RSS-Feed abonnieren
DOI: 10.1055/s-0043-1775496
A Green Approach to 2-Amino-4H-chromenes by Calcium Lactate Catalyzed, One-Pot, Three-Component Reactions
The Science and Engineering Research Board (SERB), India (Grant no. TAR/2023/000108 Dt. 26/02/2024) and the Department of Science and Technology and Biotechnology (DSTBT), Govt. of West Bengal (Grant no. 2137(Sanc.)/STBT-11012(25)/5/2024-ST SEC Date. 10/02/2024) are gratefully acknowledged for financial support to P.N.C.

Abstract
A simple ecofriendly protocol for synthesizing 2-amino-4H-chromenes by a one-pot, three-component reaction catalyzed by nontoxic calcium lactate in a green solvent is described. 2-Amino-4H-chromene-3-carbonitriles are obtained by a one-pot, three-component reaction of an aromatic aldehyde, malononitrile, and a phenolic compound. Naphthopyrans are synthesized by the same strategy by replacing the phenolic derivative with a naphthol. Indole-substituted 2-amino-4H-chromenes are prepared by the one-pot three-component reaction of a salicylaldehyde derivative, a malononitrile derivative, and an indole.
Key words
calcium lactate catalysis - multicomponent reaction - chromenes - benzopyrans - green chemistry - indolylchromenesSupporting Information
- Supporting information for this article is available online at https://doi-org.accesdistant.sorbonne-universite.fr/10.1055/s-0043-1775496.
- Supporting Information
Publikationsverlauf
Eingereicht: 28. Februar 2025
Angenommen nach Revision: 08. Mai 2025
Artikel online veröffentlicht:
18. Juni 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a Musonda CC, Taylor D, Lehman J, Gut J, Rosenthal PJ, Chibale K. Bioorg. Med. Chem. Lett. 2004; 14: 3901
- 1b Slobbe P, Ruijter E, Orru RV. A. MedChemComm 2012; 3: 1189
- 1c Dömling A, Wang W, Wang K. Chem. Rev. 2012; 112: 3083
- 2 Sanderson K. Nature 2011; 469: 18
- 3a McGonagle FI, Sneddon HF, Jamieson C, Watson AJ. B. ACS Sustainable Chem. Eng. 2014; 2: 523
- 3b Cioc RC, Ruijter E, Orru RV. A. Green Chem. 2014; 16: 2958
- 4 Green Solvents I: Properties and Applications in Chemistry. Mohammad A. Inamuddin, Springer; Dordrecht: 2012.
- 5a Weber L, Illgen K, Almstetter M. Synlett 1999; 366
- 5b Dömling A. Curr. Opin. Chem. Biol. 2000; 4: 318
- 5c Mirjafary Z, Saeidian H, Sadeghi A, Maghaddam FM. Catal. Commun. 2008; 9: 299
- 5d Mashkouri S, Naimi-Jamal MR. Molecules 2009; 14: 474
- 5e Borah P, Naidu PS, Majumder S, Bhuyan PJ. Mol. Diversity 2014; 18: 759
- 6a Kumar D, Reddy VB, Sharad S, Dube U, Kapur S. Eur. J. Med. Chem. 2009; 44: 3805
- 6b Kemnitzer W, Drewe J, Jiang S, Zhang H, Crogan-Grundy C, Labreque D, Bubenick M, Attardo G, Denis R, Lamothe S, Gourdeau H, Tseng B, Kasibhatla S, Cai SX. J. Med. Chem. 2008; 51: 417
- 6c Sabry NM, Mohamed HM, Khattab ES. A. E. H, Motlaq SS, El-Agrody AM. Eur. J. Med. Chem. 2011; 46: 765
- 6d Corradini E, Foglia P, Giansanti P, Gubbiotti R, Samperi R, Laganà A. Nat. Prod. Res. 2011; 25: 469
- 6e Patil RB, Sawant SD, Thombare PA. Int. J. PharmTech Res. 2012; 4: 375
- 6f Khadem S, Marles RJ. Molecules 2012; 17: 191
- 7 Schweizer EE, Meeder-Nycz D. In The Chemistry of Heterocyclic Compounds: Chromenes, Chromanones, and Chromones. Ellis GP. Wiley; New York: 2007: 11
- 8a Andreani LL, Lapi E. Boll. Chim. Farm. 1960; 99: 583 ; (in Italian)
- 8b Bonsignore L, Loy G, Secci D, Calignano A. Eur. J. Med. Chem. 1993; 28: 517
- 8c Shanthi G, Perumal PT, Rao U, Sehgal PK. Indian J. Chem. Sec. B 2009; 48: 1319
- 9 Hafez EA. A, Elnagdi MH, Elagamey AG. A, El-Taweel FM. A. A. Heterocycles 1987; 26: 903
- 10a Kidwai M, Saxena S, Khan MK. R, Thukral SS. Bioorg. Med. Chem. Lett. 2005; 15: 4295
- 10b Heravi MM, Bakhtiari K, Zadsirjan V, Bamoharram FF, Heravi OM. Bioorg. Med. Chem. Lett. 2007; 17: 4262
- 10c Makarem S, Mohammadi AA, Fakhari AR. Tetrahedron Lett. 2008; 49: 7194
- 10d Mondal J, Modak A, Nandi M, Uyama H, Bhaumik A. RSC Adv. 2012; 2: 11306
- 10e Datta B, Pasha MA. Ultrason. Sonochem. 2012; 19: 725
- 10f Kiyani H, Ghorbani F. J. Saudi Chem. Soc. 2014; 18: 689
- 10g Kundu SK, Bhaumik A. RSC Adv. 2015; 5: 32730
- 10h Kantharaju K, Khatavi SY. ChemistrySelect 2018; 3: 5016
- 10i Chen L, Lin C, Lan Y, Li Z, Huang D, Yang W, Li Y. Environ. Chem. Lett. 2020; 18: 2157
- 10j Kale SR, Kahandal SS, Burange AS, Gawande MB, Jayaram RV. Catal. Sci. Technol. 2013; 3: 2050
- 11a Welsch ME, Snyder SA, Stockwell BR. Curr. Opin. Chem. Biol. 2010; 14: 347
- 11b DeSimone RW, Currie KS, Mitchell SA, Darrow JW, Pippin DA. Comb. Chem. High Throughput Screening 2004; 7: 473
- 12a Masesane IB, Desta ZY. Beilstein J. Org. Chem. 2012; 8: 2166
- 12b Han Y.-F, Xia M. Curr. Org. Chem. 2010; 14: 379
- 13a Elinson MN, Dorofeev AS, Feducovich SK, Nasybullin RF, Gorbunov SV, Nikishin GI. Electrochem. Commun. 2006; 8: 1567
- 13b Shanthi G, Perumal PT. Tetrahedron Lett. 2007; 48: 6785
- 13c Chen W, Cai Y, Fu X, Liu X, Lin L, Feng X. Org. Lett. 2011; 13: 4910
- 13d Rajendran A, Karthikeyan C, Rajathi K, Ragupathy D. Am. J. Org. Chem. 2012; 2: 9
- 13e Singh N, Allam BK, Raghuvanshi DS, Singh KN. Adv. Synth. Catal. 2013; 355: 1840
- 13f Wang L, Huang M, Zhu X, Wan Y. Appl. Catal., A 2013; 454: 160
- 13g Gao Y, Du D.-M. Tetrahedron: Asymmetry 2013; 24: 1312
- 13h Singh NG, Nongrum R, Kathing C, Rania JW. S, Nongkhlaw R. Green Chem. Lett. Rev. 2014; 7: 137
- 13i Rajesh UC, Divya, Rawat DS. RSC Adv. 2014; 4: 41323
- 13j Rajesh UC, Wang J, Prescott SW, Tsuzuki T, Rawat DS. ACS Sustainable Chem. Eng. 2015; 3: 9
- 13k Rai P, Srivastava M, Yadav S, Singh J, Singh J. Catal. Lett. 2015; 145: 2020
- 13l Thakur A, Reddy PL, Tripathi M, Rawat DS. New J. Chem. 2015; 39: 6253
- 13m Khalafi-Nezhad A, Nourisefat M, Panahi F. Org. Biomol. Chem. 2015; 13: 7772
- 13n Rajesh UC, Kholiya R, Thakur A, Rawat DS. Tetrahedron Lett. 2015; 56: 1790
- 13o Brahmachari G, Nurjamal K. Curr. Green Chem. 2016; 3: 248
- 13p Ganesan A, Kothandapani J, Subramaniapillai SG. RSC Adv. 2016; 6: 20582
- 13q Bahuguna A, Choudhary P, Chhabra T, Krishnan V. ACS Omega 2018; 3: 12163
- 13r Li C.-B, Li Y.-W, Xu D.-Z. Synthesis 2018; 50: 3708
- 13s Baharfar R, Peiman S, Maleki B. J. Heterocycl. Chem. 2021; 58: 1302
- 13t Das D. Monatsh. Chem. 2021; 152: 987
- 14 Code of Federal Regulations Calcium Lactate https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-184/subpart-B/section-184.1207 (accessed Jun 5, 2025)
- 15 Amitraj K, Khamrui K, Devaraja HC, Mandal S. Int. J. Dairy Technol. 2016; 69: 393
- 16 Straub DA. Nutr. Clin. Pract. 2007; 22: 286
- 17 Devesa-Rey R, Bustos G, Cruz JM, Moldes AB. Water, Air, Soil Pollut. 2012; 223: 591
- 18 Wiernicki TR, Bean JS, Dell C, Williams A, Wood D, Kauffman RF, Singh JP. J. Pharmacol. Exp. Ther. 1996; 278: 1452
- 19 Kasibhatla S, Gourdeau H, Meerovitch K, Drewe J, Reddy S, Qiu L, Zhang H, Bergeron F, Bouffard D, Yang Q, Herich J, Lamothe S, Cai SX, Tseng B. Mol. Cancer Ther. 2004; 3: 1365
- 20a Schmitt F, Gold M, Rothemund M, Andronache I, Biersack B, Schobert R. Mueller T. 2019; 163: 160
- 20b Birch KA, Heath WF, Hermeling RN, Johnston CM, Stramm L, Dell C, Smith C, Williamson JR, Reifel-Miller A. Diabetes 1996; 45: 642
- 20c Schmitt F, Schobert R, Biersack B. Med. Chem. Res. 2019; 28: 1694
- 21 2-Amino-7-hydroxy-4-phenyl-4H-chromene-3-carbonitrile (4a); Typical Procedure A 25 mL round-bottomed flask equipped with a magnetic stirrer bar was charged with benzaldehyde (1a; 1.0 mmol), malononitrile (2a; 1.2 mmol), resorcinol (3a; 1.0 mmol), and EtOH–H2O (1:1, 5 mL). Calcium lactate (20 mol%) was added, and the flask was placed in a constant-temperature oil bath at 80 °C until the reaction was complete (TLC). The mixture was then filtered through a celite bed, which was thoroughly washed with EtOH. The combined filtrate was concentrated under reduced pressure, and the crude product was purified by flash chromatography (CombiFlash; silica gel, 20–50% EtOAc–hexane) to give an off-white solid; yield: 85%; mp 234 °C. 1H NMR (400 MHz, DMSO-d6 ): δ = 9.68 (s, 1 H), 7.30 (t, J = 7.5 Hz, 2 H), 7.15–7.21 (m, 3 H), 6.86 (br, 2 H), 6.79 (d, J = 8.4 Hz, 1 H), 6.46–6.48 (dd, J = 8.4 and 2.08 Hz, 1 H), 6.40 (d, J = 2.16 Hz, 1 H), 4.61 (s, 1 H). 13C NMR (100 MHz, DMSO-d6 ): δ = 160.2, 157.0, 148.8, 146.3, 129.8, 128.5, 127.3, 126.6, 120.6, 113.7, 112.3, 102.1, 56.2, 39.9.