Subscribe to RSS
DOI: 10.1055/a-2104-5943
Base-Promoted 1,6-Aza-Michael Addition of Azauracils to para-Quinone Methides
This work was supported by the Science and Engineering Research Board (SERB) (CRG/2022/000470) and the Council of Scientific and Industrial Research, India (CSIR) (02(0426)/21/EMR-II). S.M. acknowledges the Department of Science and Technology, Ministry of Science and Technology, India (DST-FIST) (SR/FST/CS-II/2019/119(C)). R.D. thanks the University Grants Commission (UGC) for a fellowship.
Abstract
We report an efficient higher order conjugate addition of azauracils to substituted para-quinone methides (p-QMs) mediated by triethylamine to furnish hitherto unknown diarylmethane scaffolds through construction of a C–N bond. The protocol features mild conditions, high atom economy, and broad scope, and enables convenient access to biologically relevant new chemical entities (NCEs) comprised of p-QM and azauracil hybrids in good to excellent yields.
#
Nitrogen-containing heterocyclic compounds are highly important due to their presence in several natural products, biologically active compounds and pharmaceuticals. Accordingly, conjugate addition of nitrogen-centered nucleophiles, the so-called aza-Michael reaction, has evolved as a powerful approach to construct C–N bonds in an atom- and step-economic manner.[1] Although, 1,4-aza-Michael addition is an extensively investigated area of research, reports on the corresponding 1,6-conjugate addition variant are scarce.[1c] In the past decade, p-quinone methides (p-QMs) have emerged as valuable Michael acceptors for the construction of carbon–carbon and carbon–heteroatom bonds en route to versatile diarylmethane pharmacophores (Figure [1]).[2] The unique reactivity of p-QMs, driven by rearomatization, has enabled them to undergo a variety of nucleophilic additions under a plethora of reaction conditions. Despite the tremendous progress made with regard to the utilization of p-QMs as Michael acceptors for the creation of C–C,[3] C–S,[4] C–P,[5] C–B,[6] and C–Si[7] bonds, examples of the addition of N-heterocycle-based N-centered nucleophiles, especially those involving amides/imides, are limited (Scheme [1a]).[8]


Recently, we became interested in the chemistry of azauracils,[9] a class of privileged nitrogen heterocycles that are recurring motifs in numerous natural products and bioactive compounds (Figure [1]).[10] Compounds embedded with such motifs are known to serve as antiviral,[10f] anticoccidial[10c] and 5-HT1A agonist PET tracer agents.[10b] [e] Hence, the development of new synthetic methodologies enabling diversification of azauracils for the tapping of unexplored chemical space is highly desirable. Traditional methods for the N4-alkylation of azauracils involve substitution reactions with alkyl halides in the presence of strong inorganic bases, allowing installation of primary alkyl groups only (Scheme [1b]).[11] Interestingly, to the best of our knowledge, there are no reports on the aza-Michael addition of azauracils. Considering the implications of N-substituents on the biological activities of azauracil derivatives and the scarcity of methods for the installation of secondary alkyl groups on azauracil derivatives, we envisioned the coupling of p-QMs with azauracils through 1,6-conjugate addition under metal-free conditions. Such an intriguing method would not only allow forging a bond between two biologically relevant moieties but would also enable access to pharmaceutically important new chemical entities (NCEs).


We recently reported a transition-metal-free multicomponent reaction between p-QMs, carbon disulfide and amines to access S-diarylmethane dithiocarbamates.[12] In continuation of our interest in metal-free synthetic techniques,[9] [12] [13] we herein report an organic-base-promoted 1,6-conjugate addition of azauracils with p-QMs to furnish biologically relevant N4-diarylmethane azauracils (Scheme [1c]).
To assess the feasibility of the envisaged approach, we reacted 2,6-di-tert-butyl-p-QM (1a) (0.1 mmol, 1 equiv) with 2-benzyl-1,2,4-triazine-3,5(2H,4H)-dione (2a) (1.02 equiv) in the presence of different additives in CH2Cl2 at room temperature (Table [1]). Initially, we opted for a LUMO-lowering strategy (activation of the electrophile) and screened different Brønsted (1 equiv) and Lewis (5 mol%) acids as additives (entries 1–4). Unfortunately, in none of the cases was product formation detected. Subsequently, we switched to a HOMO-rising strategy (activation of the nucleophile) and tested different organic bases, such as DIPEA, DABCO, DBU and Et3N.
a Reaction conditions: 1a (0.1 mmol), 2a (0.102 mmol, 1.02 equiv), additive (0.1 mmol, 1 equiv), solvent (1 mL), room temperature.
b Isolated yields after column chromatography. N.D. = Not detected.
c Zn(OTf)2 (5 mol%) was used.
d Cu(OTf)2 (5 mol%) was used.
e Et3N (50 mol%) was used.
f Et3N (20 mol%) was used.
To our delight, both DIPEA and DABCO delivered the desired product 3aa in yields of 25% and 36%, respectively (Table [1], entries 5 and 6). Unfortunately, in these cases, the reaction did not proceed to completion, even after stirring for 24 hours. Gratifyingly, in the case of DBU, the reaction was complete in 1 hour to provide 3aa in 70% yield (entry 7). The yield was further improved to 95% upon switching to Et3N as the base, albeit at the expense of a longer reaction time (entry 8). Solvents such as toluene, 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), and 1,4-dioxane turned out to be completely ineffective (entries 9–11), and a reduced yield was obtained in THF (entry 12). Pleasingly, the reaction went to completion in 1 hour in acetonitrile, with a similar yield (94%) to that obtained in CH2Cl2 being recorded (entry 13). Switching the solvent from acetonitrile to MeOH or DMF failed to improve the yield (entries 14 and 15). Reducing the Et3N loading from 100 mol% to 50 mol% was feasible without compromising the yield; however, further decreasing the base loading to 20% led to a slight reduction in the yield (entries 16 and 17). Notably, these reactions do not require Schlenk techniques or anhydrous conditions, and were easily conducted in a screw-cap vial under simple conditions.
Next, under the optimized conditions (p-QM 1 (1 equiv), azauracil 2 (1.02 equiv), Et3N (0.5 equiv), CH3CN, room temperature, 1 h), a series of electronically and structurally diverse p-QMs 1 was treated with azauracil 2a (Scheme [2]). Pleasingly, p-QMs having electron-rich substituents (Me, OMe) at the para position of the phenyl ring provided the desired products 3ba and 3ca in excellent yields of 93% and 87%, respectively. The efficacy of the reaction remained unaltered in the case of electron-withdrawing groups (F, Cl, Br) and a reactive NO2 functional group at the para position of the p-QMs, furnishing the respective products 3da–ga in excellent yields (93–97%). Importantly, p-QMs with meta-, ortho-, and trisubstitution patterns on the phenyl ring were well accommodated to give products 3ha–ja in yields of 87–89%. Notably, p-QMs derived from polyaromatic and heteroaromatic aldehydes also participated in this aza-Michael process to yield the respective products 3ka (90%) and 3la (91%). This method could also be extended to p-QMs having aliphatic substituents, such as methyl, and cyclopropyl, to afford the corresponding products 3ma and 3na in good to excellent yields (87–99%). Delightfully, a p-QM having less sterically congested methyl groups at the C2,C6-positions (1o) and non-symmetrical p-QM 1p also participated in this strategy to afford products 3oa and 3pa in yields of 84% and 97%, respectively.


Subsequently, we explored the scope of the azauracils 2 with regard to the N2-substitution pattern by reactions with p-QM 1a under the optimized conditions (Scheme [3]). Several N2-benzylated azauracils having electron-rich (t-Bu) and electron-deficient (F, Cl) substituents at the para-position of the phenyl ring underwent smooth transformations to give the desired products 3ab–ad in excellent yields (85–93%). The reaction also worked well with meta-substituted (Cl, CO2Et) N2-benzylated azauracils to furnish products 3ae (91%) and 3af (83%). Pleasingly, a polyaromatic naphthalene-containing azauracil was amenable to the reaction conditions, giving product 3ag in 89% yield. We were glad to note that other than benzyl, reactive functional groups such as allyl and ester as N2-substituents were well accommodated, furnishing the respective products 3ah (86%) and 3ai (82%) in good yields. Furthermore, azauracils forged with various pharmaceuticals and natural products also participated in this higher order conjugate addition to provide the corresponding products 3aj–al in good to excellent yields (75–96%), thereby reaffirming the functional group tolerance and robustness of this method.


To demonstrate the scalability and commercial applicability of this method, a gram-scale reaction was carried out between p-QM 1a and azauracil 2a under the optimized conditions to afford 3aa in 87% yield (Scheme [4], upper panel). Moreover, the final products were amenable to further synthetic transformations, as demonstrated through oxidation of 3aa to the corresponding p-QM compound 4 in 86% yield (Scheme [4], lower panel).


Mechanistically, we propose that the base-promoted reaction begins by deprotonation of azauracil 2a by triethylamine to yield the anionic nucleophile A and conjugate acid of triethylamine (Scheme [5]). The latter may interact with p-QM 1a to enhance its electrophilicity to facilitate the subsequent aza-Michael addition by A, thereby delivering final product 3aa along with the regeneration of triethylamine.


In conclusion, we have developed a practical triethylamine-promoted 1,6-aza-Michael addition of azauracils to substituted para-quinone methides to obtain the corresponding biologically relevant diarylmethane compounds in good to excellent yields. This protocol is characterized by its low cost, scalability, high atom economy, and broad substrate scope. The obtained p-QM–azauracil hybrid-based NCEs are anticipated to display interesting biological activities.
Unless otherwise specified, all commercial reagents were utilized without further purification. All reactions were carried out in oven-dried glassware and screw-cap vials agitated with a magnetic stir bar. Reaction progress was monitored by TLC (0.2 mm silica gel coated 60 F254 plates) with UV light visualization. The starting para-quinone methides[12] and azauracils[11a] [14] were prepared using methods described in the literature. Flash column chromatography was performed on silica gel (mesh sizes 100–200 and 230–400). Bruker Avance 500 MHz and Jeol 400 MHz spectrometers were used to record NMR spectra. 1H and 13C chemical shifts are reported in ppm downfield of tetramethylsilane and referenced to the residual solvent peak (CHCl3, δH = 7.26; δC = 77.00). Standard abbreviations denote peak multiplicities. An Agilent 6546 LC/Q-TOF spectrometer was used to capture high-resolution mass spectra. Melting points were determined in capillary tubes using a SMP10 melting point device and are uncorrected.
#
Diarylmethanes 3; General Procedure
A screw-cap vial was charged with azauracil 2 (0.255 mmol, 1.02 equiv) and Et3N (50 mol%), followed by the addition of p-QM 1 (0. 25 mmol, 1 equiv) in CH3CN (2.5 mL). The resulting solution was stirred at room temperature for 1 h. After completion of the reaction, the mixture was concentrated under vacuum and the crude residue was purified by column chromatography (5–15% EtOAc in hexane) to yield the corresponding diarylmethane 3.
#
2-Benzyl-4-((3,5-di-tert-butyl-4-hydroxyphenyl)(phenyl)methyl)-1,2,4-triazine-3,5(2H,4H)-dione (3aa)
Yield: 116 mg (93%); white solid; mp 67 °C.
1H NMR (500 MHz, CDCl3): δ = 7.54–7.50 (m, 2 H), 7.48 (s, 1 H), 7.39–7.35 (m, 3 H), 7.35–7.31 (m, 3 H), 7.28–7.25 (m, 2 H), 7.14 (s, 2 H), 7.08 (s, 1 H), 5.29 (s, 1 H), 5.15 (s, 2 H), 1.42 (s, 18 H).
13C NMR (126 MHz, CDCl3): δ = 155.5, 153.6, 149.1, 138.9, 135.8, 135.4, 134.3, 129.3, 128.6, 128.6, 128.4 (2 C), 128.1, 127.8, 125.8, 65.1, 44.2, 34.3, 30.2.
HRMS (ESI): m/z [M + NH4]+ calcd for C31H39N4O3: 515.3017; found: 515.3016.
#
2-Benzyl-4-((3,5-di-tert-butyl-4-hydroxyphenyl)(p-tolyl)methyl)-1,2,4-triazine-3,5(2H,4H)-dione (3ba)
Yield: 119 mg (93%); white solid; mp 69 °C.
1H NMR (500 MHz, CDCl3): δ = 7.48 (d, J = 6.5 Hz, 2 H), 7.45 (s, 1 H), 7.35–7.29 (m, 3 H), 7.17–7.12 (m, 4 H), 7.11 (s, 2 H), 7.01 (s, 1 H), 5.24 (s, 1 H), 5.12 (s, 2 H), 2.34 (s, 3 H), 1.39 (s, 18 H).
13C NMR (126 MHz, CDCl3): δ = 155.7, 153.7, 149.2, 137.6, 136.0, 135.9, 135.6, 134.3, 129.4, 129.2, 128.8, 128.75, 128.73, 128.2, 125.7, 65.1, 44.3, 34.5, 30.3, 21.2.
HRMS (ESI): m/z [M + NH4]+ calcd for C32H41N4O3: 529.3173; found: 529.3160.
#
2-Benzyl-4-((3,5-di-tert-butyl-4-hydroxyphenyl)(4-methoxyphenyl)methyl)-1,2,4-triazine-3,5(2H,4H)-dione (3ca)
Yield: 115 mg (87%); white solid; mp 64 °C.
1H NMR (500 MHz, CDCl3): δ = 7.47 (d, J = 7.1 Hz, 2 H), 7.44 (s, 1 H), 7.34–7.27 (m, 3 H), 7.18 (d, J = 8.4 Hz, 2 H), 7.08 (s, 2 H), 6.99 (s, 1 H), 6.86 (d, J = 8.7 Hz, 2 H), 5.23 (s, 1 H), 5.11 (s, 2 H), 3.79 (s, 3 H), 1.37 (s, 18 H).
13C NMR (126 MHz, CDCl3): δ = 159.2, 155.6, 153.6, 149.2, 135.9, 135.6, 134.3, 131.0, 130.2, 129.4, 128.9, 128.7, 128.2, 125.5, 113.9, 64.8, 55.3, 44.3, 34.4, 30.3.
HRMS (ESI): m/z [M + NH4]+ calcd for C32H41N4O4: 545.3122; found: 545.3120.
#
2-Benzyl-4-((3,5-di-tert-butyl-4-hydroxyphenyl)(4-fluorophenyl)methyl)-1,2,4-triazine-3,5(2H,4H)-dione (3da)
Yield: 121 mg (94%); white solid; mp 66 °C.
1H NMR (500 MHz, CDCl3): δ = 7.40 (dd, J = 7.6, 1.6 Hz, 2 H), 7.37 (s, 1 H), 7.27–7.20 (m, 3 H), 7.15 (dd, J = 8.6, 5.4 Hz, 2 H), 6.98 (s, 2 H), 6.98–6.92 (m, 3 H), 5.18 (s, 1 H), 5.03 (s, 2 H), 1.30 (s, 18 H).
13C NMR (126 MHz, CDCl3): δ = 162.2 (d, J = 246.8 Hz), 155.4, 153.7, 149.0, 135.9, 135.4, 134.6 (d, J = 3.0 Hz), 134.4, 130.5 (d, J = 8.1 Hz), 129.3, 128.6, 128.3, 128.1, 125.5, 115.3 (d, J = 21.6 Hz), 64.5, 44.2, 34.3, 30.2.
19F NMR (377 MHz, CDCl3): δ = –114.3 (s).
HRMS (ESI): m/z [M + NH4]+ calcd for C31H38FN4O3: 533.2922; found: 533.2910.
#
2-Benzyl-4-((4-chlorophenyl)(3,5-di-tert-butyl-4-hydroxyphenyl)methyl)-1,2,4-triazine-3,5(2H,4H)-dione (3ea)
Yield: 124 mg (93%); white solid; mp 68 °C.
1H NMR (500 MHz, CDCl3): δ = 7.46–7.42 (m, 2 H), 7.41 (s, 1 H), 7.32–7.26 (m, 4 H), 7.23 (s, 1 H), 7.13 (d, J = 8.5 Hz, 2 H), 7.03 (s, 2 H), 6.96 (s, 1 H), 5.23 (s, 1 H), 5.08 (s, 2 H), 1.35 (s, 18 H).
13C NMR (126 MHz, CDCl3): δ = 155.4, 153.7, 149.0, 137.4, 136.0, 135.4, 134.4, 133.7, 130.1, 129.3, 128.65, 128.60, 128.1, 128.0, 125.6, 64.5, 44.2, 34.3, 30.2.
HRMS (ESI): m/z [M + NH4]+ calcd for C31H38ClN4O3: 549.2627; found: 549.2625.
#
2-Benzyl-4-((4-bromophenyl)(3,5-di-tert-butyl-4-hydroxyphenyl)methyl)-1,2,4-triazine-3,5(2H,4H)-dione (3fa)
Yield: 140 mg (97%); white solid; mp 76 °C.
1H NMR (500 MHz, CDCl3): δ = 7.49–7.42 (m, 5 H), 7.31 (d, J = 7.2 Hz, 2 H), 7.26 (s, 1 H), 7.10 (d, J = 8.4 Hz, 2 H), 7.06 (s, 2 H), 6.97 (s, 1 H), 5.26 (s, 1 H), 5.10 (s, 2 H), 1.38 (s, 18 H).
13C NMR (126 MHz, CDCl3): δ = 155.4, 153.8, 149.0, 138.0, 136.0, 135.4, 134.4, 131.5, 130.4, 129.3, 128.6, 128.1, 127.9, 125.6, 121.9, 64.6, 44.2, 34.3, 30.2.
HRMS (ESI): m/z [M + NH4]+ calcd for C31H38BrN4O3: 593.2122; found: 593.2123.
#
2-Benzyl-4-((3,5-di-tert-butyl-4-hydroxyphenyl)(4-nitrophenyl)methyl)-1,2,4-triazine-3,5(2H,4H)-dione (3ga)
Yield: 126 mg (93%); white solid; mp 79 °C.
1H NMR (500 MHz, CDCl3): δ = 8.19 (d, J = 8.7 Hz, 2 H), 7.50–7.46 (m, 2 H), 7.46 (s, 1 H), 7.39 (d, J = 8.7 Hz, 2 H), 7.37–7.31 (m, 3 H), 7.08 (s, 3 H), 5.32 (s, 1 H), 5.15–5.08 (m, 2 H), 1.39 (s, 18 H).
13C NMR (126 MHz, CDCl3): δ = 155.2, 154.1, 149.0, 147.3, 146.3, 136.3, 135.2, 134.8, 129.45, 129.40, 128.6, 128.2, 127.2, 125.8, 123.6, 64.6, 44.3, 34.4, 30.1.
HRMS (ESI): m/z [M + NH4]+ calcd for C31H38N5O5: 560.2867; found: 560.2853.
#
2-Benzyl-4-((3,5-di-tert-butyl-4-hydroxyphenyl)(3-methoxyphenyl)methyl)-1,2,4-triazine-3,5(2H,4H)-dione (3ha)
Yield: 117 mg (89%); white solid; mp 57 °C.
1H NMR (500 MHz, CDCl3): δ = 7.50–7.43 (m, 3 H), 7.33–7.24 (m, 4 H), 7.11 (s, 2 H), 6.99 (s, 1 H), 6.82 (t, J = 7.2 Hz, 2 H), 6.77 (s, 1 H), 5.24 (s, 1 H), 5.11 (s, 2 H), 3.75 (s, 3 H), 1.38 (s, 18 H).
13C NMR (126 MHz, CDCl3): δ = 159.5, 155.5, 153.6, 149.1, 140.5, 135.8, 135.4, 134.3, 129.4, 129.2, 128.6, 128.2, 128.1, 125.8, 121.0, 114.7, 112.8, 65.0, 55.2, 44.2, 34.3, 30.2.
HRMS (ESI): m/z [M + NH4]+ calcd for C32H41N4O4: 545.3122; found: 545.3108.
#
2-Benzyl-4-((2-bromophenyl)(3,5-di-tert-butyl-4-hydroxyphenyl)methyl)-1,2,4-triazine-3,5(2H,4H)-dione (3ia)
Yield: 127 mg (88%); white solid; mp 144 °C.
1H NMR (500 MHz, CDCl3): δ = 7.56 (d, J = 7.9 Hz, 1 H), 7.43 (d, J = 7.0 Hz, 2 H), 7.38 (s, 1 H), 7.28 (ddd, J = 20.1, 7.8, 3.6 Hz, 4 H), 7.16 (td, J = 7.7, 1.4 Hz, 1 H), 7.10 (s, 1 H), 7.06 (d, J = 7.8 Hz, 1 H), 7.03 (s, 2 H), 5.25 (s, 1 H), 5.16–5.09 (m, 2 H), 1.38 (s, 18 H).
13C NMR (126 MHz, CDCl3): δ = 155.6, 153.7, 148.7, 138.4, 136.1, 135.4, 133.8, 133.1, 131.8, 129.5, 128.9, 128.5, 128.0, 127.3, 127.2, 124.8, 124.5, 65.3, 44.0, 34.3, 30.2.
HRMS (ESI): m/z [M + NH4]+ calcd for C31H38BrN4O3: 593.2122; found: 593.2119.
#
2-Benzyl-4-((3,5-di-tert-butyl-4-hydroxyphenyl)(3,4,5-trimethoxyphenyl)methyl)-1,2,4-triazine-3,5(2H,4H)-dione (3ja)
Yield: 128 mg (87%); white solid; mp 132 °C.
1H NMR (500 MHz, CDCl3): δ = 7.49–7.44 (m, 3 H), 7.35–7.28 (m, 3 H), 7.10 (s, 2 H), 6.95 (s, 1 H), 6.50 (s, 2 H), 5.25 (s, 1 H), 5.13 (s, 2 H), 3.84 (s, 3 H), 3.76 (s, 6 H), 1.38 (s, 18 H).
13C NMR (126 MHz, CDCl3): δ = 155.5, 153.6, 153.1, 149.1, 137.6, 135.8, 135.4, 134.3, 134.2, 129.2, 128.6, 128.1, 125.6, 106.1, 65.1, 60.8, 56.1, 44.2, 34.3, 30.2.
HRMS (ESI): m/z [M + NH4]+ calcd for C34H45N4O6: 605.3334; found: 605.3340.
#
2-Benzyl-4-((3,5-di-tert-butyl-4-hydroxyphenyl)(pyren-1-yl)methyl)-1,2,4-triazine-3,5(2H,4H)-dione (3ka)
Yield: 141 mg (90%); white solid; mp 65 °C.
1H NMR (500 MHz, CDCl3): δ = 8.24 (d, J = 9.3 Hz, 1 H), 8.20 (dd, J = 7.6, 2.5 Hz, 2 H), 8.11 (d, J = 8.1 Hz, 1 H), 8.10–7.99 (m, 5 H), 7.81 (d, J = 8.0 Hz, 1 H), 7.49–7.44 (m, 2 H), 7.37–7.31 (m, 4 H), 7.13 (s, 2 H), 5.26 (s, 1 H), 5.18 (s, 2 H), 1.38 (s, 18 H).
13C NMR (126 MHz, CDCl3): δ = 155.4, 153.5, 149.0, 136.1, 135.5, 134.2, 132.2, 131.2, 130.5, 129.0, 128.8, 128.6, 128.5, 128.0, 127.9, 127.8, 127.4, 126.0, 125.6, 125.4, 125.0, 124.8, 124.7, 124.4, 122.1, 62.3, 44.1, 34.4, 30.2.
HRMS (ESI): m/z [M + NH4]+ calcd for C41H43N4O3: 639.3330; found: 639.3335.
#
2-Benzyl-4-((3,5-di-tert-butyl-4-hydroxyphenyl)(thiophen-2-yl)methyl)-1,2,4-triazine-3,5(2H,4H)-dione (3la)
Yield: 115 mg (91%); white solid; mp 110 °C.
1H NMR (500 MHz, CDCl3): δ = 7.48 (d, J = 3.0 Hz, 2 H), 7.46 (d, J = 1.6 Hz, 1 H), 7.38–7.27 (m, 3 H), 7.26 (s, 1 H), 7.25 (d, J = 1.8 Hz, 2 H), 7.01–6.88 (m, 2 H), 5.26 (s, 1 H), 5.16–5.01 (m, 2 H), 1.39 (s, 18 H).
13C NMR (126 MHz, CDCl3): δ = 155.5, 154.0, 148.7, 141.7, 135.9, 135.4, 134.5, 129.4, 128.8, 128.7, 128.2, 127.9, 126.5, 125.43, 125.40, 61.1, 44.2, 34.4, 30.2.
HRMS (ESI): m/z [M + NH4]+ calcd for C29H37N4O3S: 521.2581; found: 521.2581.
#
2-Benzyl-4-(1-(3,5-di-tert-butyl-4-hydroxyphenyl)ethyl)-1,2,4-triazine-3,5(2H,4H)-dione (3ma)
Yield: 95 mg (87%); viscous liquid.
1H NMR (500 MHz, CDCl3): δ = 7.53–7.49 (m, 2 H), 7.47 (s, 1 H), 7.36–7.30 (m, 3 H), 7.25 (s, 2 H), 5.94 (q, J = 7.1 Hz, 1 H), 5.25 (s, 1 H), 5.18–5.04 (m, 2 H), 5.06 (d, J = 13.6 Hz, 1 H), 1.72 (d, J = 7.1 Hz, 3 H), 1.45 (s, 18 H).
13C NMR (126 MHz, CDCl3): δ = 155.6, 153.6, 148.6, 135.8, 135.6, 133.9, 130.8, 129.4, 128.5, 128.0, 124.1, 57.4, 43.9, 34.3, 30.2, 19.2.
HRMS (ESI): m/z [M + NH4]+ calcd for C26H37N4O3: 453.2860; found: 453.2864.
#
2-Benzyl-4-(cyclopropyl(3,5-di-tert-butyl-4-hydroxyphenyl)methyl)-1,2,4-triazine-3,5(2H,4H)-dione (3na)
Yield: 115 mg (99%); white solid; mp 56 °C.
1H NMR (500 MHz, CDCl3): δ = 7.48–7.43 (m, 3 H), 7.33–7.26 (m, 3 H), 7.24 (d, J = 6.6 Hz, 2 H), 5.20 (s, 1 H), 5.12–5.04 (m, 2 H), 4.87 (d, J = 10.3 Hz, 1 H), 1.82–1.73 (m, 1 H), 1.41 (s, 18 H), 0.80–0.72 (m, 1 H), 0.64–0.57 (m, 1 H), 0.49–0.38 (m, 2 H).
13C NMR (126 MHz, CDCl3): δ = 155.6, 153.5, 149.0, 135.7, 135.6, 134.1, 129.9, 129.2, 128.5, 128.0, 124.3, 67.8, 43.9, 34.3, 30.2, 14.4, 5.9, 4.5.
HRMS (ESI): m/z [M + NH4]+ calcd for C28H39N4O3: 479.3017; found: 479.3015.
#
2-Benzyl-4-((4-hydroxy-3,5-dimethylphenyl)(phenyl)methyl)-1,2,4-triazine-3,5(2H,4H)-dione (3oa)
Yield: 87 mg (84%); white solid; mp 76 °C.
1H NMR (500 MHz, CDCl3): δ = 7.51–7.46 (m, 2 H), 7.44 (s, 1 H), 7.35–7.28 (m, 6 H), 7.24–7.19 (m, 2 H), 6.98 (s, 1 H), 6.88 (s, 2 H), 5.10 (s, 2 H), 4.69 (s, 1 H), 2.20 (s, 6 H).
13C NMR (126 MHz, CDCl3): δ = 155.5, 152.1, 149.0, 138.6, 135.4, 134.4, 129.5, 129.4, 129.2, 128.6, 128.5, 128.5, 128.1, 127.8, 123.1, 64.6, 44.2, 16.0.
HRMS (ESI): m/z [M + NH4]+ calcd for C25H27N4O3: 431.2078; found: 431.2077.
#
2-Benzyl-4-((3-(tert-butyl)-4-hydroxy-5-methylphenyl)(phenyl)methyl)-1,2,4-triazine-3,5(2H,4H)-dione (3pa)
Yield: 110 mg (97%); white solid; mp 59 °C.
1H NMR (500 MHz, CDCl3): δ = 7.45 (d, J = 6.3 Hz, 2 H), 7.42 (s, 1 H), 7.30–7.29 (m, 5 H), 7.23 (s, 1 H), 7.19 (d, J = 6.9 Hz, 2 H), 7.03 (s, 1 H), 6.99 (s, 1 H), 6.88 (s, 1 H), 5.08 (s, 2 H), 4.81 (s, 1 H), 2.17 (s, 3 H), 1.33 (s, 9 H).
13C NMR (126 MHz, CDCl3): δ = 155.5, 152.5, 149.1, 138.7, 135.7, 135.4, 134.3, 129.3, 129.1, 128.6, 128.5, 128.4, 128.1, 127.8, 125.9, 123.1, 64.9, 44.2, 34.5, 29.6, 16.1.
HRMS (ESI): m/z [M + NH4]+ calcd for C28H33N4O3: 473.2547; found: 473.2544.
#
2-(4-(tert-Butyl)benzyl)-4-((3,5-di-tert-butyl-4-hydroxyphenyl)(phenyl)methyl)-1,2,4-triazine-3,5(2H,4H)-dione (3ab)
Yield: 118 mg (85%); white solid; mp 83 °C.
1H NMR (400 MHz, CDCl3): δ = 7.43 (s, 2 H), 7.42–7.40 (m, 1 H), 7.36–7.28 (m, 5 H), 7.23 (ddd, J = 3.6, 1.8, 0.5 Hz, 2 H), 7.09 (s, 2 H), 7.04 (s, 1 H), 5.23 (s, 1 H), 5.12–5.03 (m, 2 H), 1.37 (s, 18 H), 1.29 (s, 9 H).
13C NMR (101 MHz, CDCl3): δ = 155.6, 153.7, 151.1, 149.2, 139.0, 135.9, 134.4, 132.5, 129.2, 128.7, 128.5, 128.4, 127.8, 125.8, 125.6, 65.2, 43.9, 34.6, 34.4, 31.3, 30.3.
HRMS (ESI): m/z [M + NH4]+ calcd for C35H47N4O3: 571.3643; found: 571.3662.
#
4-((3,5-Di-tert-butyl-4-hydroxyphenyl)(phenyl)methyl)-2-(4-fluorobenzyl)-1,2,4-triazine-3,5(2H,4H)-dione (3ac)
Yield: 120 mg (93%); white solid; mp 71 °C.
1H NMR (500 MHz, CDCl3): δ = 7.41 (dd, J = 8.6, 5.4 Hz, 2 H), 7.37 (s, 1 H), 7.29–7.20 (m, 3 H), 7.17–7.13 (m, 2 H), 7.02 (s, 2 H), 6.96–6.89 (m, 3 H), 5.18 (s, 1 H), 4.99 (s, 2 H), 1.30 (s, 18 H).
13C NMR (126 MHz, CDCl3): δ = 162.5 (d, J = 246.9 Hz), 155.4, 153.6, 149.0, 138.8, 135.8, 134.2, 131.4 (d, J = 8.1 Hz), 131.3 (d, J = 3.1 Hz), 128.6, 128.4, 128.3, 127.8, 125.7, 115.4 (d, J = 21.6 Hz), 65.2, 43.4, 34.3, 30.2.
19F (377 MHz, CDCl3): δ = –113.7 (s).
HRMS (ESI): m/z [M + NH4]+ calcd for C31H38FN4O3: 533.2922; found: 533.2906.
#
2-(4-Chlorobenzyl)-4-((3,5-di-tert-butyl-4-hydroxyphenyl)(phenyl)methyl)-1,2,4-triazine-3,5(2H,4H)-dione (3ad)
Yield: 121 mg (91%); white solid; mp 61 °C.
1H NMR (400 MHz, CDCl3): δ = 7.44 (s, 1 H), 7.43 (d, J = 2.0 Hz, 1 H), 7.41 (d, J = 2.0 Hz, 1 H), 7.35–7.32 (m, 1 H), 7.32–7.28 (m, 3 H), 7.27–7.26 (m, 1 H), 7.24–7.22 (m, 1 H), 7.22–7.20 (m, 1 H), 7.09 (s, 2 H), 7.01 (s, 1 H), 5.24 (s, 1 H), 5.06 (s, 2 H), 1.37 (s, 18 H).
13C NMR (101 MHz, CDCl3): δ = 155.5, 153.7, 149.0, 138.9, 135.9, 134.3, 134.2, 134.0, 130.9, 128.8, 128.7, 128.5, 128.4, 127.9, 125.8, 65.3, 43.5, 34.4, 30.2.
HRMS (ESI): m/z [M + NH4]+ calcd for C31H38ClN4O3: 549.2627; found: 549.2642.
#
2-(3-Chlorobenzyl)-4-((3,5-di-tert-butyl-4-hydroxyphenyl)(phenyl)methyl)-1,2,4-triazine-3,5(2H,4H)-dione (3ae)
Yield: 121 mg (91%); white solid; mp 60 °C.
1H NMR (400 MHz, CDCl3): δ = 7.47–7.45 (m, 2 H), 7.37–7.33 (m, 2 H), 7.32–7.27 (m, 2 H), 7.26–7.25 (m, 1 H), 7.25–7.23 (m, 2 H), 7.22–7.21 (m, 1 H), 7.10 (s, 2 H), 7.02 (s, 1 H), 5.25 (s, 1 H), 5.06 (s, 2 H), 1.38 (s, 18 H).
13C NMR (101 MHz, CDCl3): δ = 155.5, 153.7, 149.0, 138.9, 137.3, 135.9, 134.5, 134.3, 129.9, 129.4, 128.7, 128.5, 128.4, 128.3, 127.9, 127.6, 125.8, 65.3, 43.7, 34.4, 30.3.
HRMS (ESI): m/z [M + NH4]+ calcd for C31H38ClN4O3: 549.2627; found: 549.2641.
#
Ethyl 3-((4-((3,5-Di-tert-butyl-4-hydroxyphenyl)(phenyl)methyl)-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H)-yl)methyl)benzoate (3af)
Yield: 118 mg (83%); white solid; mp 66 °C.
1H NMR (500 MHz, CDCl3): δ = 8.17 (s, 1 H), 8.01 (d, J = 7.8 Hz, 1 H), 7.67 (d, J = 7.7 Hz, 1 H), 7.50 (s, 1 H), 7.42 (t, J = 7.7 Hz, 1 H), 7.39–7.30 (m, 3 H), 7.26 (d, J = 7.0 Hz, 2 H), 7.14 (s, 2 H), 7.06 (s, 1 H), 5.28 (s, 1 H), 5.18 (s, 2 H), 4.40 (q, J = 7.1 Hz, 2 H), 1.42 (t, J = 7.1 Hz, 3 H), 1.41 (s, 18 H).
13C NMR (126 MHz, CDCl3): δ = 166.2, 155.5, 153.6, 149.0, 138.9, 135.8, 135.7, 134.2, 133.4, 131.0, 130.2, 129.3, 128.7, 128.6, 128.4, 128.3, 127.8, 125.8, 65.2, 61.0, 43.9, 34.3, 30.2, 14.3.
HRMS (ESI): m/z [M + NH4]+ calcd for C34H43N4O5: 587.3228; found: 587.3228.
#
4-((3,5-Di-tert-butyl-4-hydroxyphenyl)(phenyl)methyl)-2-(naphthalen-2-ylmethyl)-1,2,4-triazine-3,5(2H,4H)-dione (3ag)
Yield: 122 mg (89%); white solid; mp 75 °C.
1H NMR (500 MHz, CDCl3): δ = 8.29 (d, J = 8.4 Hz, 1 H), 7.90 (d, J = 8.1 Hz, 1 H), 7.85–7.81 (m, 1 H), 7.59 (t, J = 7.6 Hz, 1 H), 7.56–7.51 (m, 2 H), 7.45–7.42 (m, 2 H), 7.40–7.33 (m, 3 H), 7.29 (d, J = 6.6 Hz, 2 H), 7.14 (s, 2 H), 7.10 (s, 1 H), 5.71–5.62 (m, 2 H), 5.28 (s, 1 H), 1.42 (s, 18 H).
13C NMR (126 MHz, CDCl3): δ = 155.8, 153.6, 149.2, 138.9, 135.8, 134.2, 133.8, 131.3, 130.3, 128.8, 128.7, 128.6, 128.49, 128.45, 127.8, 126.5, 125.9, 125.8, 125.7, 125.2, 123.3, 65.2, 41.8, 34.3, 30.2.
HRMS (ESI): m/z [M + NH4]+ calcd for C35H41N4O3: 565.3173; found: 565.3159.
#
2-Allyl-4-((3,5-di-tert-butyl-4-hydroxyphenyl)(phenyl)methyl)-1,2,4-triazine-3,5(2H,4H)-dione (3ah)
Yield: 96 mg (86%); white solid; mp 48 °C.
1H NMR (400 MHz, CDCl3): δ = 7.44 (s, 1 H), 7.37–7.34 (m, 1 H), 7.33–7.27 (m, 2 H), 7.25–7.22 (m, 2 H), 7.12 (s, 2 H), 7.03 (s, 1 H), 5.94–5.82 (m, 1 H), 5.33–5.27 (m, 1 H), 5.26 (s, 1 H), 5.25–5.22 (m, 1 H), 4.55 (d, J = 6.0 Hz, 2 H), 1.39 (s, 18 H).
13C NMR (101 MHz, CDCl3): δ = 155.3, 153.7, 148.8, 139.0, 135.9, 134.2, 130.3, 128.7, 128.5, 128.4, 127.8, 125.9, 119.2, 65.1, 43.0, 34.4, 30.3.
HRMS (ESI): m/z [M + NH4]+ calcd for C27H37N4O3: 465.2860; found: 465.2862.
#
Ethyl 2-(4-((3,5-Di-tert-butyl-4-hydroxyphenyl)(phenyl)methyl)-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H)-yl)acetate (3ai)
Yield: 101 mg (82%); white solid; mp 55 °C.
1H NMR (400 MHz, CDCl3): δ = 7.48 (s, 1 H), 7.36–7.33 (m, 1 H), 7.33–7.31 (m, 1 H), 7.31–7.27 (m, 1 H), 7.24–7.23 (m, 1 H), 7.22–7.19 (m, 1 H), 7.12 (s, 2 H), 7.01 (s, 1 H), 5.25 (s, 1 H), 4.72–4.62 (m, 2 H), 4.22 (q, J = 7.1 Hz, 2 H), 1.39 (s, 18 H), 1.26 (t, J = 7.2 Hz, 3 H).
13C NMR (101 MHz, CDCl3): δ = 166.5, 155.0, 153.7, 148.7, 138.9, 135.9, 134.1, 128.6, 128.5, 128.2, 127.8, 125.9, 65.4, 62.0, 41.5, 34.4, 30.3, 14.1.
HRMS (ESI): m/z [M + NH4]+ calcd for C28H39N4O5: 511.2915; found: 511.2925.
#
(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl 4-((4-((3,5-Di-tert-butyl-4-hydroxyphenyl)(phenyl)methyl)-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H)-yl)methyl)benzoate (3aj)
Yield: 158 mg (93%); white solid; mp 54 °C.
1H NMR (400 MHz, CDCl3): δ = 8.01–7.96 (m, 2 H), 7.53–7.48 (m, 2 H), 7.45 (d, J = 1.1 Hz, 1 H), 7.36–7.27 (m, 3 H), 7.24–7.20 (m, 2 H), 7.08 (s, 2 H), 5.25 (s, 1 H), 5.14 (s, 2 H), 4.94–4.87 (m, 1 H), 2.13–2.05 (m, 1 H), 1.97–1.87 (m, 1 H), 1.74–1.69 (m, 2 H), 1.59 (s, 1 H), 1.58–1.49 (m, 2 H), 1.44 (s, 2 H), 1.37 (s, 18 H), 0.91 (d, J = 7.0 Hz, 3 H), 0.89 (d, J = 7.0 Hz, 3 H), 0.76 (d, J = 6.9 Hz, 3 H).
13C NMR (101 MHz, CDCl3): δ = 165.7, 153.7, 140.1, 138.8, 135.9, 134.3, 134.2, 130.6, 130.0, 129.1, 129.0, 128.7, 128.5, 128.3, 127.9, 125.8, 74.9, 65.37, 65.35, 47.3, 43.9, 41.0, 34.4, 31.5, 30.2, 26.5, 23.6, 22.1, 20.8, 16.5.
HRMS (ESI): m/z [M + NH4]+ calcd for C42H57N4O5: 697.4323; found: 697.4340.
#
(1R,2R,4R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-yl 4-((4-((S)-(3,5-Di-tert-butyl-4-hydroxyphenyl)(phenyl)methyl)-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H)-yl)methyl)benzoate (3ak)
Yield: 127 mg (75%); white solid; mp 84 °C.
1H NMR (400 MHz, CDCl3): δ = 7.99 (d, J = 8.2 Hz, 2 H), 7.52 (d, J = 8.2 Hz, 2 H), 7.47 (s, 1 H), 7.36–7.30 (m, 3 H), 7.23 (d, J = 7.0 Hz, 2 H), 7.10 (s, 2 H), 7.03 (s, 1 H), 5.26 (s, 1 H), 5.16 (s, 2 H), 5.10 (t, J = 7.0 Hz, 1 H), 4.40–4.31 (m, 2 H), 2.09–1.93 (m, 2 H), 1.84–1.78 (m, 1 H), 1.68 (s, 3 H), 1.66–1.62 (m, 1 H), 1.61 (s, 3 H), 1.60–1.51 (m, 1 H), 1.39 (s, 18 H), 1.32–1.17 (m, 2 H), 0.97 (d, J = 6.6 Hz, 3 H).
13C NMR (101 MHz, CDCl3): δ = 165.7, 155.4, 153.7, 149.0, 140.2, 138.8, 135.9, 134.2, 130.7, 129.9, 129.0, 128.7, 128.5, 128.4, 127.9, 125.7, 81.7, 65.3, 49.1, 47.1, 45.1, 43.9, 38.9, 34.4, 33.8, 30.2, 27.1, 20.2, 20.1, 11.6.
HRMS (ESI): m/z [M + NH4]+ calcd for C42H55N4O5: 695.4167; found: 695.4152.
#
3,7-Dimethyloct-6-en-1-yl 4-((4-((3,5-Di-tert-butyl-4-hydroxyphenyl)(phenyl)methyl)-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H)-yl)methyl)benzoate (3al)
Yield: 163 mg (96%); viscous liquid.
1H NMR (500 MHz, CDCl3): δ = 8.02 (d, J = 8.2 Hz, 2 H), 7.54 (d, J = 8.2 Hz, 2 H), 7.49 (s, 1 H), 7.39–7.32 (m, 3 H), 7.26 (d, J = 7.0 Hz, 2 H), 7.13 (s, 2 H), 7.06 (s, 1 H), 5.29 (s, 1 H), 5.18 (s, 2 H), 5.13 (t, J = 7.0 Hz, 1 H), 4.42–4.33 (m, 2 H), 2.12–1.96 (m, 2 H), 1.93–1.82 (m, 1 H), 1.70 (s, 3 H), 1.69–1.65 (m, 1 H), 1.63 (s, 3 H), 1.62–1.54 (m, 1 H), 1.41 (s, 18 H), 1.34–1.19 (m, 2 H), 0.99 (d, J = 6.6 Hz, 3 H).
13C NMR (126 MHz, CDCl3): δ = 166.2, 155.4, 153.7, 149.0, 140.2, 138.8, 135.9, 134.2, 131.4, 130.3, 129.9, 129.0, 128.6, 128.4, 128.3, 127.8, 125.7, 124.5, 65.3, 63.5, 43.8, 37.0, 35.5, 34.3, 30.2, 29.5, 25.7, 25.4, 19.5, 17.6.
HRMS (ESI): m/z [M + NH4]+ calcd for C42H57N4O5: 697.4323; found: 697.4301.
#
2-Benzyl-4-((3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)(phenyl)methyl)-1,2,4-triazine-3,5(2H,4H)-dione (4)
An solution of potassium ferricyanide (0.33 g, 1 mmol, 4.0 equiv) and potassium hydroxide (0.059 g, 1.05 mmol, 4.2 equiv) in H2O (1.25 mL) was added in one portion to a solution of 3aa (0.125 g, 0.25 mmol, 1.0 equiv) in hexane (1.25 mL). The resulting solution was stirred for 1 h under ambient conditions. After completion of the reaction, the aqueous layer was separated and extracted with hexanes. The combined organic layers were washed with brine and dried over anhydrous Na2SO4. The solids were removed by filtration, the filtrate was concentrated under vacuum and the residue was purified by silica gel flash column chromatography to afford the product 4.
Yield: 106 mg (86%), pale-yellow solid; mp 155 °C.
1H NMR (500 MHz, CDCl3): δ = 7.62 (s, 1 H), 7.53–7.48 (m, 3 H), 7.47–7.41 (m, 4 H), 7.35–7.32 (m, 3 H), 7.23 (d, J = 2.1 Hz, 1 H), 6.77 (d, J = 2.1 Hz, 1 H), 5.14 (s, 2 H), 1.25 (s, 9 H), 1.19 (s, 9 H).
13C NMR (126 MHz, CDCl3): δ = 186.0, 155.2, 149.9, 149.8, 148.1, 144.0, 135.6, 135.1, 134.6, 130.4, 130.2, 129.5, 129.3, 129.1, 128.7, 128.3, 126.6, 44.1, 35.5, 35.4, 29.4, 29.3.
HRMS (ESI): m/z [M + Na]+ calcd for C31H33N3NaO3: 518.2414; found: 518.2415
#
#
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
- Supporting information for this article is available online at https://doi-org.accesdistant.sorbonne-universite.fr/10.1055/a-2104-5943.
- Supporting Information
-
References
- 1a Weiner B, Szymański W, Janssen DB, Minnaard AJ, Feringa BL. Chem. Soc. Rev. 2010; 39: 1656
- 1b Bariwal J, Van der Eycken E. Chem. Soc. Rev. 2013; 42: 9283
- 1c Sánchez-Roselló M, Aceña JL, Simón-Fuentes A, Del Pozo C. Chem. Soc. Rev. 2014; 43: 7430
- 1d Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
- 2a Wang J.-Y, Hao W.-J, Tu S.-J, Jiang B. Org. Chem. Front. 2020; 7: 1743
- 2b Parra A, Tortosa M. ChemCatChem 2015; 7: 1524
- 2c Lima CG. S, Pauli FP, Costa DC. S, de Souza AS, Forezi LS. M, Ferreira VF, de Carvalho da Silva F. Eur. J. Org. Chem. 2020; 2650
- 3a Chu W.-D, Zhang L.-F, Bao X, Zhao X.-H, Zeng C, Du J.-Y, Zhang G.-B, Wang F.-X, Ma X.-Y, Fan C.-A. Angew. Chem. Int. Ed. 2013; 52: 9229
- 3b Caruana L, Kniep F, Johansen TK, Poulsen PH, Jørgensen KA. J. Am. Chem. Soc. 2014; 136: 15929
- 3c Ramanjaneyulu BT, Mahesh S, Anand RV. Org. Lett. 2015; 17: 3952
- 3d Wang Z, Wong YF, Sun J. Angew. Chem. Int. Ed. 2015; 54: 13711
- 3e Deng Y.-H, Zhang X.-Z, Yu K.-Y, Yan X, Du J.-Y, Huang H, Fan C.-A. Chem. Commun. 2016; 52: 4183
- 3f Ge L, Lu X, Cheng C, Chen J, Cao W, Wu X, Zhao G. J. Org. Chem. 2016; 81: 9315
- 3g Ma C, Huang Y, Zhao Y. ACS Catal. 2016; 6: 6408
- 3h Zhang X.-Z, Deng Y.-H, Yan X, Yu K.-Y, Wang F.-X, Ma X.-Y, Fan C.-A. J. Org. Chem. 2016; 81: 5655
- 3i Zhao K, Zhi Y, Shu T, Valkonen A, Rissanen K, Enders D. Angew. Chem. Int. Ed. 2016; 55: 12104
- 3j Goswami P, Singh G, Vijaya Anand R. Org. Lett. 2017; 19: 1982
- 3k Kang T.-C, Wu L.-P, Yu Q.-W, Wu X.-Y. Chem. Eur. J. 2017; 23: 6509
- 3l Li S, Liu Y, Huang B, Zhou T, Tao H, Xiao Y, Liu L, Zhang J. ACS Catal. 2017; 7: 2805
- 3m Liao J.-Y, Ni Q, Zhao Y. Org. Lett. 2017; 19: 4074
- 3n Zhou T, Li S, Huang B, Li C, Zhao Y, Chen J, Chen A, Xiao Y, Liu L, Zhang J. Org. Biomol. Chem. 2017; 15: 4941
- 3o Goswami P, Sharma S, Singh G, Vijaya Anand R. J. Org. Chem. 2018; 83: 4213
- 3p Gupta AK, Ahamad S, Vaishanv NK, Kant R, Mohanan K. Org. Biomol. Chem. 2018; 16: 4623
- 3q Jadhav AS, Pankhade YA, Anand RV. J. Org. Chem. 2018; 83: 8596
- 3r Jadhav AS, Pankhade YA, Hazra R, Anand RV. J. Org. Chem. 2018; 83: 10107
- 3s Wang J, Pan X, Liu J, Zhao L, Zhi Y, Zhao K, Hu L. Org. Lett. 2018; 20: 5995
- 3t Kale SB, Jori PK, Thatikonda T, Gonnade RG, Das U. Org. Lett. 2019; 21: 7736
- 3u Singh G, Kumar S, Chowdhury A, Vijaya Anand R. J. Org. Chem. 2019; 84: 15978
- 3v Wang Y, Wang K, Cao W, Liu X, Feng X. Org. Lett. 2019; 21: 6063
- 4a Dong N, Zhang Z.-P, Xue X.-S, Li X, Cheng J.-P. Angew. Chem. Int. Ed. 2016; 55: 1460
- 4b Liu T, Liu J, Xia S, Meng J, Shen X, Zhu X, Chen W, Sun C, Cheng F. ACS Omega 2018; 3: 1409
- 4c Wu Q.-Y, Ao G.-Z, Liu F. Org. Chem. Front. 2018; 5: 2061
- 4d Dai L, Yu Q, Zhang J, Wu F, Wang C, Zhang J, Rong L. J. Org. Chem. 2021; 86: 10568
- 4e Xiong B, Xu S, Liu Y, Tang K.-W, Wong W.-Y. J. Org. Chem. 2021; 86: 1516
- 5 Aher YN, Pawar AB. Org. Biomol. Chem. 2019; 17: 7536
- 6a Lou Y, Cao P, Jia T, Zhang Y, Wang M, Liao J. Angew. Chem. Int. Ed. 2015; 54: 12134
- 6b Jarava-Barrera C, Parra A, López A, Cruz-Acosta F, Collado-Sanz D, Cárdenas DJ, Tortosa M. ACS Catal. 2016; 6: 442
- 6c Huang GB, Huang WH, Guo J, Xu DL, Qu XC, Zhai PH, Zheng XH, Weng J, Lu G. Adv. Synth. Catal. 2019; 361: 1241
- 6d Li X, Gao G, He S, Song Q. Org. Chem. Front. 2021; 8: 4543
- 7 Li T, Wu Y, Duan W, Ma Y. RSC Adv. 2021; 11: 17860
- 8a Torán R, Vila C, Sanz-Marco A, Muñoz MC, Pedro JR, Blay G. Eur. J. Org. Chem. 2020; 627
- 8b Roy D, Panda G. Synthesis 2019; 51: 4434
- 8c Rai V, Kavyashree P, Harmalkar SS, Dhuri SN, Maddani MR. Org. Biomol. Chem. 2022; 20: 345
- 8d More SG, Rupanawar BD, Suryavanshi G. J. Org. Chem. 2021; 86: 10129
- 8e Guin S, Saha HK, Patel AK, Gudimella SK, Biswas S, Samanta S. Tetrahedron 2020; 76: 131338
- 8f Chen M, Sun J. Angew. Chem. Int. Ed. 2017; 56: 4583
- 9 Panda SP, Hota SK, Dash R, Roy L, Murarka S. Org. Lett. 2023; 25: 3739
- 10a Vanparijs O, Marsboom R, Desplenter L. Poult. Sci. 1989; 68: 489
- 10b Prabhakaran J, Parsey RV, Majo VJ, Hsiung S.-C, Milak MS, Tamir H, Simpson NR, Van Heertum RL, Mann JJ, Dileep Kumar JS. Bioorg. Med. Chem. Lett. 2006; 16: 2101
- 10c Miller MW, Mylari BL, Howes HL. Jr, Lynch JE, Lynch MJ, Koch RC. J. Med. Chem. 1979; 22: 1483
- 10d Liu J, Gong Y, Shi J, Hao X, Wang Y, Zhou Y, Hou Y, Liu Y, Ding S, Chen Y. Eur. J. Med. Chem. 2020; 194: 112244
- 10e Kumar JS. D, Majo VJ, Hsiung S.-C, Millak MS, Liu K.-P, Tamir H, Prabhakaran J, Simpson NR, Van Heertum RL, Mann JJ, Parsey RV. J. Med. Chem. 2006; 49: 125
- 10f Crance JM, Scaramozzino N, Jouan A, Garin D. Antiviral Res. 2003; 58: 73
- 11a Sun K, Shi A, Liu Y, Chen X, Xiang P, Wang X, Qu L, Yu B. Chem. Sci. 2022; 13: 5659
- 11b Hwang L.-C, Yang S.-Y, Chuang C.-L, Lee G.-H. Molecules 2017; 22: 1924
- 12 Kumar Parida S, Kumar Hota S, Jaiswal S, Singh P, Murarka S. Adv. Synth. Catal. 2022; 364: 1549
- 13a Parida SK, Jaiswal S, Singh P, Murarka S. Org. Lett. 2021; 23: 6401
- 13b Hota SK, Panda SP, Das S, Mahapatra SK, Roy L, De Sarkar S, Murarka S. J. Org. Chem. 2023; 88: 2543
- 13c Das S, Parida SK, Mandal T, Sing L, De Sarkar S, Murarka S. Chem. Asian J. 2020; 15: 568
- 13d Das S, Parida SK, Mandal T, Hota SK, Roy L, De Sarkar S, Murarka S. Org. Chem. Front. 2021; 8: 2256
- 13e Das S, Azim A, Hota SK, Panda SP, Murarka S, De Sarkar S. Chem. Commun. 2021; 57: 13130
Corresponding Author
Publication History
Received: 17 May 2023
Accepted after revision: 01 June 2023
Accepted Manuscript online:
01 June 2023
Article published online:
27 June 2023
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Weiner B, Szymański W, Janssen DB, Minnaard AJ, Feringa BL. Chem. Soc. Rev. 2010; 39: 1656
- 1b Bariwal J, Van der Eycken E. Chem. Soc. Rev. 2013; 42: 9283
- 1c Sánchez-Roselló M, Aceña JL, Simón-Fuentes A, Del Pozo C. Chem. Soc. Rev. 2014; 43: 7430
- 1d Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
- 2a Wang J.-Y, Hao W.-J, Tu S.-J, Jiang B. Org. Chem. Front. 2020; 7: 1743
- 2b Parra A, Tortosa M. ChemCatChem 2015; 7: 1524
- 2c Lima CG. S, Pauli FP, Costa DC. S, de Souza AS, Forezi LS. M, Ferreira VF, de Carvalho da Silva F. Eur. J. Org. Chem. 2020; 2650
- 3a Chu W.-D, Zhang L.-F, Bao X, Zhao X.-H, Zeng C, Du J.-Y, Zhang G.-B, Wang F.-X, Ma X.-Y, Fan C.-A. Angew. Chem. Int. Ed. 2013; 52: 9229
- 3b Caruana L, Kniep F, Johansen TK, Poulsen PH, Jørgensen KA. J. Am. Chem. Soc. 2014; 136: 15929
- 3c Ramanjaneyulu BT, Mahesh S, Anand RV. Org. Lett. 2015; 17: 3952
- 3d Wang Z, Wong YF, Sun J. Angew. Chem. Int. Ed. 2015; 54: 13711
- 3e Deng Y.-H, Zhang X.-Z, Yu K.-Y, Yan X, Du J.-Y, Huang H, Fan C.-A. Chem. Commun. 2016; 52: 4183
- 3f Ge L, Lu X, Cheng C, Chen J, Cao W, Wu X, Zhao G. J. Org. Chem. 2016; 81: 9315
- 3g Ma C, Huang Y, Zhao Y. ACS Catal. 2016; 6: 6408
- 3h Zhang X.-Z, Deng Y.-H, Yan X, Yu K.-Y, Wang F.-X, Ma X.-Y, Fan C.-A. J. Org. Chem. 2016; 81: 5655
- 3i Zhao K, Zhi Y, Shu T, Valkonen A, Rissanen K, Enders D. Angew. Chem. Int. Ed. 2016; 55: 12104
- 3j Goswami P, Singh G, Vijaya Anand R. Org. Lett. 2017; 19: 1982
- 3k Kang T.-C, Wu L.-P, Yu Q.-W, Wu X.-Y. Chem. Eur. J. 2017; 23: 6509
- 3l Li S, Liu Y, Huang B, Zhou T, Tao H, Xiao Y, Liu L, Zhang J. ACS Catal. 2017; 7: 2805
- 3m Liao J.-Y, Ni Q, Zhao Y. Org. Lett. 2017; 19: 4074
- 3n Zhou T, Li S, Huang B, Li C, Zhao Y, Chen J, Chen A, Xiao Y, Liu L, Zhang J. Org. Biomol. Chem. 2017; 15: 4941
- 3o Goswami P, Sharma S, Singh G, Vijaya Anand R. J. Org. Chem. 2018; 83: 4213
- 3p Gupta AK, Ahamad S, Vaishanv NK, Kant R, Mohanan K. Org. Biomol. Chem. 2018; 16: 4623
- 3q Jadhav AS, Pankhade YA, Anand RV. J. Org. Chem. 2018; 83: 8596
- 3r Jadhav AS, Pankhade YA, Hazra R, Anand RV. J. Org. Chem. 2018; 83: 10107
- 3s Wang J, Pan X, Liu J, Zhao L, Zhi Y, Zhao K, Hu L. Org. Lett. 2018; 20: 5995
- 3t Kale SB, Jori PK, Thatikonda T, Gonnade RG, Das U. Org. Lett. 2019; 21: 7736
- 3u Singh G, Kumar S, Chowdhury A, Vijaya Anand R. J. Org. Chem. 2019; 84: 15978
- 3v Wang Y, Wang K, Cao W, Liu X, Feng X. Org. Lett. 2019; 21: 6063
- 4a Dong N, Zhang Z.-P, Xue X.-S, Li X, Cheng J.-P. Angew. Chem. Int. Ed. 2016; 55: 1460
- 4b Liu T, Liu J, Xia S, Meng J, Shen X, Zhu X, Chen W, Sun C, Cheng F. ACS Omega 2018; 3: 1409
- 4c Wu Q.-Y, Ao G.-Z, Liu F. Org. Chem. Front. 2018; 5: 2061
- 4d Dai L, Yu Q, Zhang J, Wu F, Wang C, Zhang J, Rong L. J. Org. Chem. 2021; 86: 10568
- 4e Xiong B, Xu S, Liu Y, Tang K.-W, Wong W.-Y. J. Org. Chem. 2021; 86: 1516
- 5 Aher YN, Pawar AB. Org. Biomol. Chem. 2019; 17: 7536
- 6a Lou Y, Cao P, Jia T, Zhang Y, Wang M, Liao J. Angew. Chem. Int. Ed. 2015; 54: 12134
- 6b Jarava-Barrera C, Parra A, López A, Cruz-Acosta F, Collado-Sanz D, Cárdenas DJ, Tortosa M. ACS Catal. 2016; 6: 442
- 6c Huang GB, Huang WH, Guo J, Xu DL, Qu XC, Zhai PH, Zheng XH, Weng J, Lu G. Adv. Synth. Catal. 2019; 361: 1241
- 6d Li X, Gao G, He S, Song Q. Org. Chem. Front. 2021; 8: 4543
- 7 Li T, Wu Y, Duan W, Ma Y. RSC Adv. 2021; 11: 17860
- 8a Torán R, Vila C, Sanz-Marco A, Muñoz MC, Pedro JR, Blay G. Eur. J. Org. Chem. 2020; 627
- 8b Roy D, Panda G. Synthesis 2019; 51: 4434
- 8c Rai V, Kavyashree P, Harmalkar SS, Dhuri SN, Maddani MR. Org. Biomol. Chem. 2022; 20: 345
- 8d More SG, Rupanawar BD, Suryavanshi G. J. Org. Chem. 2021; 86: 10129
- 8e Guin S, Saha HK, Patel AK, Gudimella SK, Biswas S, Samanta S. Tetrahedron 2020; 76: 131338
- 8f Chen M, Sun J. Angew. Chem. Int. Ed. 2017; 56: 4583
- 9 Panda SP, Hota SK, Dash R, Roy L, Murarka S. Org. Lett. 2023; 25: 3739
- 10a Vanparijs O, Marsboom R, Desplenter L. Poult. Sci. 1989; 68: 489
- 10b Prabhakaran J, Parsey RV, Majo VJ, Hsiung S.-C, Milak MS, Tamir H, Simpson NR, Van Heertum RL, Mann JJ, Dileep Kumar JS. Bioorg. Med. Chem. Lett. 2006; 16: 2101
- 10c Miller MW, Mylari BL, Howes HL. Jr, Lynch JE, Lynch MJ, Koch RC. J. Med. Chem. 1979; 22: 1483
- 10d Liu J, Gong Y, Shi J, Hao X, Wang Y, Zhou Y, Hou Y, Liu Y, Ding S, Chen Y. Eur. J. Med. Chem. 2020; 194: 112244
- 10e Kumar JS. D, Majo VJ, Hsiung S.-C, Millak MS, Liu K.-P, Tamir H, Prabhakaran J, Simpson NR, Van Heertum RL, Mann JJ, Parsey RV. J. Med. Chem. 2006; 49: 125
- 10f Crance JM, Scaramozzino N, Jouan A, Garin D. Antiviral Res. 2003; 58: 73
- 11a Sun K, Shi A, Liu Y, Chen X, Xiang P, Wang X, Qu L, Yu B. Chem. Sci. 2022; 13: 5659
- 11b Hwang L.-C, Yang S.-Y, Chuang C.-L, Lee G.-H. Molecules 2017; 22: 1924
- 12 Kumar Parida S, Kumar Hota S, Jaiswal S, Singh P, Murarka S. Adv. Synth. Catal. 2022; 364: 1549
- 13a Parida SK, Jaiswal S, Singh P, Murarka S. Org. Lett. 2021; 23: 6401
- 13b Hota SK, Panda SP, Das S, Mahapatra SK, Roy L, De Sarkar S, Murarka S. J. Org. Chem. 2023; 88: 2543
- 13c Das S, Parida SK, Mandal T, Sing L, De Sarkar S, Murarka S. Chem. Asian J. 2020; 15: 568
- 13d Das S, Parida SK, Mandal T, Hota SK, Roy L, De Sarkar S, Murarka S. Org. Chem. Front. 2021; 8: 2256
- 13e Das S, Azim A, Hota SK, Panda SP, Murarka S, De Sarkar S. Chem. Commun. 2021; 57: 13130












