Subscribe to RSS
DOI: 10.1055/s-0043-1775497
Dual-Functional Group Transfer Reagents for Dihalogenation Reactions
D.K. acknowledges the Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung (Swiss National Science Foundation) (PCEFP2_186964) for the financial support of this research.

Abstract
Functional group transfer reagents (FGTRs) represent a powerful strategy for introducing diverse functionalities into organic molecules. Herein, we describe the development and application of novel dual-functional group transfer reagents designed to facilitate efficient and selective vicinal dihalogenation of unsaturated hydrocarbons under mild photoredox catalytic conditions. Experimental investigations, coupled with density functional theory calculations, provide detailed mechanistic insights into the reaction, highlighting a unique radical-polar crossover mechanism involving radical ‘halogen dance’ and ionic addition of molecular dihalogens. The developed dual-FGTR approach showcases superior scalability, functional group tolerance, and practical applicability in a synthetic chemistry context.
1 Introduction
2 Reagent Design
3 Transfer Dihalogenation Span
4 Mechanistic Insights
5 Conclusion
Publication History
Received: 27 March 2025
Accepted after revision: 29 April 2025
Article published online:
01 July 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Ertl P, Altmann E, McKenna JM. J. Med. Chem. 2020; 63: 8408
- 2 Larock RC. Comprehensive Organic Transformations: A Guide to Functional Group Preparations, 2nd ed. Wiley-VCH; Weinheim: 1999
- 3 Cresswell AJ, Eey ST.-C, Denmark SE. Angew. Chem. Int. Ed. 2015; 54: 15642
- 4 Eissen M, Lenoir D. Chem. Eur. J. 2008; 14: 9830
- 5 Saikia I, Borah AJ, Phukan P. Chem. Rev. 2016; 116: 6837
- 6 Koval’ IV. Russ. J. Org. Chem. 2002; 38: 301
- 7 Charpentier J, Früh N, Togni A. Chem. Rev. 2015; 115: 650
- 8 Rössler SL, Jelier BJ, Magnier E, Dagousset G, Carreira EM, Togni A. Angew. Chem. Int. Ed. 2020; 59: 9264
- 9 Hao B.-Y, Han Y.-P, Zhang Y, Liang Y.-M. Org. Biomol. Chem. 2023; 21: 4926
- 10 Li M, Zheng H, Xue X, Cheng J. Tetrahedron Lett. 2018; 59: 1278
- 11 Fernandes AJ, Giri R, Houk KN, Katayev D. Angew. Chem. Int. Ed. 2024; 63: e202318377
- 12 Patra S, Mosiagin I, Giri R, Katayev D. Synthesis 2022; 54: 3432
- 13 Huang H.-M, Bellotti P, Ma J, Dalton T, Glorius F. Nat. Rev. Chem. 2021; 5: 301
- 14 Zhang J, Zhang M, Oestreich M. Chem Catal. 2024; 4: 100962
- 15 Bhunia A, Studer A. Chem 2021; 7: 2060
- 16 Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
- 17 Zhu C, Ang NW. J, Meyer TH, Qiu Y, Ackermann L. ACS Cent. Sci. 2021; 7: 415
- 18 Hilt G. ChemElectroChem 2020; 7: 395
- 19 Walker JC. L, Oestreich M. Synlett 2019; 30: 2216
- 20 Bhawal BN, Morandi B. ACS Catal. 2016; 6: 7528
- 21 Dong X, Roeckl JL, Waldvogel SR, Morandi B. Science 2021; 371: 507
- 22 Li Y, Gao Y, Deng Z, Cao Y, Wang T, Wang Y, Zhang C, Yuan M, Xie W. Nat. Commun. 2023; 14: 4673
- 23 Zhang M, Zhang J, Oestreich M. Nat. Synth. 2023; 2: 439
- 24 Patra S, Giri R, Katayev D. ACS Catal. 2023; 13: 16136
- 25 Zhang K, Jelier B, Passera A, Jeschke G, Katayev D. Chem. Eur. J. 2019; 25: 12929
- 26 Giri R, Patra S, Katayev D. ChemCatChem 2023; 15: e202201427
- 27 Patra S, Valsamidou V, Nandasana BN, Katayev D. ACS Catal. 2024; 14: 13747
- 28 Giri R, Zhilin E, Kissling M, Patra S, Fernandes AJ, Katayev D. J. Am. Chem. Soc. 2024; 146: 31547
- 29 Zeng X, Liu S, Yang Y, Yang Y, Hammond GB, Xu B. Chem 2020; 6: 1018
- 30 Rubio-Presa R, García-Pedrero O, López-Matanza P, Barrio P, Rodríguez F. Eur. J. Org. Chem. 2021; 4762
- 31 Giri R, Mosiagin I, Franzoni I, Yannick Nötel N, Patra S, Katayev D. Angew. Chem. Int. Ed. 2022; 61: e202209143
- 32 Giri R, Zhilin E, Fernandes AJ, Ordan QE. L, Kissling M, Katayev D. Helv. Chim. Acta 2024; 107: e202400125
- 33 Giri R, Zhilin E, Katayev D. Chem. Sci. 2024; 15: 10659