Subscribe to RSS
DOI: 10.1055/a-2030-6299
Migrative Thioamination of Aryne Intermediates Generated from o-Iodoaryl Triflates
The Japan Society for the Promotion of Science (JSPS KAKENHI Grant Number JP22H02086 (S.Y.)), the Uehara Memorial Foundation (S.Y.), the Tokuyama Science Foundation (S.Y.), the Ube Foundation (S.Y.), and the Inamori Foundation (S.Y.).
Abstract
Migrative thioamination of aryne intermediates takes place using various o-iodoaryl triflates and sulfilimines. The selective migration realizes the facile synthesis of a broad range of highly functionalized o-thioaminated diaryl sulfides. We succeeded in the ring expansion of cyclic sulfilimines enabling us to prepare eight- and nine-membered organosulfurs from dibenzothiophene- and thianthrene-type sulfilimines, respectively.
#
Organosulfur compounds having nitrogen functionalities are of great importance in broad research fields such as pharmaceutical sciences and materials chemistry. In particular, o-amino-substituted aromatic sulfides have played significant roles as bioactive compounds, organic materials, catalysis, and ligands for transition-metal complexes (Scheme [1]A).[1] For example, o-aminophenyl phenyl sulfide was synthesized by SNAr reaction of o-fluoronitrobenzene with thiols and subsequent reduction (Scheme [1]B).[2] Although the great significance of o-amino-substituted aromatic sulfides has promoted the development of efficient synthetic methods, it is not easy to prepare highly functionalized o-aminoaryl sulfides. Herein, we disclose a new method for the preparation of o-amino-substituted diaryl sulfides through aryne intermediates from o-iodoaryl triflates and sulfilimines with triethylsilane and cesium fluoride.
Aryne reactions have allowed us to access a wide variety of aromatic compounds bearing various functionalities since transformable functionalities including bromo group are tolerated under mild reaction conditions.[3] [4] [5] Previously, we developed a unique method to synthesize o-amino-substituted aromatic sulfides from o-silylaryl triflates and sulfilimines via aryne intermediates (Scheme [1]C).[6] Indeed, treatment of a mixture between o-silylaryl triflates and sulfilimines with potassium fluoride and 18-crown-6 provided o-amino-substituted diaryl sulfides through the formation of C–S and two C–N bonds and cleavage of S=N and C–S bonds. We proposed a plausible reaction mechanism of this transformation involving the nucleophilic attack of sulfilimines to arynes and ring closure followed by ring opening by the cleavage of S–N bond and subsequent migration of substituents at the sulfur atom to the nitrogen atom.[6] [7] A drawback of this transformation is the limited accessibility of o-silylaryl triflates used as aryne precursors owing to the difficulties in C–Si bond formation.[4] To address this issue, we conceived that a broad range of o-amino-substituted diaryl sulfides would be synthesized from o-iodoaryl triflates which are easily accessible aryne intermediates on the basis of our recent study. We recently found a new method to generate arynes from o-iodoaryl triflates under carbanion-free conditions using cesium fluoride and triethylsilane, realizing the synthesis of o-(phenylamino)phenyl sulfide (3a) from o-iodophenyl triflate (1a, Scheme [1]D).[8] In contrast, the thioamination did not proceed when activating o-iodophenyl triflate (1a) by (trimethylsilyl)methylmagnesium chloride[9] probably due to the basic conditions. In this study, we aimed to examine the generality of synthesizing o-amino-substituted diaryl sulfides based on the new method to generate arynes from easily available o-iodoaryl triflates (Scheme [1]E).


A wide range of aryne intermediates generated from the corresponding o-iodoaryl triflates were successfully thioaminated with sulfilimine 2a under the Et3SiH–CsF triggering conditions (Scheme [2]). Regioselective C–N and C–S bond formations took place when using 2-iodo-3-methoxyphenyl triflate as an aryne precursor to afford diaryl sulfide 3b in good yield. Highly functionalized diaryl sulfide 3c was synthesized by the thioamination of 3-(propargyloxy)benzyne[9a] without damaging terminal alkyne moiety. Also, 3-fluorobenzyne[10] participated in the o-amino-substituted diaryl sulfide synthesis, where we obtained sulfide 3d as a sole product and the regioisomer was not observed. Thioamination of a range of symmetric arynes generated from the corresponding o-iodoaryl triflates proceeded smoothly to furnish o-aminated diaryl sulfides 3e–g in moderate yields. It is worth noting that various hetarynes were successfully thioaminated with sulfilimines. Indeed, the o-aminated diaryl sulfide synthesis took place through benzofuran-,[11] benzothiazole-,[12] and dibenzofuran-type arynes[13] to afford a variety of functionalized fused heteroaromatic compounds 3h–j. Owing to the good accessibility of o-iodoaryl triflate type hetaryne precursors 1, these results showed a clear advantage over the previously reported synthetic method using o-silylaryl triflates.[8] [9] [10] [11] [12] [13]


We then examined the reaction between o-iodoaryl triflate 1b and symmetric sulfilimines 2b–e (Table [1]). The results showed that o-sulfanylated anilines 3k and 3l were synthesized, in which bromo and chloro groups were tolerated in the iodine activation by Et3SiH and CsF (entries 1 and 2). Electron-rich sulfilimines also reacted with 3-methoxybenzyne intermediate to provide sulfides 3m and 3n, albeit the thioaminated product 3n was obtained in low yield when using methoxy-substituted sulfilimine 2e (entries 3 and 4). In addition, regioisomers were not detected in the preparation of sulfides 3k–n.
![]() |
|||
Entry |
Sulfilimine |
Product |
Yield (%)a |
1 |
![]() 2b |
![]() 3k |
46 |
2 |
![]() 2c |
![]() 3l |
87 |
3 b |
![]() 2d |
![]() 3m |
51 |
4 |
![]() 2e |
![]() 3n |
25 |
a Isolated yields.
The thioamination of 3-methoxybenzyne with a range of unsymmetric diaryl sulfilimines 2 resulted in synthesizing o-aminated diaryl sulfides through selective migration of aryl groups (Table [2]). For example, sulfilimine 2f having phenyl and 2-nitrophenyl groups smoothly reacted with 3-methoxybenzyne to afford diaryl sulfide 3o in moderate yield, where electron-deficient 2-nitrophenylation of the amino group proceeded (entry 1). Unfortunately, 2-sulfanylaniline 3p was not obtained when using sulfilimine 2g bearing ketone moiety susceptible to hydride reduction (entry 2). The reaction of sulfilimine 2h bearing electron-deficient 2-bromo- and 2-nitrophenyl groups with 3-methoxybenzyne also smoothly proceeded to afford 2-sulfanylaniline 3q in good yield, where 2-nitrophenyl group was selectively migrated from sulfur to nitrogen and no regioisomer was observed (entry 3). In the case of thioamination with o-iodoaryl triflate 1b (1.5 equiv) and S-(4-methoxyphenyl) S-(4-tolyl) sulfilimine (2i, 1.0 equiv), 2-sulfanylaniline 3r was obtained in moderate yield via the migration of more electron-deficient 4-tolyl group than 4-methoxyphenyl group, in which o-iodoaryl triflate 1b (1.0 equiv) and sulfilimine 2i (1.5 equiv) were used (entry 4). Treatment of o-iodoaryl triflate 1b (3.0 equiv) with sulfilimine 2i (1.0 equiv) in the presence of triethylsilane and cesium fluoride furnished 2-sulfanylaniline 3s in moderate yield, which was produced by further N-arylation of thioaminated product 3r with 3-methoxybenzyne (entry 5). When using S-methyl S-phenyl sulfilimine, 2-sulfanylaniline 3t was not detected (entry 6).[6a] [7b]
A variety of tertiary amines 3u–z were synthesized by the thioamination with N-substituted sulfilimines 2 (Scheme [3]).[14] For instance, N-ethyl S,S-diphenyl sulfilimine efficiently reacted with 3-methoxybenzyne generated in situ from 1b to furnish 2-sulfanylaniline 3u through selective C–S and two C–N bond formations. Also, a range of tertiary amines 3v–x were prepared from 3-methoxybenzyne precursor 1b and sulfilimines bearing alkyl groups such as n-propyl, cyclohexylmethyl, and benzyl groups. Additionally, treating a mixture between aryne precursor 1b and N-phenyl- or N-4-chlorophenyl-substituted sulfilimine with triethylsilane and cesium fluoride afforded triaryl amine 3y or 3z, respectively, in moderate yields.


![]() |
|||
Entry |
Sulfilimine |
Product |
Yield (%)a |
1 |
![]() 2f |
![]() 3o |
45 |
2 |
![]() 2g |
![]() 3p |
n.d. |
3 |
![]() 2h |
![]() 3q |
54 |
4b |
![]() 2i |
![]() 3r |
50 |
5c |
![]() 2i |
![]() 3s |
56 |
6 |
![]() 2j |
![]() 3t |
n.d. |
a Isolated yields.
b Aryne precursor 1b (1.0 equiv), sulfilimine 2i (1.5 equiv), triethylsilane (4.5 equiv), and cesium fluoride (4.5 equiv) were used.
c Aryne precursor 1b (3.0 equiv), sulfilimine 2i (1.0 equiv), triethylsilane (16 equiv), and cesium fluoride (16 equiv) were used.
To showcase the thioamination of aryne intermediates, we succeeded in the construction of eight- and nine-membered-ring skeletons by ring expansion (Scheme [4]). Indeed, treatment of o-iodoaryl triflate 1b with sulfilimine 4 containing a five-membered ring under the Et3SiH–CsF triggering aryne generation conditions provided eight-membered-ring compound 5 in moderate yield (Scheme [4]A, upper).[6a] The ring expansion also took place when using thianthrene-type sulfilimine 6 with 3-methoxybenzyne to afford unique organosulfur compound 7 having a nine-membered ring (Scheme [4]A, lower).[15] A plausible reaction mechanism to form a nine-membered ring skeleton is shown in Scheme [4]B. First, sulfilimine 6 attacks 3-methoxybenzyne (I) followed by cyclization providing four-membered ring intermediate III. Then, ring-opening leading to zwitterionic intermediate IV, and subsequent rearrangement will result in the ring expansion to form the nine-membered-ring product. Since medium-ring organosulfurs are unexplored due to the limited synthetic methods, this new method to construct medium-ring organosulfur skeletons will be attractive for the development of bioactive compounds and organic materials in various research fields.


In summary, we have disclosed that a wide variety of o-aminated diaryl sulfides were synthesized from o-iodoaryl triflates and sulfilimines. Unique selectivities in the migrative thioamination of aryne intermediates enabled us to prepare diverse highly functionalized organosulfurs involving eight- and nine-membered heterocycles. Further studies such as applications in phenothiazine synthesis are ongoing in our laboratory.
#
Conflict of Interest
The authors declare no conflict of interest.
Acknowledgment
The authors thank Central Glass Co., Ltd. for providing Tf2O. The authors thank Dr. Yuki Sakata at Tokyo Medical and Dental University for HRMS analyses.
Supporting Information
- Supporting information for this article is available online at https://doi-org.accesdistant.sorbonne-universite.fr/10.1055/a-2030-6299.
- Supporting Information
-
References
- 1a Lai R, Kong X, Jenekhe S, Bard A. J. Am. Chem. Soc. 2003; 125: 12631
- 1b Weiss E, Tauber M, Kelley R, Ahrens M, Ratner M, Wasielewski M. J. Am. Chem. Soc. 2005; 127: 11842
- 1c Pluta K, Morak-Mlodawska B, Jelen M. Eur. J. Med. Chem. 2011; 46: 3179
- 1d Dai X, Feng H, Huang Z, Wang M, Wang L, Kuang D, Meier H, Cao D. Dyes Pigm. 2015; 114: 47
- 1e Xiang J, Zhang Z, Mu Y, Xu X, Guo S, Liu Y, Russo DP, Zhu H, Yan B, Bai X. ACS Comb. Sci. 2016; 18: 230
- 1f Feng M, Tang B, Liang SH, Jianga X. Curr. Top. Med. Chem. 2016; 16: 1200
- 1g Dao P, Ye F, Liu Y, Du ZY, Zhang K, Dong CZ, Meunier B, Chen H. ACS Chem. Neurosci. 2017; 8: 798
- 1h Krishna NV, Krishna JV. S, Singh SP, Giribabu L, Han L, Bedja I, Gupta RK, Islam A. J. Phys. Chem. C 2017; 121: 6464
- 1i Shibutani S, Kodo T, Takeda M, Nagao K, Tokunaga N, Sasaki Y, Ohmiya H. J. Am. Chem. Soc. 2020; 142: 1211
- 2 Beugelmans R, Chbani M. Bull. Soc. Chim. Fr. 1995; 132: 290
- 3 Modern Aryne Chemistry . Biju AT. Wiley-VCH; Weinheim: 2021
- 4a Tadross PM, Stoltz BM. Chem. Rev. 2012; 112: 3550
- 4b Bhunia A, Yetra SR, Biju AT. Chem. Soc. Rev. 2012; 41: 3140
- 4c Yoshida S, Hosoya T. Chem. Lett. 2015; 44: 1450
- 4d Goetz AE, Shah TK, Garg NK. Chem. Commun. 2015; 51: 34
- 4e Bhojgude SS, Bhunia A, Biju AT. Acc. Chem. Res. 2016; 49: 1658
- 4f García-López J.-A, Greaney MF. Chem. Soc. Rev. 2016; 45: 6766
- 4g Shi J, Li Y, Li Y. Chem. Soc. Rev. 2017; 46: 1707
- 4h Idiris FI. M, Jones CR. Org. Biomol. Chem. 2017; 15: 9044
- 4i Roy T, Biju A. Chem. Commun. 2018; 54: 2580
- 4j Yoshida S. Bull. Chem. Soc. Jpn. 2018; 91: 1293
- 4k Matsuzawa T, Yoshida S, Hosoya T. Tetrahedron Lett. 2018; 59: 4197
- 4l Takikawa H, Nishii A, Sakai T, Suzuki K. Chem. Soc. Rev. 2018; 47: 8030
- 4m Nakamura Y, Yoshida S, Hosoya T. Heterocycles 2019; 98: 1623
- 4n Werz DB, Biju AT. Angew. Chem. Int. Ed. 2020; 59: 3385
- 5a Mizukoshi Y, Mikami K, Uchiyama M. J. Am. Chem. Soc. 2015; 137: 74
- 5b García-López J.-A, Çetin M, Greaney MF. Angew. Chem. Int. Ed. 2015; 54: 2156
- 5c Nathel NF. F, Morrill LA, Mayr H, Garg NK. J. Am. Chem. Soc. 2016; 138: 10402
- 5d Umezu S, dos Passos Gomes G, Yoshinaga T, Sakae M, Matsumoto K, Iwata T, Alabugin I, Shindo M. Angew. Chem. Int. Ed. 2017; 56: 1298
- 5e Shi J, Xu H, Qiu D, He J, Li Y. J. Am. Chem. Soc. 2017; 139: 623
- 5f Kitamura T, Gondo K, Oyamada J. J. Am. Chem. Soc. 2017; 139: 8416
- 5g Zhou M, Ni C, Zeng Y, Hu J. J. Am. Chem. Soc. 2018; 140: 6801
- 5h Xiao X, Hoye TR. Nat. Chem. 2018; 10: 838
- 5i Mesgar M, Nguyen-Le J, Daugulis O. J. Am. Chem. Soc. 2018; 140: 13703
- 5j Gaykar RN, Guin A, Bhattacharjee S, Biju AT. Org. Lett. 2019; 21: 9613
- 5k Nishii A, Takikawa H, Suzuki K. Chem. Sci. 2019; 10: 3840
- 5l Tanaka H, Osaka I, Yoshida H. Chem. Lett. 2019; 48: 1032
- 5m Fujimoto H, Kusano M, Kodama T, Tobisu M. Org. Lett. 2020; 22: 2293
- 5n Haas TM, Wiesler S, Dürr-Mayer T, Ripp A, Fouka P, Qiu D, Jessen HJ. Angew. Chem. Int. Ed. 2022; 61: e202113231
- 5o Ikawa T, Yamamoto Y, Heguri A, Fukumoto Y, Murakami T, Takagi A, Masuda Y, Yahata K, Aoyama H, Shigeta Y, Tokiwa H, Akai S. J. Am. Chem. Soc. 2021; 143: 10853
- 5p Jančařík A, Holec J, Nagata Y, Šámal M, Gourdon A. Nat. Commun. 2022; 13: 223
- 6a Yoshida S, Yano T, Misawa Y, Sugimura Y, Igawa K, Shimizu S, Tomooka K, Hosoya T. J. Am. Chem. Soc. 2015; 137: 14071
- 6b Matsuzawa T, Hosoya T, Yoshida S. Org. Lett. 2021; 23: 2347
- 7a Yoshida S, Nakajima H, Uchida K, Yano T, Kondo M, Matsushita T, Hosoya T. Chem. Lett. 2017; 46: 77
- 7b Matsuzawa T, Uchida K, Yoshida S, Hosoya T. Chem. Lett. 2018; 47: 825
- 7c Matsuzawa T, Uchida K, Yoshida S, Hosoya T. Org. Lett. 2017; 19: 5521
- 8 Minoshima M, Uchida K, Nakamura Y, Hosoya T, Yoshida S. Org. Lett. 2021; 23: 1868
- 9a Yoshida S, Nonaka T, Morita T, Hosoya T. Org. Biomol. Chem. 2014; 12: 7489
- 9b Yoshida S, Uchida K, Hosoya T. Chem. Lett. 2015; 44: 691
- 10 Yoshida S, Nagai A, Uchida K, Hosoya T. Chem. Lett. 2017; 46: 733
- 11 Morita T, Nishiyama Y, Yoshida S, Hosoya T. Chem. Lett. 2017; 46: 118
- 12 Morita T, Yoshida S, Kondo M, Matsushita T, Hosoya T. Chem. Lett. 2017; 46: 81
- 13 Yoshida S, Yano T, Nishiyama Y, Misawa Y, Kondo M, Matsushita T, Igawa K, Tomooka K, Hosoya T. Chem. Commun. 2016; 52: 11199
- 14 Fujie T, Iseki T, Iso H, Imai Y, Tsukurimichi E, Yoshimura T. Synthesis 2008; 1565
- 15 Shin DH, Park JG, Lee SH, Kim DS, Moon SY, Lee GM. KR2022045583, 2022
For recent reviews on arynes, see:
For recent aryne chemistry, see:
Corresponding Author
Publication History
Received: 17 January 2023
Accepted after revision: 08 February 2023
Accepted Manuscript online:
08 February 2023
Article published online:
10 March 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Lai R, Kong X, Jenekhe S, Bard A. J. Am. Chem. Soc. 2003; 125: 12631
- 1b Weiss E, Tauber M, Kelley R, Ahrens M, Ratner M, Wasielewski M. J. Am. Chem. Soc. 2005; 127: 11842
- 1c Pluta K, Morak-Mlodawska B, Jelen M. Eur. J. Med. Chem. 2011; 46: 3179
- 1d Dai X, Feng H, Huang Z, Wang M, Wang L, Kuang D, Meier H, Cao D. Dyes Pigm. 2015; 114: 47
- 1e Xiang J, Zhang Z, Mu Y, Xu X, Guo S, Liu Y, Russo DP, Zhu H, Yan B, Bai X. ACS Comb. Sci. 2016; 18: 230
- 1f Feng M, Tang B, Liang SH, Jianga X. Curr. Top. Med. Chem. 2016; 16: 1200
- 1g Dao P, Ye F, Liu Y, Du ZY, Zhang K, Dong CZ, Meunier B, Chen H. ACS Chem. Neurosci. 2017; 8: 798
- 1h Krishna NV, Krishna JV. S, Singh SP, Giribabu L, Han L, Bedja I, Gupta RK, Islam A. J. Phys. Chem. C 2017; 121: 6464
- 1i Shibutani S, Kodo T, Takeda M, Nagao K, Tokunaga N, Sasaki Y, Ohmiya H. J. Am. Chem. Soc. 2020; 142: 1211
- 2 Beugelmans R, Chbani M. Bull. Soc. Chim. Fr. 1995; 132: 290
- 3 Modern Aryne Chemistry . Biju AT. Wiley-VCH; Weinheim: 2021
- 4a Tadross PM, Stoltz BM. Chem. Rev. 2012; 112: 3550
- 4b Bhunia A, Yetra SR, Biju AT. Chem. Soc. Rev. 2012; 41: 3140
- 4c Yoshida S, Hosoya T. Chem. Lett. 2015; 44: 1450
- 4d Goetz AE, Shah TK, Garg NK. Chem. Commun. 2015; 51: 34
- 4e Bhojgude SS, Bhunia A, Biju AT. Acc. Chem. Res. 2016; 49: 1658
- 4f García-López J.-A, Greaney MF. Chem. Soc. Rev. 2016; 45: 6766
- 4g Shi J, Li Y, Li Y. Chem. Soc. Rev. 2017; 46: 1707
- 4h Idiris FI. M, Jones CR. Org. Biomol. Chem. 2017; 15: 9044
- 4i Roy T, Biju A. Chem. Commun. 2018; 54: 2580
- 4j Yoshida S. Bull. Chem. Soc. Jpn. 2018; 91: 1293
- 4k Matsuzawa T, Yoshida S, Hosoya T. Tetrahedron Lett. 2018; 59: 4197
- 4l Takikawa H, Nishii A, Sakai T, Suzuki K. Chem. Soc. Rev. 2018; 47: 8030
- 4m Nakamura Y, Yoshida S, Hosoya T. Heterocycles 2019; 98: 1623
- 4n Werz DB, Biju AT. Angew. Chem. Int. Ed. 2020; 59: 3385
- 5a Mizukoshi Y, Mikami K, Uchiyama M. J. Am. Chem. Soc. 2015; 137: 74
- 5b García-López J.-A, Çetin M, Greaney MF. Angew. Chem. Int. Ed. 2015; 54: 2156
- 5c Nathel NF. F, Morrill LA, Mayr H, Garg NK. J. Am. Chem. Soc. 2016; 138: 10402
- 5d Umezu S, dos Passos Gomes G, Yoshinaga T, Sakae M, Matsumoto K, Iwata T, Alabugin I, Shindo M. Angew. Chem. Int. Ed. 2017; 56: 1298
- 5e Shi J, Xu H, Qiu D, He J, Li Y. J. Am. Chem. Soc. 2017; 139: 623
- 5f Kitamura T, Gondo K, Oyamada J. J. Am. Chem. Soc. 2017; 139: 8416
- 5g Zhou M, Ni C, Zeng Y, Hu J. J. Am. Chem. Soc. 2018; 140: 6801
- 5h Xiao X, Hoye TR. Nat. Chem. 2018; 10: 838
- 5i Mesgar M, Nguyen-Le J, Daugulis O. J. Am. Chem. Soc. 2018; 140: 13703
- 5j Gaykar RN, Guin A, Bhattacharjee S, Biju AT. Org. Lett. 2019; 21: 9613
- 5k Nishii A, Takikawa H, Suzuki K. Chem. Sci. 2019; 10: 3840
- 5l Tanaka H, Osaka I, Yoshida H. Chem. Lett. 2019; 48: 1032
- 5m Fujimoto H, Kusano M, Kodama T, Tobisu M. Org. Lett. 2020; 22: 2293
- 5n Haas TM, Wiesler S, Dürr-Mayer T, Ripp A, Fouka P, Qiu D, Jessen HJ. Angew. Chem. Int. Ed. 2022; 61: e202113231
- 5o Ikawa T, Yamamoto Y, Heguri A, Fukumoto Y, Murakami T, Takagi A, Masuda Y, Yahata K, Aoyama H, Shigeta Y, Tokiwa H, Akai S. J. Am. Chem. Soc. 2021; 143: 10853
- 5p Jančařík A, Holec J, Nagata Y, Šámal M, Gourdon A. Nat. Commun. 2022; 13: 223
- 6a Yoshida S, Yano T, Misawa Y, Sugimura Y, Igawa K, Shimizu S, Tomooka K, Hosoya T. J. Am. Chem. Soc. 2015; 137: 14071
- 6b Matsuzawa T, Hosoya T, Yoshida S. Org. Lett. 2021; 23: 2347
- 7a Yoshida S, Nakajima H, Uchida K, Yano T, Kondo M, Matsushita T, Hosoya T. Chem. Lett. 2017; 46: 77
- 7b Matsuzawa T, Uchida K, Yoshida S, Hosoya T. Chem. Lett. 2018; 47: 825
- 7c Matsuzawa T, Uchida K, Yoshida S, Hosoya T. Org. Lett. 2017; 19: 5521
- 8 Minoshima M, Uchida K, Nakamura Y, Hosoya T, Yoshida S. Org. Lett. 2021; 23: 1868
- 9a Yoshida S, Nonaka T, Morita T, Hosoya T. Org. Biomol. Chem. 2014; 12: 7489
- 9b Yoshida S, Uchida K, Hosoya T. Chem. Lett. 2015; 44: 691
- 10 Yoshida S, Nagai A, Uchida K, Hosoya T. Chem. Lett. 2017; 46: 733
- 11 Morita T, Nishiyama Y, Yoshida S, Hosoya T. Chem. Lett. 2017; 46: 118
- 12 Morita T, Yoshida S, Kondo M, Matsushita T, Hosoya T. Chem. Lett. 2017; 46: 81
- 13 Yoshida S, Yano T, Nishiyama Y, Misawa Y, Kondo M, Matsushita T, Igawa K, Tomooka K, Hosoya T. Chem. Commun. 2016; 52: 11199
- 14 Fujie T, Iseki T, Iso H, Imai Y, Tsukurimichi E, Yoshimura T. Synthesis 2008; 1565
- 15 Shin DH, Park JG, Lee SH, Kim DS, Moon SY, Lee GM. KR2022045583, 2022
For recent reviews on arynes, see:
For recent aryne chemistry, see:





























