Subscribe to RSS
DOI: 10.1055/s-0028-1087951
Palladium-Catalyzed Direct C-3 Arylations of Indoles with an Air-Stable HASPO
Publication History
Publication Date:
24 February 2009 (online)
Abstract
Efficient direct arylations of indoles occurred highly regioselectively at position C-3 with an in situ generated palladium complex derived from an air-stable HASPO, which enabled syntheses of diversely functionalized indoles, also with sterically hindered substrates.
Key words
C-H bond functionalization - heteroarenes - indoles - regioselectivity - palladium
Indoles are arguably the most abundant heterocyclic substructures in drug discovery. [¹] [²] Therefore, a continued strong demand exists for generally applicable syntheses of this structural motif. [³-5] Valuable strategies for the de novo formation of indole’s N-heterocyclic moiety were developed. [6-8] However, direct functionalization reactions of unreactive C-H bonds in indoles constitute an attractive alternative. In this context, particularly, transition-metal catalysis was found to be highly promising, and set the stage for the development of novel direct arylation methodologies. [9] In considering this approach for intermolecular transformations, achieving regioselectivity represents a major challenge. Interestingly, the majority of known protocols for catalytic direct arylations of 2,3-unsubstituted indoles provides predominantly the C-2 functionalized products, [¹0-¹²] likely occurring via an electrophilic metalation at C-3, along with a subsequent 1,2-migration. [¹²-¹7] In a recently communicated exception, however, isolated palladium complexes derived from secondary phosphine oxides (SPO) [¹8] were shown to enable highly regioselective direct C-3 arylations of 2,3-unsubstituted indoles. [¹9] Unfortunately, this remarkable protocol provided often comparable low yields, and proved not applicable to direct arylations of a 2-substituted [²0] [²¹] indole. [¹9] Given our interest in efficient syntheses of highly substituted indoles, [²²-²4] as well as in the use of air-stable heteroatom-substituted secondary phosphine oxides (HASPO) in transition-metal catalysis, [6] [²5-²7] we probed the application of our preligands to palladium-catalyzed [²8] direct arylations of indoles, on which we report herein.
At the outset of our studies, we explored the catalytic activity of in situ generated palladium complexes derived from representative SPO and HASPO preligands 4a-h (Table [¹] ). Preliminary experiments revealed that 1,4-dioxane as solvent and K2CO3 as base provided superior results, whereas the use of polar aprotic solvents, such as NMP or DMA, resulted in no cross-coupling between the starting materials. Unfortunately, various in situ formed (HA)SPO-based complexes gave rise to unsatisfactory results (entries 2-7). [²9] In contrast, more efficient catalysis was accomplished with the aid of HASPO preligands 4g and 4h (entries 8-10).
While the addition of pivalic acid [³0] in substoichiometric amounts inhibited catalytic activity (entry 9), sterically hindered TADDOL derivative 4h led to an efficient and selective formation of desired indole 3a (entry 10).
With an optimized catalytic system in hand, we explored its scope in direct arylations of indoles 1a-d using a range of substituted aryl bromides 2b-l (Table [²] ). [³¹] [³²] We were pleased to observe that electrophiles 2 displaying valuable functional groups could be employed for regioselective direct arylations of indole 1a (entries 1-6). Further, the catalytic system displayed a notable chemoselectivity, allowing for the selective coupling of bromochloroarene 2h (entries 7, and 8). Sterically more hindered electrophile 2i was converted with comparable efficacy (entry 9), as were substituted pronucleophilic indoles 1b and 1c (entries 8-10). Contrary to the previously reported SPO-based methodology, [¹9] this enabled the preparation of more congested 2,3-disubstituted indole 3l (entry 11). However, reactions with di-ortho or nitro-substituted aryl bromides 2k and 2l occurred with lower efficacy (entries 12 and 13).
![]() | |||||||||||||||||||
Entry | 1 | R¹ | 2 | R² | Product | Yield (%) | |||||||||||||
1 | 1a | H | 2b | H | 3b |
![]() | 81 | ||||||||||||
2 | 1a | H | 2c | 4-MeO | 3c |
![]() | 66 | ||||||||||||
3 | 1a | H | 2d | 3-EtO2C | 3d |
![]() | 69 | ||||||||||||
4 | 1a | H | 2e | 4-Ph(O)C | 3e |
![]() | 53 | ||||||||||||
5 | 1a | H | 2f | 3-Me(O)C | 3f |
![]() | 62 | ||||||||||||
6 | 1a | H | 2g | 4-Me2N | 3g |
![]() | 61 | ||||||||||||
7 | 1a | H | 2h | 3-Cl | 3h |
![]() | 65 | ||||||||||||
8 | 1b | 5-MeO | 2h | 3-Cl | 3i |
![]() | 56 | ||||||||||||
9 | 1b | 5-MeO | 2i | 2-Me | 3j |
![]() | 81 | ||||||||||||
10 | 1c | 7-Me | 2j | 3-Me | 3k |
![]() | 50 | ||||||||||||
11 | 1d | 2-Me | 2j | 3-Me | 3l |
![]() | 53 | ||||||||||||
12 | 1b | 5-MeO | 2k | 2,4,6-Me3 | 3m |
![]() | 23 | ||||||||||||
13 | 1a | H | 2l | 4-O2N | 3n |
![]() | 4 | ||||||||||||
| |||||||||||||||||||
a Reaction
conditions: 1 (1.0 equiv), 2 (1.2
equiv), Pd(OAc)2 (5 mol%), 4h (10
mol%), K2CO3 (3.0 equiv), 1,4-dioxane
(0.5 M), 95 ˚C, 20 h; yields of isolated products. |
As to the mechanism of this transformation, we propose a catalytic cycle comprising oxidative addition of the organic electrophile to a palladium(0) species, followed by electrophilic functionalization of the indole by the generated palladium(II) species, and subsequent reductive elimination. The exact reason as to why these catalytic reactions proceed with excellent C-3 selectivity is, as yet, not fully understood, and warrants further mechanistic studies.
In summary, we have developed a highly efficient catalytic system for direct C-3 arylations of indoles. Thus, an in situ generated palladium complex derived from an air-stable HASPO preligand allowed for regioselective arylations of various indoles employing diversely functionalized bromides as electrophiles.
Acknowledgment
Support by the DFG and the German-Israeli-Foundation (GIF) is gratefully acknowledged.
- 1
Horton DA.Bourne GT.Smythe ML. Chem. Rev. 2003, 103: 893 - 2
Humphrey GR.Kuethe JT. Chem. Rev. 2006, 106: 2875 - 3
Eicher T.Hauptmann S. The Chemistry of Heterocycles 2nd ed.: Wiley-VCH; Weinheim: 2003. - 4
Gilchrist TL. Heterocyclic Chemistry 3rd ed.: Addison Wesley Longman; Harlow: 1997. - 5
Joule JA.Milles K. Heterocyclic Chemistry 4th ed.: Blackwell Science Ltd; Oxford: 2000. - 6
Ackermann L. Synlett 2007, 507 - 7
Cacchi S.Fabrizi G. Chem. Rev. 2005, 105: 2873 - 8
Krüger K.Tillack A.Beller M. Adv. Synth. Catal. 2008, 350: 2153 - 9
Ackermann L. Modern Arylation Reactions Wiley-VCH; Weinheim: 2009. - Palladium-catalyzed cross-dehydrogenative arylations can proceed regioselectively at indoles. However, they display limited selectivities with respect to the coupling partner and rely on the use of (over)stoichiometric amounts of Cu(OAc)2 or AgOAc as terminal oxidants:
- 10a
Potavathri S.Dumas AS.Dwight TA.Naumiec GR.Hammann JM.DeBoef B. Tetrahedron Lett. 2008, 49: 4050 - 10b
Stuart DR.Villemure E.Fagnou K. J. Am. Chem. Soc. 2007, 129: 12072 - 10c
Dwight TA.Rue NR.Charyk D.Josselyn R.DeBoef B. Org. Lett. 2007, 9: 3137 - 10d
Stuart DR.Fagnou K. Science 2007, 316: 1172 ; and references cited therein - For rhodium-catalyzed direct arylations of indoles, occurring largely with C-2 regioselectivity, see:
- 11a
Yanagisawa S.Sudo T.Noyori R.Itami K. Tetrahedron 2008, 64: 6073 - 11b
Yanagisawa S.Sudo T.Noyori R.Itami K. J. Am. Chem. Soc. 2006, 128: 11748 - 11c
Wang X.Lane BS.Sames D. J. Am. Chem. Soc. 2005, 127: 4996 - 12 Stoichiometrically magnesiated indoles
were shown to give rise to C-3 arylated indoles:
Lane BS.Brown MA.Sames D. J. Am. Chem. Soc. 2005, 127: 8050 - 13
de Mendoza P.Echavarren AM. In Modern Arylation MethodsAckermann L. Wiley-VCH; Weinheim: 2009. p.363 - 14a
Seregin IV.Gevorgyan V. Chem. Soc. Rev. 2007, 36: 1173 - 14b
Alberico D.Scott ME.Lautens M. Chem. Rev. 2007, 107: 174 - Selected recent representative examples of palladium-catalyzed direct arylations of indoles:
- 15a
Lebrasseur N.Larrosa I. J. Am. Chem. Soc. 2008, 130: 2926 - 15b
Zhao J.Zhang Y.Cheng K. J. Org. Chem. 2008, 73: 7428 - 15c
Yang S.-D.Sun C.-L.Fang Z.Li B.-J.Li Y.-Z.Shi Z.-J. Angew. Chem. Int. Ed. 2008, 47: 1473 - 15d
Bellina F.Calandri C.Cauteruccio S.Rossi R. Eur. J. Org. Chem. 2007, 2147 - 15e
Deprez NR.Kalyani D.Krause A.Sanford MS. J. Am. Chem. Soc. 2006, 128: 4972 ; and references cited therein - 16 For elegant site-selective copper-catalyzed
direct C-3 arylations of indoles employing [Ar2I]X
as arylating reagents, see:
Phipps RJ.Grimster NP.Gaunt MJ. J. Am. Chem. Soc. 2008, 130: 8172 - 17 For an early example of regioselective
direct arylations of indoles, see:
Akita Y.Itagaki Y.Takizawa S.Ohta A. Chem. Pharm. Bull. 1989, 37: 1477 - 18
Ackermann L. Synthesis 2006, 1557 - 19
Zhang Z.Hu Z.Yu Z.Lei P.Chi H.Wang Y.He R. Tetrahedron Lett. 2007, 48: 2415 - For the recent use of a heterogenous palladium catalyst for direct C-3 arylations of 2-substituted indoles, see:
- 20a
Cusati G.Djakovitch L. Tetrahedron Lett. 2008, 49: 2499 - 20b For a direct C-3 arylation
of a 2-substituted indole, see:
Djakovitch L.Dufaud V.Zaidi R. Adv. Synth. Catal. 2006, 348: 715 - 21 For a recent report on the application
of PCy3 or Bn(n-Bu)3NCl
to palladium-catalyzed direct C-3 arylations of indoles, including
2-substituted ones, see:
Bellina F.Benelli F.Rossi R. J. Org. Chem. 2008, 73: 5529 - 22a
Ackermann L. Org. Lett. 2005, 7: 439 - 22b
Kaspar LT.Ackermann L. Tetrahedron 2005, 61: 11311 - 23
Ackermann L.Kaspar LT.Gschrei CJ. Chem. Commun. 2004, 2824 - 24
Ackermann L.Sandmann R.Villar A.Kaspar LT. Tetrahedron 2008, 64: 769 - 25a
Ackermann L.Born R. Angew. Chem. Int. Ed. 2005, 44: 2444 - 25b
Ackermann L.Gschrei CJ.Althammer A.Riederer M. Chem. Commun. 2006, 1419 - 25c
Ackermann L.Spatz JH.Gschrei CJ.Born R.Althammer A. Angew. Chem. Int. Ed. 2006, 45: 7627 - 26
Ackermann L. Org. Lett. 2005, 7: 3123 - 27
Ackermann L.Althammer A.Born R. Angew. Chem. Int. Ed. 2006, 45: 2619 - For recent examples of palladium-catalyzed direct arylations from our laboratories, see:
- 28a
Ackermann L.Althammer A.Fenner S. Angew. Chem. Int. Ed. 2009, 48: 201 - 28b
Ackermann L.Vicente R.Born R. Adv. Synth. Catal. 2008, 350: 741 - 28c
Ackermann L.Althammer A. Angew. Chem. Int. Ed. 2007, 46: 1627 - 29 Unfortunately, under otherwise
identical reaction conditions catalytic amounts of Bn(n-Bu)3NCl²¹ provided
product 3a with lower isolated yields,
as did the P-para-tolylated phosphonate
derived from HASPO 4h (63%)
- Carboxylic acids were used as additives in palladium- and ruthenium-catalyzed direct arylation reactions, which are believed to proceed through a concerted metalation-deprotonation mechanism: [Pd]:
- 30a
Lafrance M.Fagnou K. J. Am. Chem. Soc. 2006, 128: 16496 - 30b [Ru]:
Lafrance M.Gorelsky SI.Fagnou K. J. Am. Chem. Soc. 2007, 129: 14570 - 30c
Ackermann L.Vicente R.Althammer A. Org. Lett. 2008, 10: 2299 - 30d
Ackermann L.Mulzer M. Org. Lett. 2008, 10: 5043 ; and references cited therein
References and Notes
Representative
Procedure - Synthesis of 3a (Table 1, Entry 10)
A
suspension of Pd(OAc)2 (5.6 mg, 0.025 mmol, 5.0 mol%) and 4h (28.4 mg, 0.05 mmol, 10 mol%)
in dry dioxane (1 mL) was stirred for 30 min under N2 at
ambient temperature. K2CO3 (207.0 mg, 1.50
mmol), indole (1a, 59.0 mg, 0.50 mmol),
and 4-bromotoluene (2a, 106.0 mg, 0.62
mmol) were added, and the suspension was stirred at 95 ˚C
for 20 h. After the reaction mixture was cooled to ambient temperature, Et2O
(50 mL) and brine (50 mL) were added. The aqueous phase was extracted
with Et2O (2 × 50 mL). The
combined organic layers were dried over Na2SO4 and
concentrated in vacuo. The remaining residue was purified by column chromatography
on SiO2 (n-hexane-EtOAc,
10:1) to yield 3a (97.0 mg, 94%)
as a pale yellow solid; mp 107.4-108.3 ˚C). ¹H
NMR (300 MHz, DMSO-d
6): δ = 11.27
(br s, 1 H), 7.86 (d, J = 7.6
Hz, 1 H), 7.64-7.56 (m, 3 H), 7.47 (d, J = 7.8
Hz, 1 H), 7.24 (d, J = 8.2
Hz, 2 H), 7.19-7.07 (m, 2 H), 2.34 (s, 3 H). ¹³C
NMR (75 MHz, DMSO-d
6): δ = 136.8 (Cq),
134.1 (Cq), 132.9 (Cq), 129.2 (CH), 126.3
(CH), 125.0 (Cq), 122.8 (CH), 121.2 (CH), 119.4 (CH),
118.9 (CH), 115.6 (Cq), 111.8 (CH), 20.6 (CH3).
IR (KBr): 3387, 2361, 2337, 1653, 1617, 1116, 802, 747 cm-¹.
MS (EI): m/z (%) = 207
(100) [M+], 206 (37), 117
(12), 90 (8). ESI-HRMS: m/z calcd
for C15H14N 208.1121: found: 208.1121. The
spectral data are in accordance with those reported in the literature.
[¹9]
Analytical Data
Indole 3i: mp 80.3-82.2 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 8.19
(br s, 1 H), 7.62 (t, J = 1.8
Hz, 1 H), 7.53 (dt, J = 7.7,
1.6 Hz, 1 H), 7.39-7.23 (m, 5 H), 6.93 (dd, J = 8.8, 2.4
Hz, 1 H), 3.88 (s, 3 H). ¹³C NMR (126
MHz, CDCl3): δ = 154.9
(Cq), 137.5 (Cq), 134.6 (Cq), 131.7
(Cq), 130.0 (CH), 127.1 (CH), 125.9 (Cq),
125.8 (CH), 125.3 (CH), 123.0 (CH), 116.8 (Cq), 112.7
(CH), 112.2 (CH), 101.5 (CH), 56.0 (CH3). IR (KBr): 3391,
1620, 1594, 1485, 1440, 1271, 1214, 791 cm-¹.
MS (EI): m/z (%) = 257
(100) [M+], 242 (26), 215
(33), 178 (13), 152 (15) 128 (11). ESI-HRMS: m/z calcd
for C15H13ClNO: 258.0680; found: 258.0682.
Indole 3k: mp 134.1-135.8 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 8.07
(br s, 1 H), 7.84 (d, J = 7.9
Hz, 1 H), 7.53-7.50 (m, 2 H), 7.40-7.32 (m, 2
H), 7.18-7.07 (m, 3 H), 2.52 (s, 3 H), 2.46 (s, 3 H). ¹³C
NMR (126 MHz, CDCl3): δ = 138.2
(Cq), 136.1 (Cq), 135.5 (Cq), 128.6
(CH), 128.1 (CH), 126.7 (CH), 125.2 (Cq), 124.5 (CH),
122.8 (CH), 121.4 (CH), 120.4 (Cq), 120.4 (CH), 118.8
(Cq), 117.6 (CH), 21.7 (CH3), 16.6 (CH3). IR
(KBr): 3411, 1653, 1635, 1540, 1457, 1113, 789, 751 cm-¹.
MS (EI): m/z (%) = 221
(100) [M+], 204 (10), 178
(10), 110 (6), 102 (7). ESI-HRMS: m/z calcd
for C16H16N: 222.1277; found: 222.1277.
Indole 3l: mp 113.0-115.2 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 7.92
(br s, 1 H), 7.65 (d, J = 7.4
Hz, 1 H), 7.38-7.28 (m, 4 H), 7.18-7.07 (m, 3
H), 2.50 (s, 3 H), 2.42 (s, 3 H). ¹³C NMR
(126 MHz, CDCl3): δ = 137.9
(Cq), 135.2 (Cq), 135.1 (Cq) 131.2
(Cq), 130.0 (CH), 128.3 (CH), 127.8 (Cq),
126.5 (CH), 126.4 (CH), 121.4 (CH), 119.8 (CH), 118.8 (CH), 114.5
(Cq), 110.2 (CH), 21.7 (CH3), 12.7 (CH3).
IR (KBr): 3392, 1682, 1653, 1559, 1457, 1306, 792, 746 cm-¹.
MS (EI): m/z (%) = 221
(100) [M+], 204 (20), 178
(9), 130 (15), 102 (15). ESI-HRMS: m/z calcd
for C16H16N: 222.1277; found: 222.1272.
- 1
Horton DA.Bourne GT.Smythe ML. Chem. Rev. 2003, 103: 893 - 2
Humphrey GR.Kuethe JT. Chem. Rev. 2006, 106: 2875 - 3
Eicher T.Hauptmann S. The Chemistry of Heterocycles 2nd ed.: Wiley-VCH; Weinheim: 2003. - 4
Gilchrist TL. Heterocyclic Chemistry 3rd ed.: Addison Wesley Longman; Harlow: 1997. - 5
Joule JA.Milles K. Heterocyclic Chemistry 4th ed.: Blackwell Science Ltd; Oxford: 2000. - 6
Ackermann L. Synlett 2007, 507 - 7
Cacchi S.Fabrizi G. Chem. Rev. 2005, 105: 2873 - 8
Krüger K.Tillack A.Beller M. Adv. Synth. Catal. 2008, 350: 2153 - 9
Ackermann L. Modern Arylation Reactions Wiley-VCH; Weinheim: 2009. - Palladium-catalyzed cross-dehydrogenative arylations can proceed regioselectively at indoles. However, they display limited selectivities with respect to the coupling partner and rely on the use of (over)stoichiometric amounts of Cu(OAc)2 or AgOAc as terminal oxidants:
- 10a
Potavathri S.Dumas AS.Dwight TA.Naumiec GR.Hammann JM.DeBoef B. Tetrahedron Lett. 2008, 49: 4050 - 10b
Stuart DR.Villemure E.Fagnou K. J. Am. Chem. Soc. 2007, 129: 12072 - 10c
Dwight TA.Rue NR.Charyk D.Josselyn R.DeBoef B. Org. Lett. 2007, 9: 3137 - 10d
Stuart DR.Fagnou K. Science 2007, 316: 1172 ; and references cited therein - For rhodium-catalyzed direct arylations of indoles, occurring largely with C-2 regioselectivity, see:
- 11a
Yanagisawa S.Sudo T.Noyori R.Itami K. Tetrahedron 2008, 64: 6073 - 11b
Yanagisawa S.Sudo T.Noyori R.Itami K. J. Am. Chem. Soc. 2006, 128: 11748 - 11c
Wang X.Lane BS.Sames D. J. Am. Chem. Soc. 2005, 127: 4996 - 12 Stoichiometrically magnesiated indoles
were shown to give rise to C-3 arylated indoles:
Lane BS.Brown MA.Sames D. J. Am. Chem. Soc. 2005, 127: 8050 - 13
de Mendoza P.Echavarren AM. In Modern Arylation MethodsAckermann L. Wiley-VCH; Weinheim: 2009. p.363 - 14a
Seregin IV.Gevorgyan V. Chem. Soc. Rev. 2007, 36: 1173 - 14b
Alberico D.Scott ME.Lautens M. Chem. Rev. 2007, 107: 174 - Selected recent representative examples of palladium-catalyzed direct arylations of indoles:
- 15a
Lebrasseur N.Larrosa I. J. Am. Chem. Soc. 2008, 130: 2926 - 15b
Zhao J.Zhang Y.Cheng K. J. Org. Chem. 2008, 73: 7428 - 15c
Yang S.-D.Sun C.-L.Fang Z.Li B.-J.Li Y.-Z.Shi Z.-J. Angew. Chem. Int. Ed. 2008, 47: 1473 - 15d
Bellina F.Calandri C.Cauteruccio S.Rossi R. Eur. J. Org. Chem. 2007, 2147 - 15e
Deprez NR.Kalyani D.Krause A.Sanford MS. J. Am. Chem. Soc. 2006, 128: 4972 ; and references cited therein - 16 For elegant site-selective copper-catalyzed
direct C-3 arylations of indoles employing [Ar2I]X
as arylating reagents, see:
Phipps RJ.Grimster NP.Gaunt MJ. J. Am. Chem. Soc. 2008, 130: 8172 - 17 For an early example of regioselective
direct arylations of indoles, see:
Akita Y.Itagaki Y.Takizawa S.Ohta A. Chem. Pharm. Bull. 1989, 37: 1477 - 18
Ackermann L. Synthesis 2006, 1557 - 19
Zhang Z.Hu Z.Yu Z.Lei P.Chi H.Wang Y.He R. Tetrahedron Lett. 2007, 48: 2415 - For the recent use of a heterogenous palladium catalyst for direct C-3 arylations of 2-substituted indoles, see:
- 20a
Cusati G.Djakovitch L. Tetrahedron Lett. 2008, 49: 2499 - 20b For a direct C-3 arylation
of a 2-substituted indole, see:
Djakovitch L.Dufaud V.Zaidi R. Adv. Synth. Catal. 2006, 348: 715 - 21 For a recent report on the application
of PCy3 or Bn(n-Bu)3NCl
to palladium-catalyzed direct C-3 arylations of indoles, including
2-substituted ones, see:
Bellina F.Benelli F.Rossi R. J. Org. Chem. 2008, 73: 5529 - 22a
Ackermann L. Org. Lett. 2005, 7: 439 - 22b
Kaspar LT.Ackermann L. Tetrahedron 2005, 61: 11311 - 23
Ackermann L.Kaspar LT.Gschrei CJ. Chem. Commun. 2004, 2824 - 24
Ackermann L.Sandmann R.Villar A.Kaspar LT. Tetrahedron 2008, 64: 769 - 25a
Ackermann L.Born R. Angew. Chem. Int. Ed. 2005, 44: 2444 - 25b
Ackermann L.Gschrei CJ.Althammer A.Riederer M. Chem. Commun. 2006, 1419 - 25c
Ackermann L.Spatz JH.Gschrei CJ.Born R.Althammer A. Angew. Chem. Int. Ed. 2006, 45: 7627 - 26
Ackermann L. Org. Lett. 2005, 7: 3123 - 27
Ackermann L.Althammer A.Born R. Angew. Chem. Int. Ed. 2006, 45: 2619 - For recent examples of palladium-catalyzed direct arylations from our laboratories, see:
- 28a
Ackermann L.Althammer A.Fenner S. Angew. Chem. Int. Ed. 2009, 48: 201 - 28b
Ackermann L.Vicente R.Born R. Adv. Synth. Catal. 2008, 350: 741 - 28c
Ackermann L.Althammer A. Angew. Chem. Int. Ed. 2007, 46: 1627 - 29 Unfortunately, under otherwise
identical reaction conditions catalytic amounts of Bn(n-Bu)3NCl²¹ provided
product 3a with lower isolated yields,
as did the P-para-tolylated phosphonate
derived from HASPO 4h (63%)
- Carboxylic acids were used as additives in palladium- and ruthenium-catalyzed direct arylation reactions, which are believed to proceed through a concerted metalation-deprotonation mechanism: [Pd]:
- 30a
Lafrance M.Fagnou K. J. Am. Chem. Soc. 2006, 128: 16496 - 30b [Ru]:
Lafrance M.Gorelsky SI.Fagnou K. J. Am. Chem. Soc. 2007, 129: 14570 - 30c
Ackermann L.Vicente R.Althammer A. Org. Lett. 2008, 10: 2299 - 30d
Ackermann L.Mulzer M. Org. Lett. 2008, 10: 5043 ; and references cited therein
References and Notes
Representative
Procedure - Synthesis of 3a (Table 1, Entry 10)
A
suspension of Pd(OAc)2 (5.6 mg, 0.025 mmol, 5.0 mol%) and 4h (28.4 mg, 0.05 mmol, 10 mol%)
in dry dioxane (1 mL) was stirred for 30 min under N2 at
ambient temperature. K2CO3 (207.0 mg, 1.50
mmol), indole (1a, 59.0 mg, 0.50 mmol),
and 4-bromotoluene (2a, 106.0 mg, 0.62
mmol) were added, and the suspension was stirred at 95 ˚C
for 20 h. After the reaction mixture was cooled to ambient temperature, Et2O
(50 mL) and brine (50 mL) were added. The aqueous phase was extracted
with Et2O (2 × 50 mL). The
combined organic layers were dried over Na2SO4 and
concentrated in vacuo. The remaining residue was purified by column chromatography
on SiO2 (n-hexane-EtOAc,
10:1) to yield 3a (97.0 mg, 94%)
as a pale yellow solid; mp 107.4-108.3 ˚C). ¹H
NMR (300 MHz, DMSO-d
6): δ = 11.27
(br s, 1 H), 7.86 (d, J = 7.6
Hz, 1 H), 7.64-7.56 (m, 3 H), 7.47 (d, J = 7.8
Hz, 1 H), 7.24 (d, J = 8.2
Hz, 2 H), 7.19-7.07 (m, 2 H), 2.34 (s, 3 H). ¹³C
NMR (75 MHz, DMSO-d
6): δ = 136.8 (Cq),
134.1 (Cq), 132.9 (Cq), 129.2 (CH), 126.3
(CH), 125.0 (Cq), 122.8 (CH), 121.2 (CH), 119.4 (CH),
118.9 (CH), 115.6 (Cq), 111.8 (CH), 20.6 (CH3).
IR (KBr): 3387, 2361, 2337, 1653, 1617, 1116, 802, 747 cm-¹.
MS (EI): m/z (%) = 207
(100) [M+], 206 (37), 117
(12), 90 (8). ESI-HRMS: m/z calcd
for C15H14N 208.1121: found: 208.1121. The
spectral data are in accordance with those reported in the literature.
[¹9]
Analytical Data
Indole 3i: mp 80.3-82.2 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 8.19
(br s, 1 H), 7.62 (t, J = 1.8
Hz, 1 H), 7.53 (dt, J = 7.7,
1.6 Hz, 1 H), 7.39-7.23 (m, 5 H), 6.93 (dd, J = 8.8, 2.4
Hz, 1 H), 3.88 (s, 3 H). ¹³C NMR (126
MHz, CDCl3): δ = 154.9
(Cq), 137.5 (Cq), 134.6 (Cq), 131.7
(Cq), 130.0 (CH), 127.1 (CH), 125.9 (Cq),
125.8 (CH), 125.3 (CH), 123.0 (CH), 116.8 (Cq), 112.7
(CH), 112.2 (CH), 101.5 (CH), 56.0 (CH3). IR (KBr): 3391,
1620, 1594, 1485, 1440, 1271, 1214, 791 cm-¹.
MS (EI): m/z (%) = 257
(100) [M+], 242 (26), 215
(33), 178 (13), 152 (15) 128 (11). ESI-HRMS: m/z calcd
for C15H13ClNO: 258.0680; found: 258.0682.
Indole 3k: mp 134.1-135.8 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 8.07
(br s, 1 H), 7.84 (d, J = 7.9
Hz, 1 H), 7.53-7.50 (m, 2 H), 7.40-7.32 (m, 2
H), 7.18-7.07 (m, 3 H), 2.52 (s, 3 H), 2.46 (s, 3 H). ¹³C
NMR (126 MHz, CDCl3): δ = 138.2
(Cq), 136.1 (Cq), 135.5 (Cq), 128.6
(CH), 128.1 (CH), 126.7 (CH), 125.2 (Cq), 124.5 (CH),
122.8 (CH), 121.4 (CH), 120.4 (Cq), 120.4 (CH), 118.8
(Cq), 117.6 (CH), 21.7 (CH3), 16.6 (CH3). IR
(KBr): 3411, 1653, 1635, 1540, 1457, 1113, 789, 751 cm-¹.
MS (EI): m/z (%) = 221
(100) [M+], 204 (10), 178
(10), 110 (6), 102 (7). ESI-HRMS: m/z calcd
for C16H16N: 222.1277; found: 222.1277.
Indole 3l: mp 113.0-115.2 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 7.92
(br s, 1 H), 7.65 (d, J = 7.4
Hz, 1 H), 7.38-7.28 (m, 4 H), 7.18-7.07 (m, 3
H), 2.50 (s, 3 H), 2.42 (s, 3 H). ¹³C NMR
(126 MHz, CDCl3): δ = 137.9
(Cq), 135.2 (Cq), 135.1 (Cq) 131.2
(Cq), 130.0 (CH), 128.3 (CH), 127.8 (Cq),
126.5 (CH), 126.4 (CH), 121.4 (CH), 119.8 (CH), 118.8 (CH), 114.5
(Cq), 110.2 (CH), 21.7 (CH3), 12.7 (CH3).
IR (KBr): 3392, 1682, 1653, 1559, 1457, 1306, 792, 746 cm-¹.
MS (EI): m/z (%) = 221
(100) [M+], 204 (20), 178
(9), 130 (15), 102 (15). ESI-HRMS: m/z calcd
for C16H16N: 222.1277; found: 222.1272.


















