Subscribe to RSS
DOI: 10.1055/a-1892-4443
Palladium-Catalyzed Stereospecific Coupling of BINOL-bistriflates and Zinc Cyanide and Applications in the Synthesis of 1,1′-Binaphthyl-2,2′-bisoxazolines (BOXAX)
We thank the National Natural Science Foundation of China (21971198), the Natural Science Foundation of Hubei Province (2020CFA036), the Fundamental Research Funds for the Central Universities (2042021kf0193), and Guangdong Basic and Applied Basic Research Foundation (2022A1515012614) for financial support.
Abstract
A palladium-catalyzed synthesis of enantiopure [1,1′-binaphthalene]-2,2′-dicarbonitriles from BINOL-bistriflates and zinc cyanide is reported. This cross-coupling reaction employs a 0.1–5 mol% catalyst loading, and is scalable and stereospecific. The synthetic applications of this reaction are demonstrated by product derivatizations and the synthesis of [1,1′-binaphthalene]-2,2′-bisoxazolines (BOXAX).
#
Key words
atropchiral compounds - palladium - cyanation - cross-coupling - stereospecific - chiral ligandAtropchiral compounds are ubiquitous in the areas of natural products, pharmaceuticals, and asymmetric catalysis.[1] [2] In particular, 1,1′-binaphthalene is one of the most important axially chiral scaffolds, being widely used as catalysts/ligands and chirality induction units in helical materials.[3–5] As a result of their ready availability and configurational stability toward racemization, enantiopure 1,1′-bi-2-naphthol (BINOL) derivatives, most commonly BINOL-bistriflates 1, are often used as starting materials to access 1,1′-binaphthalene-based ligands or their precursors.[6]
[1,1′-Binaphthalene]-2,2′-dicarbonitriles 2 are easily converted into the corresponding dicarboxylic acids,[7] dialdehydes,[7] diamines,[8] bisoxazolines,[9] etc., allowing the downstream synthesis of C 2-symmetric ligands.[10] The development of synthetic approaches to 2a is appealing, however, only limited examples have been revealed (Scheme [1]).[10d] , [11] [12] [13] For instance, Putala’s group have reported a Pd-catalyzed cross-coupling of zinc cyanide and (S)-2,2′-dihalogeno-1,1′-binaphthalenes, achieving a 94% yield (eq. 1).[7] Hagiwara’s group have also demonstrated the synthesis of 2a from [1,1′-binaphthalene]-2,2′-dicarboxylic acid through amide formation and dehydration (eq. 2).[10d] [12a] Recently, Kang and co-workers reported an elegant t BuONO–AlCl3 system for the synthesis of dinitrile 2a from enantioenriched 2,2′-dimethyl-1,1′-binaphthalene (eq. 3).[12b] [c] However, the substrates employed in these methods require multiple-step syntheses, which is tedious and time consuming, especially for large-scale preparations. Moreover, the erosion of the enantioselectivity during the above-mentioned transformations, even slightly (e.g., from >96% to 92% ee, eq. 1, and from >99% to 93% ee), would be problematic for the synthesis of enantiopure chiral ligands. Therefore, the development of a stereospecific method capable of straightforwardly converting BINOL-bistriflates into [1,1′-binaphthalene]-2,2′-dicarbonitriles is of practical importance in terms of cost effectiveness. It should be noted that Ikariya et al. reported a nickel-catalyzed stereospecific cyanation of BINOL-bistriflates, albeit toxic potassium cyanide was employed (eq. 4).[8a] Herein, we report a palladium-catalyzed cross-coupling of BINOL-bistriflates 1 and zinc cyanide to construct axially chiral dinitriles 2.[8b] This stereospecific method features a low catalyst loading, uses a less toxic cyanide source, and can be performed on multigram scale.


Our study began with an investigation of the palladium-catalyzed cyanation reaction conditions using [1,1′-binaphthalene]-2,2′-diyl bis(trifluoromethanesulfonate) (1a) as a model substrate (see Tables S1–S3 in the Supporting Information). As highlighted in Table [1], the catalyst derived from Pd(OAc)2 (10 mol%) and 1,3-bis(diphenylphosphino)propane (dppp) (20 mol%) in DMF furnished the desired product 2a in an excellent yield with complete retention of the configuration (entry 1, >95% yield, ee >99%). The reaction using the monophosphine PPh3 resulted in a decreased yield (entry 2, 88%). Next, bisphosphine ligands, including dppf, dppm, XantPhos, (rac)-BINAP, dppe, etc., were investigated (entries 3–5 and Table S1). Although all these ligands provided perfect stereoselectivity, the yield was not improved in comparison with dppp; however, XantPhos delivered a similar result. Interestingly, nickel catalysts also enabled the cross-coupling reaction, albeit affording low yields (entries 6 and 7).[8a] On decreasing the catalyst loading from 10 mol% to 0.1 mol%, no decline in the yield was observed (entry 8). Further investigations led to identification of the optimum reaction conditions as follows: Pd(OAc)2 (0.1 mol%), dppp (0.2 mol%), Zn(CN)2 (1.5 equiv) in DMF at 120 ℃ (entry 9).
a The reactions were conducted with 1a (0.5 mmol), Pd(OAc)2 (10 mol%), ligand (20 mol% for bisphosphine ligands and 40 mol% for monophosphine ligands) and Zn(CN)2 (2.5 mmol) in DMF (1 mL) at 120 °C for 48 h; dppp = 1,3-bis(diphenylphosphino)propane, XantPhos = (9,9-dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphane), (rac)-BINAP = 2,2′-bis(diphenylphosphaneyl)-1,1′-binaphthalene, dppe = 1,2-bis(diphenylphosphino)ethane.
b Isolated yield of 2a.
c Determined by HPLC (Chiralpak AD-H).
d Without any ligand.
e Zn(CN)2 (1.5 equiv) was used.
With optimum reaction conditions established, we next investigated the substrate scope by employing an array of substituted BINOL-bistriflates (Scheme [2]). It should be noted that the catalyst loading varied from 0.1–5 mol% depending on the substrates, as detailed in Scheme [2]. Bistriflates with 6,6′-dimethyl (1b) and difluoro (1c) substituents on the BINOL skeleton provided the corresponding dinitriles 2b and 2c in 94% and 97% yields, respectively. 6,6′-Diaryl and diheteroaryl substituents, including phenyl, p-methylphenyl, 2-furanyl, 2-thienyl, and 3-thienyl were subjected to the reaction conditions, and the corresponding products 2d–h were obtained in excellent yields of 92–98%. We then turned our attention to the steric effect of the substrates. The reactions with 3,3′-dimethyl (1i) and 3,3′-difluoro (1j) substituents were sluggish, but we were able to isolate the corresponding products 2i and 2j in 94% and 76% yields by increasing the catalyst loading to 5 mol% and the temperature to 140 °C, whilst also prolonging the reaction time. Unfortunately, 3,3′-diphenyl-substituted BINOL bistriflate 1k was not tolerated by this method. Finally, octahydro[1,1′-binaphthalene]-2,2′-diyl bistriflate 1l was a feasible substrate, providing product 2l in 95% yield.


A scale-up reaction and downstream transformations were carried out to demonstrate the utility of this strategy (Scheme [3]). With a 2.0 mol% catalyst loading, the gram-scale reaction of 1a delivered 6.70 g of 2a in quantitative yield. Selective reduction of the cyano groups of 2a formed the corresponding aldehyde 3a in 90% yield, whilst hydration of 2a provided the corresponding amide 4a in 78% yield.[14] A nickel-catalyzed [2+2+2] cycloaddition of 2a and dimethyl 2,2-di(but-2-yn-1-yl)malonate resulted in the formation of bispyridine 5a in 45% yield.[15]


Axially chiral C 2-symmetric bisoxazolines have previously been reported as bidentate ligands in stereoselective transition-metal catalysis.[16] We therefore sought to further showcase the application of our strategy by synthesizing a variety of enantiomerically pure 1,1′-binaphthyl-2,2′-bisoxazolines (BOXAX) using 2a as a key substrate (Scheme [4]). To our delight, the single-step condensation of dinitrile 2a with different amino alcohols promoted by zinc triflate formed the desired bisoxazolines 6 in yields of 34–82%. Thus, our protocol offers an efficient and practical alternative to the present synthetic approaches toward BOXAX ligands.


In conclusion, we have developed a palladium-catalyzed cross-coupling of BINOL-bistriflates and zinc cyanide for the synthesis of [1,1′-binaphthalene]-2,2′-dicarbonitrile derivatives. This method features low loading catalyst, readily available starting materials, and stereospecific selectivity enabling complete retention of the axial chirality. The application of this strategy is showcased by derivatizations of the nitrile functional group and the synthesis of BOXAX ligands. Given its scalability and efficiency, we anticipate that this cross-coupling reaction will provide more opportunities for the development of novel chiral ligands.
#
Conflict of Interest
The authors declare no conflict of interest.
Acknowledgment
The Core Research Facilities of CCMS (WHU) are acknowledged for providing access to analytical equipment.
Supporting Information
- Supporting information for this article is available online at https://doi-org.accesdistant.sorbonne-universite.fr/10.1055/a-1892-4443.
- Supporting Information
-
References
- 1a Takaya H, Mashima K, Koyano K, Yagi M, Kumobayashi H, Taketomi T, Akutagawa S, Noyori R. J. Org. Chem. 1986; 51: 629
- 1b Clayden J, Moran WJ, Edwards PJ, LaPlante SR. Angew. Chem. Int. Ed. 2009; 48: 6398
- 1c LaPlante SR, Edwards PJ, Fader LD, Jakalian A, Hucke O. ChemMedChem 2011; 6: 505
- 1d Zask A, Murphy J, Ellestad GA. Chirality 2013; 25: 265
- 1e Smyth JE, Butler NM, Keller PA. Nat. Prod. Rep. 2015; 32: 1562
- 1f Bringmann G, Gulder T, Gulder TA. M, Breuning M. Chem. Rev. 2011; 111: 563
- 2a McCormick MH, Stark WM, Pittenger GE, Pittenger RC, McGuire JM. Antibiot. Annu. 1955; 3: 606
- 2b Hallock YF, Manfredi KP, Blunt JW, Cardellina JH. II, Schaeffer M, Gulden K.-P, Bringmann G, Lee A.-Y, Clardy J. J. Org. Chem. 1994; 59: 6349
- 2c Bringmann G, Menche D. Acc. Chem. Res. 2001; 34: 615
- 2d Hughes CC, Kauffman CA, Jensen PR, Fenical W. J. Org. Chem. 2010; 75: 3240
- 2e Kupchan SM, Britton RW, Ziegler MF, Gilmore CJ, Restivo RJ, Bryan RF. J. Am. Chem. Soc. 1973; 95: 1335
- 2f Zuo Z, Kim RS, Watson DA. J. Am. Chem. Soc. 2021; 143: 1328
- 2g Zhao K, Yang S, Gong Q, Duan L, Gu Z. Angew. Chem. Int. Ed. 2021; 60: 5788
- 3a Pu L. Chem. Rev. 1998; 98: 2405
- 3b Chen Y, Yekta S, Yudin AK. Chem. Rev. 2003; 103: 3155
- 3c Kočovský P, Vyskočil Š, Smrčina M. Chem. Rev. 2003; 103: 3213
- 3d Brunel JM. Chem. Rev. 2005; 105: 857
- 3e Ding K, Li X, Ji B, Guo H, Kitamura M. Curr. Org. Synth. 2005; 2: 499
- 3f Ding K, Guo H, Li X, Yuan Y, Wang Y. Top Catal. 2005; 35: 105
- 3g Jiang Y.-Q, Shi Y.-L, Shi M. J. Am. Chem. Soc. 2008; 130: 7202
- 4a Zhang J.-W, Jiang F, Chen Y.-H, Xiang S.-H, Tan B. Sci. China Chem. 2021; 64: 1515
- 4b Verga D, Nadai M, Doria F, Percivalle C, Antonio MD, Palumbo M, Richter SN, Freccero M. J. Am. Chem. Soc. 2010; 132: 14625
- 4c Yu H.-B, Hu Q.-S, Pu L. J. Am. Chem. Soc. 2000; 122: 6500
- 4d Verga D, Percivalle C, Doria F, Porta A, Freccero M. J. Org. Chem. 2011; 76: 2319
- 5a Mandai H, Yasuhara H, Fujii K, Shimomura Y, Mitsudo K, Suga S. J. Org. Chem. 2017; 82: 6846
- 5b Pu L. Acc. Chem. Res. 2012; 45: 150
- 5c Cui Y, Lee SJ, Lin W. J. Am. Chem. Soc. 2003; 125: 6014
- 5d Takaishi K, Yasui M, Ema T. J. Am. Chem. Soc. 2018; 140: 5334
- 5e Weber E, Csóregh I, Stensl B, Czugler M. J. Am. Chem. Soc. 1984; 106: 3297
- 6a Cai D, Payack JF, Bender DR, Hughes DL, Verhoeven TR, Reider PJ. Org. Synth. 1999; 76: 6
- 6b Noboru S, Zhang X. EP 0071812A1 1997
- 7 Kasák P, Putala M. Collect. Czech. Chem. Commun. 2000; 65: 729
- 8a Sato Y, Kawata Y, Yasui S, Kayaki Y, Ikariya T. Molecules 2021; 26: 1165
- 8b For an example of Pd-catalyzed cyanation of SPINOL-OTf with zinc cyanide, see: Liu B, Zhu S.-F, Wang L.-X, Zhou Q.-L. Tetrahedron: Asymmetry 2006; 17: 634
- 9a Connon R, Roche B, Rokade BV, Guiry PJ. Chem. Rev. 2021; 121: 6373
- 9b Desimoni G, Faita G, Jørgensen KA. Chem. Rev. 2011; 111: PR284
- 9c Zhang J.-M, Zhang Y.-J, Zhang W.-B. Chin. J. Org. Chem. 2007; 27: 1087
- 10a Grachev VT, Zaitsev BE, Itskovich ÉM, Chayanov BA, Nefedov VA, Pol’skikh ÉD, Dyumaev KM. J. Struct. Chem. 1980; 21: 578
- 10b Charmant JP. H, Hunt NJ, Lloyd-Jones GC, Nowak T. Collect. Czech. Chem. Commun. 2003; 68: 865
- 10c Charmant JP. H, Fallis IA, Hunt NJ, Lloyd-Jones GC, Murray M, Nowak T. J. Chem Soc., Dalton Trans. 2000; 11: 1723
- 10d Hoshi T, Katano M, Nozawa E, Suzuki T, Hagiwara H. Tetrahedron Lett. 2004; 45: 3489
- 11a Kurz L, Lee G, Morgans DJr, Waldyke MJ, Ward T. Tetrahedron Lett. 1990; 31: 6321
- 11b Vondenhof M, Mattay J. Chem. Ber. 1990; 123: 2457
- 12a Hoshi T, Nozawa E, Katano M, Suzuki T, Hagiwara H. Tetrahedron Lett. 2004; 45: 3485
- 12b Liu J, Zheng H.-X, Yao C.-Z, Sun B.-F, Kang Y.-B. J. Am. Chem. Soc. 2016; 138: 3294
- 12c Zhuang Y.-J, Liu J, Kang Y.-B. Tetrahedron Lett. 2016; 57: 5700
- 13a Oi S, Matsunaga K, Hattori T, Miyano S. Synthesis 1993; 895
- 13b Tian Y, Uchida K, Kurata H, Hirao Y, Nishiuchi T, Kubo T. J. Am. Chem. Soc. 2014; 136: 12784
- 13c Schlosser M, Bailly F. J. Am. Chem. Soc. 2006; 128: 16042
- 13d Hatsuda M, Hiramatsu H, Yamada S, Shimizu T, Seki M. J. Org. Chem. 2001; 66: 4437
- 14 Matsumoto K, Tomioka K. Chem. Pharm. Bull. 2001; 49: 1653
- 15 Kumar P, Prescher S, Louie J. Angew. Chem. Int. Ed. 2011; 50: 10694
- 16a Nelson TD, Meyers AI. Tetrahedron Lett. 1993; 34: 3061
- 16b Gant TG, Noe MC, Corey EJ. Tetrahedron Lett. 1995; 36: 8745
- 16c Nelson TD, Meyers AI. J. Org. Chem. 1994; 59: 2655
- 16d Meyers AI, Willemsen JJ. Chem. Commun. 1997; 1573
- 16e Meyers AI, Willemsen JJ. Tetrahedron 1998; 54: 10493
- 16f Uozumi Y, Kyota H, Kishi E, Kitayama K, Hayashi T. Tetrahedron: Asymmetry 1996; 7: 1603
- 16g Uozumi Y, Kyota H, Kato K, Ogasawara M, Hayashi T. J. Org. Chem. 1999; 64: 1620
- 16h Imai Y, Matsuo S, Zhang W, Nakatsuji Y, Ikeda I. Synlett 2000; 239
- 16i Hocke H, Uozumi Y. Synlett 2002; 2049
- 16j Hocke H, Uozumi Y. Tetrahedron 2003; 59: 619
Corresponding Authors
Publication History
Received: 10 May 2022
Accepted after revision: 05 July 2022
Accepted Manuscript online:
05 July 2022
Article published online:
28 July 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Takaya H, Mashima K, Koyano K, Yagi M, Kumobayashi H, Taketomi T, Akutagawa S, Noyori R. J. Org. Chem. 1986; 51: 629
- 1b Clayden J, Moran WJ, Edwards PJ, LaPlante SR. Angew. Chem. Int. Ed. 2009; 48: 6398
- 1c LaPlante SR, Edwards PJ, Fader LD, Jakalian A, Hucke O. ChemMedChem 2011; 6: 505
- 1d Zask A, Murphy J, Ellestad GA. Chirality 2013; 25: 265
- 1e Smyth JE, Butler NM, Keller PA. Nat. Prod. Rep. 2015; 32: 1562
- 1f Bringmann G, Gulder T, Gulder TA. M, Breuning M. Chem. Rev. 2011; 111: 563
- 2a McCormick MH, Stark WM, Pittenger GE, Pittenger RC, McGuire JM. Antibiot. Annu. 1955; 3: 606
- 2b Hallock YF, Manfredi KP, Blunt JW, Cardellina JH. II, Schaeffer M, Gulden K.-P, Bringmann G, Lee A.-Y, Clardy J. J. Org. Chem. 1994; 59: 6349
- 2c Bringmann G, Menche D. Acc. Chem. Res. 2001; 34: 615
- 2d Hughes CC, Kauffman CA, Jensen PR, Fenical W. J. Org. Chem. 2010; 75: 3240
- 2e Kupchan SM, Britton RW, Ziegler MF, Gilmore CJ, Restivo RJ, Bryan RF. J. Am. Chem. Soc. 1973; 95: 1335
- 2f Zuo Z, Kim RS, Watson DA. J. Am. Chem. Soc. 2021; 143: 1328
- 2g Zhao K, Yang S, Gong Q, Duan L, Gu Z. Angew. Chem. Int. Ed. 2021; 60: 5788
- 3a Pu L. Chem. Rev. 1998; 98: 2405
- 3b Chen Y, Yekta S, Yudin AK. Chem. Rev. 2003; 103: 3155
- 3c Kočovský P, Vyskočil Š, Smrčina M. Chem. Rev. 2003; 103: 3213
- 3d Brunel JM. Chem. Rev. 2005; 105: 857
- 3e Ding K, Li X, Ji B, Guo H, Kitamura M. Curr. Org. Synth. 2005; 2: 499
- 3f Ding K, Guo H, Li X, Yuan Y, Wang Y. Top Catal. 2005; 35: 105
- 3g Jiang Y.-Q, Shi Y.-L, Shi M. J. Am. Chem. Soc. 2008; 130: 7202
- 4a Zhang J.-W, Jiang F, Chen Y.-H, Xiang S.-H, Tan B. Sci. China Chem. 2021; 64: 1515
- 4b Verga D, Nadai M, Doria F, Percivalle C, Antonio MD, Palumbo M, Richter SN, Freccero M. J. Am. Chem. Soc. 2010; 132: 14625
- 4c Yu H.-B, Hu Q.-S, Pu L. J. Am. Chem. Soc. 2000; 122: 6500
- 4d Verga D, Percivalle C, Doria F, Porta A, Freccero M. J. Org. Chem. 2011; 76: 2319
- 5a Mandai H, Yasuhara H, Fujii K, Shimomura Y, Mitsudo K, Suga S. J. Org. Chem. 2017; 82: 6846
- 5b Pu L. Acc. Chem. Res. 2012; 45: 150
- 5c Cui Y, Lee SJ, Lin W. J. Am. Chem. Soc. 2003; 125: 6014
- 5d Takaishi K, Yasui M, Ema T. J. Am. Chem. Soc. 2018; 140: 5334
- 5e Weber E, Csóregh I, Stensl B, Czugler M. J. Am. Chem. Soc. 1984; 106: 3297
- 6a Cai D, Payack JF, Bender DR, Hughes DL, Verhoeven TR, Reider PJ. Org. Synth. 1999; 76: 6
- 6b Noboru S, Zhang X. EP 0071812A1 1997
- 7 Kasák P, Putala M. Collect. Czech. Chem. Commun. 2000; 65: 729
- 8a Sato Y, Kawata Y, Yasui S, Kayaki Y, Ikariya T. Molecules 2021; 26: 1165
- 8b For an example of Pd-catalyzed cyanation of SPINOL-OTf with zinc cyanide, see: Liu B, Zhu S.-F, Wang L.-X, Zhou Q.-L. Tetrahedron: Asymmetry 2006; 17: 634
- 9a Connon R, Roche B, Rokade BV, Guiry PJ. Chem. Rev. 2021; 121: 6373
- 9b Desimoni G, Faita G, Jørgensen KA. Chem. Rev. 2011; 111: PR284
- 9c Zhang J.-M, Zhang Y.-J, Zhang W.-B. Chin. J. Org. Chem. 2007; 27: 1087
- 10a Grachev VT, Zaitsev BE, Itskovich ÉM, Chayanov BA, Nefedov VA, Pol’skikh ÉD, Dyumaev KM. J. Struct. Chem. 1980; 21: 578
- 10b Charmant JP. H, Hunt NJ, Lloyd-Jones GC, Nowak T. Collect. Czech. Chem. Commun. 2003; 68: 865
- 10c Charmant JP. H, Fallis IA, Hunt NJ, Lloyd-Jones GC, Murray M, Nowak T. J. Chem Soc., Dalton Trans. 2000; 11: 1723
- 10d Hoshi T, Katano M, Nozawa E, Suzuki T, Hagiwara H. Tetrahedron Lett. 2004; 45: 3489
- 11a Kurz L, Lee G, Morgans DJr, Waldyke MJ, Ward T. Tetrahedron Lett. 1990; 31: 6321
- 11b Vondenhof M, Mattay J. Chem. Ber. 1990; 123: 2457
- 12a Hoshi T, Nozawa E, Katano M, Suzuki T, Hagiwara H. Tetrahedron Lett. 2004; 45: 3485
- 12b Liu J, Zheng H.-X, Yao C.-Z, Sun B.-F, Kang Y.-B. J. Am. Chem. Soc. 2016; 138: 3294
- 12c Zhuang Y.-J, Liu J, Kang Y.-B. Tetrahedron Lett. 2016; 57: 5700
- 13a Oi S, Matsunaga K, Hattori T, Miyano S. Synthesis 1993; 895
- 13b Tian Y, Uchida K, Kurata H, Hirao Y, Nishiuchi T, Kubo T. J. Am. Chem. Soc. 2014; 136: 12784
- 13c Schlosser M, Bailly F. J. Am. Chem. Soc. 2006; 128: 16042
- 13d Hatsuda M, Hiramatsu H, Yamada S, Shimizu T, Seki M. J. Org. Chem. 2001; 66: 4437
- 14 Matsumoto K, Tomioka K. Chem. Pharm. Bull. 2001; 49: 1653
- 15 Kumar P, Prescher S, Louie J. Angew. Chem. Int. Ed. 2011; 50: 10694
- 16a Nelson TD, Meyers AI. Tetrahedron Lett. 1993; 34: 3061
- 16b Gant TG, Noe MC, Corey EJ. Tetrahedron Lett. 1995; 36: 8745
- 16c Nelson TD, Meyers AI. J. Org. Chem. 1994; 59: 2655
- 16d Meyers AI, Willemsen JJ. Chem. Commun. 1997; 1573
- 16e Meyers AI, Willemsen JJ. Tetrahedron 1998; 54: 10493
- 16f Uozumi Y, Kyota H, Kishi E, Kitayama K, Hayashi T. Tetrahedron: Asymmetry 1996; 7: 1603
- 16g Uozumi Y, Kyota H, Kato K, Ogasawara M, Hayashi T. J. Org. Chem. 1999; 64: 1620
- 16h Imai Y, Matsuo S, Zhang W, Nakatsuji Y, Ikeda I. Synlett 2000; 239
- 16i Hocke H, Uozumi Y. Synlett 2002; 2049
- 16j Hocke H, Uozumi Y. Tetrahedron 2003; 59: 619








