.Sainsbury M.Shertzer HG. Tetrahedron 1992, 48: 167 - 14b
Brown DW.Mahon MF.Ninan A.Sainsbury M.Shertzer HG. Tetrahedron 1993, 49: 8919 - 14c
Wang J.-B.Ji Q.-G.Xu J.Wu X.-H.Xie Y.-Y. Synth. Commun. 2005, 35: 581 - 15a
Estevez JC.Estevez RJ.Castedo L. Tetrahedron Lett. 1993, 34: 6479 - 15b
Reboredo FJ.Treus M.Estévez JC.Castedo L.Estévez RJ. Synlett 2002, 999 - 16a
Shapiro R.Chatterjie NJ. J. Org. Chem. 1970, 35: 447 - 16b
Bullington JL.Dodd JH. J. Org. Chem. 1993, 58: 4833 - 16c
Black DStC.Bowyer MC.Condie GC.Craig DC.Kumar N. Tetrahedron 1994, 50: 10983 - 17a
Edafiogho IO.Hinko CN.Chang H.Moore JA.Mulzac D.Nicholson JM.Scott KR. J. Med. Chem. 1992, 35: 2798 - 17b
Scott KR.Edafiogho IO.Richardson EL.Farrar VA.Moore JA.Tietz EI.Hinko CN.El-Assadi A.Nicholson JM. J. Med. Chem. 1993, 36: 1947 - 17c
Greenhill JV.Chaaban I.Steel PJ. J. Heterocycl. Chem. 1992, 29: 1375 - 17d
Kesten SJ.Degnan MJ.Hung J.McNamara DJ.Ortwine DF.Uhlendorf SE.Werbel LM. J. Med. Chem. 1992, 35: 3429 - 18a
King JA.McMillan FH. J. Am. Chem. Soc. 1950, 72: 1238 - 18b
Ziegler FE.Bennett GB. J. Am. Chem. Soc. 1973, 95: 7458
References
Present address: Dr. Hans-J. Hemmerling, Großes Feld 21, 40822 Mettmann, Germany.
19Scattering factors, dispersion corrections
and absorption coefficients were taken from International Tables
for Crystallography (1992, Vol. C). Crystallographic data for the
structures reported in this paper have been deposited with the Cambridge
Crystallographic Data Centre as supplementary publication No. CCDC
694526 (9B1) and CCDC 694527 (10B5). Copies of the data can be obtained, free
of charge, on application to CCDC, 12 Union Road, Cambridge CB2
1EZ, UK [fax: +44(1223)336033; or
e-mail:
deposit@ccdc.cam.ac.uk].
SHELXS-86: Sheldrick, G. M., Universität Göttingen, 1985.
21SHELXL-97: Sheldrick, G. M., Universität Göttingen, 1997.
- 2
Hemmerling H.-J.Janoschka M.Wunderlich H. Z. Naturforsch. 1993, 48b: 1094 - 3
Dorlars A. In Houben-Weyl 4th ed., Vol. 11/2: Georg Thieme Verlag; Stuttgart: 1958. p.737 - 4
Hemmerling H.-J.Merschenz-Quack A.Wunderlich H. Z. Naturforsch. 2004, 59b: 1143 - 5
Chatterjie N.Shapiro R.Quo S.-G.Stephani RA. Tetrahedron Lett. 1975, 16: 2535 - 6a
Greenhill JV. Chem. Soc. Rev. 1977, 277 - 6b
Kuckländer U. In The Chemistry of EnaminesRappoport Z. John Wiley & Sons; Chichester: 1994. p.523 - 6c
Lue P.Greenhill JV. Adv. Heterocycl. Chem. 1997, 67: 207 - 7a
McCaldin DJ. Chem. Rev. 1960, 60: 39 - 7b
Schönberg A.Singer E. Tetrahedron 1978, 34: 1285 - 8a
Brown DW.Graupner PR.Sainsbury M.Shertzer HG. Tetrahedron 1991, 47: 4383 - 9a
Butera JA.Antane SA.Hirth B.Lennox JR.Sheldon JH.Norton NW.Warga D.Argentieri TM. Bioorg. Med. Chem. Lett. 2001, 11: 2093 - 9b
Antane SA,Butera JA, andLennox JR. inventors; US 2001047026. - 10a
Bal Ch.Baldeyrou B.Moz F.Lansiaux A.Colson P.Kraus-Berthier L.Léonce S.Pierre A.Boussard M.Rousseau A.Wierzbicki M.Bailly Ch. Biochem. Pharmacol. 2004, 68: 1911 - 10b
Wierzbicki M,Boussard M.-F,Rousseau A,Boutin A, andDelagrange P. inventors; EP 1245565. - 11
Miller CP,Collini MD, andTran BD. inventors; US 6107292. - 12a
Hemmerling H.-J., Götz C., Jose J.; Annual Meeting of the German Pharmaceutical Society (DPhG), Marburg 2006, Poster P32.
- 12b
Hemmerling H.-J,Götz C, andJose J. inventors; EP 2007/008624. ; WO 2008040547, 2008 - 13
Robinson B. The Fischer Indole Synthesis John Wiley & Sons; Chichester: 1982. - 14a
Graham J.Ninan A.Reza K.Sainsbury M.Shertzer HG. Tetrahedron 1992, 48: 167 - 14b
Brown DW.Mahon MF.Ninan A.Sainsbury M.Shertzer HG. Tetrahedron 1993, 49: 8919 - 14c
Wang J.-B.Ji Q.-G.Xu J.Wu X.-H.Xie Y.-Y. Synth. Commun. 2005, 35: 581 - 15a
Estevez JC.Estevez RJ.Castedo L. Tetrahedron Lett. 1993, 34: 6479 - 15b
Reboredo FJ.Treus M.Estévez JC.Castedo L.Estévez RJ. Synlett 2002, 999 - 16a
Shapiro R.Chatterjie NJ. J. Org. Chem. 1970, 35: 447 - 16b
Bullington JL.Dodd JH. J. Org. Chem. 1993, 58: 4833 - 16c
Black DStC.Bowyer MC.Condie GC.Craig DC.Kumar N. Tetrahedron 1994, 50: 10983 - 17a
Edafiogho IO.Hinko CN.Chang H.Moore JA.Mulzac D.Nicholson JM.Scott KR. J. Med. Chem. 1992, 35: 2798 - 17b
Scott KR.Edafiogho IO.Richardson EL.Farrar VA.Moore JA.Tietz EI.Hinko CN.El-Assadi A.Nicholson JM. J. Med. Chem. 1993, 36: 1947 - 17c
Greenhill JV.Chaaban I.Steel PJ. J. Heterocycl. Chem. 1992, 29: 1375 - 17d
Kesten SJ.Degnan MJ.Hung J.McNamara DJ.Ortwine DF.Uhlendorf SE.Werbel LM. J. Med. Chem. 1992, 35: 3429 - 18a
King JA.McMillan FH. J. Am. Chem. Soc. 1950, 72: 1238 - 18b
Ziegler FE.Bennett GB. J. Am. Chem. Soc. 1973, 95: 7458
References
Present address: Dr. Hans-J. Hemmerling, Großes Feld 21, 40822 Mettmann, Germany.
19Scattering factors, dispersion corrections
and absorption coefficients were taken from International Tables
for Crystallography (1992, Vol. C). Crystallographic data for the
structures reported in this paper have been deposited with the Cambridge
Crystallographic Data Centre as supplementary publication No. CCDC
694526 (9B1) and CCDC 694527 (10B5). Copies of the data can be obtained, free
of charge, on application to CCDC, 12 Union Road, Cambridge CB2
1EZ, UK [fax: +44(1223)336033; or
e-mail:
deposit@ccdc.cam.ac.uk].
SHELXS-86: Sheldrick, G. M., Universität Göttingen, 1985.
21SHELXL-97: Sheldrick, G. M., Universität Göttingen, 1997.

Scheme 1 Indeno[1,2-d]imidazoles via deoxygenation of vic-dihydroxy-substituted indeno[1,2-d]imidazoles

Scheme 2 Synthesis of vic-dihydroxy-indeno[1,2-b]indoles 9. Reagents and conditions: (i) R¹NH2, benzene, reflux, 3-8 h, 60-95%; (ii) indane-1,2,3-trione monohydrate (1), CHCl3 (MeOH), r.t., 8-24 h, 40-90%.

Figure 1 X-ray crystal structure of 9B1˙MeOH; displacement ellipsoids are drawn at the 30% probability level, radii of hydrogen atoms are chosen arbitrarily and the hydrogen atom labels are omitted for clarity

Scheme 3 Synthesis of Indeno[1,2-b]indoles. Reagents and conditions: (i) R4 = H: 5% aq KOH, reflux, 30-40%; (ii) R¹NH2, benzene, reflux, 3-8 h, 40-90%; (iii) 1, CHCl3 (MeOH), r.t., 8-24 h, 40-90%.; (iv) 4, DMF, AcOH, r.t., 3-8 h, 60-95%; (v) R4 = H: R¹NH2, benzene, reflux, 3-8 h, 40-90%; (vi) 1, CHCl3 (MeOH), r.t., 8-24 h, 40-90%.; (vii) 4, DMF, AcOH, r.t., 3-8 h, 60-95%; (viii) 5% aq KOH, reflux, 30-40%.

Figure 2 X-ray crystal structure of 10B5; displacement ellipsoids are drawn at the 30% probability level, radii of hydrogen atoms are chosen arbitrarily and the hydrogen atom labels are omitted for clarity