Subscribe to RSS
DOI: 10.1055/s-0043-1775484
Recent Strategies for the Synthesis of Ferrocene Derivatives and Their Applications to Electrochemistry
This research was supported by the National Research Foundation of Korea (NRF-2022R1A2C2008629 and NRF-2022R1A4A2000778).

Abstract
Ferrocene, a highly redox-stable organometallic compound with a distinctive sandwich-like structure, has significantly influenced the fields of electrochemistry, materials science, and medicinal chemistry. Modifying the ferrocene core and its side chains is crucial for fine-tuning its redox properties, solubility, and stability, thereby enhancing its performance in various applications. This review discusses the synthesis of ferrocene compounds potentially relevant to electrochemical applications, focusing on recent strategies for nondirected C–H functionalization of the ferrocene core and diverse reactions for side-chain modifications. Advances in C–H activation of ferrocenes have been facilitated by catalytic methods utilizing Pd, Ir, Au, In, and Fe catalysts, as well as through photoredox and electrochemical techniques. Furthermore, side chains are modified via a range of mild transformations compatible with the ferrocene core, including substitution and annulation. These advancements in synthesizing ferrocene derivatives have broadened their potential applications, notably as electron-transfer mediators, energy-storage systems, and sensors.
1 Introduction
2 Nondirected C–H Activation of Ferrocene and Its Derivatives
3 Side-Chain Modification of Ferrocene Derivatives
4 Applications of Ferrocene Derivatives in Electrochemistry
5 Conclusion
Publication History
Received: 22 March 2025
Accepted after revision: 15 April 2025
Article published online:
05 May 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 2 Chen N, Wu Z.-J, Xu H.-C. Isr. J. Chem. 2024; 64: e202300097
- 3 Giri S, Dash I. J. Mater. Chem. A 2023; 11: 16458
- 4 Sahoo SK. Dalton Trans. 2021; 50: 11681
- 5 Singh A, Lumb I, Mehra V, Kumar V. Dalton Trans. 2019; 48: 2840
- 6 Rauf U, Shabir G, Bukhari S, Albericio F, Saeed A. Molecules 2023; 28: 5765
- 7a Hurvois JP, Moinet C. J. Organomet. Chem. 2005; 690: 1829
- 7b Chen Q, Li Y, Liu Y, Sun P, Yang Z, Xu T. ChemSusChem 2021; 14: 1295
- 7c Jurkowski K, Bauer EB. Synthesis 2020; 53: 2007
- 7d Luo J, Hu M, Wu W, Yuan B, Liu TL. Energy Environ. Sci. 2022; 15: 1315
- 8 Frei A. Chem. Eur. J. 2019; 25: 7074
- 9 Čarný T, Šebesta R. Synlett 2023; 35: 165
- 10a Wu K, Lam N, Strassfeld DA, Fan Z, Qiao JX, Liu T, Stamos D, Yu J.-Q. Angew. Chem. Int. Ed. 2024; 63: e202400509
- 10b de Jesus R, Hiesinger K, van Gemmeren M. Angew. Chem. Int. Ed. 2023; 62: e202306659
- 10c Sinha SK, Ghosh P, Jain S, Maiti S, Al-Thabati SA, Alshehri AA, Mokhtar M, Maiti D. Chem. Soc. Rev. 2023; 52: 7461
- 10d Li B, Tyagarajan S, Dykstra KD, Cernak T, Vachal P, Krska SW. Synlett 2024; 35: 862
- 10e Joo JM. C–H Activation for the Synthesis of Organic Redox-Active Compounds. In Handbook of CH-Functionalization. Wiley; Weinheim: 2022: 1-27
- 11a Liu C.-X, Gu Q, You S.-L. Trends Chem. 2020; 2: 737
- 11b Zhang Z.-Z, Huang D.-Y, Shi B.-F. Org. Biomol. Chem. 2022; 20: 4061
- 12 Piotrowicz M, Zakrzewski J, Makal A, Bąk J, Malińska M, Woźniak K. J. Organomet. Chem. 2011; 696: 3499
- 13 Piotrowicz M, Zakrzewski J. Organometallics 2013; 32: 5709
- 14 Müller S, Lee W, Song JY, Kang E, Joo JM. Chem. Commun. 2022; 58: 10809
- 15 Yu Z, Liu Q, Li Q, Huang Z, Yang Y, You J. Angew. Chem. Int. Ed. 2022; 61: e202212079
- 16 Liu W, Cao H, Lei A. Angew. Chem. Int. Ed. 2010; 49: 2004
- 17 Li Z, Li J, Fan J, Ding Y, Guo H, Cheng G. J. Org. Chem. 2024; 89: 18280
- 18 Wang J, Li R, Dong Z, Liu P, Dong G. Nat. Chem. 2018; 10: 866
- 19 He GC, Guo SY, Zheng H, Liu CH, Li Y, Min XT, Ji DW, Chen QA. Cell Rep. Phys. Sci. 2022; 3: 100768
- 20 Sünkel K, Weigand S. Inorg. Chim. Acta 2011; 370: 224
- 21 Bernardo O, García-Martínez P, Santamaría J, López LA. Synthesis 2024; 56: 3728
- 22a López E, Lonzi G, López LA. Organometallics 2014; 33: 5924
- 22b López E, Borge J, López LA. Chem. Eur. J. 2017; 23: 3091
- 23 López E, Suárez T, Ballesteros A, López LA. Eur. J. Inorg. Chem. 2017; 225
- 24a González-Pelayo S, López E, Borge J, de los Santos Alvarez N, López LA. Eur. J. Org. Chem. 2018; 2858
- 24b González-Pelayo S, López E, Borge J, De los Santos Álvarez N, López LA. Molecules 2018; 23: 1335
- 25 González-Pelayo S, Bernardo O, Borge J, López LA. Adv. Synth. Catal. 2021; 363: 819
- 26 Zheng H, Liu CH, Guo SY, He GC, Min XT, Zhou BC, Ji DW, Hu YC, Chen QA. Nat. Commun. 2022; 13: 3496
- 27 Datta A, Köllhofer A, Plenio H. Chem. Commun. 2004; 1508
- 28 Zheng H, Liu CH, Wang XY, Liu Y, Chen BZ, Hu YC, Chen QA. Adv. Sci. 2023; 10: 2304672
- 29a Albada B, Metzler-Nolte N. Chem. Rev. 2016; 116: 11797
- 29b Martić S, Labib M, Shipman PO, Kraatz H.-B. Dalton Trans. 2011; 40: 7264
- 30 Wang ZH, Shen LW, Yang P, You Y, Zhao JQ, Yuan WC. J. Org. Chem. 2022; 87: 5804
- 31 Heo RW, Lee TR. J. Organomet. Chem. 1999; 578: 31
- 32 Mahe C, Blacque O, Gasser G, Gandon V, Cariou K. Org. Lett. 2023; 25: 624
- 33a Chen S, Shi J, Wang B, Zhao H, Li B. Appl. Organomet. Chem. 2012; 26: 284
- 33b Chen SF, Wang BL, Yan Q, Shi JX, Zhao HY, Li BG. RSC Adv. 2013; 3: 1758
- 34a Chen S, Yan Q, Zhao H, Li B. J. Org. Chem. 2013; 78: 5085
- 34b Chen S, Zhang H, Yan Q, Wang C, Han F, Zhang K, Zhao H, Li B. J. Org. Chem. 2014; 79: 5503
- 34c Chen S, Gao Z, Zhao H, Li B. J. Org. Chem. 2014; 79: 1481
- 35 Guo L, Zhao WR, Li M, Dong SQ, Gong JY, Chen SF. Appl. Organomet. Chem. 2019; 33: e5003
- 36a Guo L, Gao Y, Wang Z, Li Z, Zhang Y, Wang H, Chen X, Gong Z, Chen S. J. Org. Chem. 2020; 85: 7358
- 36b Guo L, Zhao W, Gao Y, Wu M, Chen S. J. Org. Chem. 2024; 89: 1956
- 36c Guo L, Gao YP, Li YJ, Wang Y, Li WL, Chen SF. Synthesis 2022; 54: 4005
- 37 Gagne RR, Koval CA, Lisensky GC. Inorg. Chem. 1980; 19: 2854
- 38a Roy G, Gupta R, Ranjan Sahoo S, Saha S, Asthana D, Chandra Mondal P. Coord. Chem. Rev. 2022; 473: 214816
- 38b Hu M.-L, Abbasi-Azad M, Habibi B, Rouhani F, Moghanni-Bavil-Olyaei H, Liu K.-G, Morsali A. ChemPlusChem 2020; 85: 2397
- 38c Beitollahi H, Khalilzadeh MA, Tajik S, Safaei M, Zhang K, Jang HW, Shokouhimehr M. ACS Omega 2020; 5: 2049
- 39a Hou Z.-W, Jiang T, Wu T.-X, Wang L. Org. Lett. 2021; 23: 8585
- 39b Hou Z.-W, Li L, Wang L. Org. Chem. Front. 2022; 9: 2815
- 39c Wan Q, Zhang Z, Hou Z.-W, Wang L. Org. Chem. Front. 2023; 10: 2830
- 40 Warren JJ, Tronic TA, Mayer JM. Chem. Rev. 2010; 110: 6961
- 41 Nguyen LQ, Knowles RR. ACS Catal. 2016; 6: 2894
- 42 Gupta T, Yati, Sanyam, Mondal A, Mondal B. ACS Catal. 2024; 14: 17690
- 43 Garrido-Barros P, Romero CG, Winkler JR, Peters JC. J. Am. Chem. Soc. 2024; 146: 12750
- 44 Farrugia TJ, Magri DC. New J. Chem. 2013; 37: 148
- 45 Ahmed ME, Staples RJ, Cundari TR, Warren TH. J. Am. Chem. Soc. 2025; 147: 6514
- 46 Lee W, Bhatia A, Nandhakumar P, Kim G, Joo JM, Yang H. J. Mater. Chem. B 2023; 11: 2258
- 47 Kim G, Park SE, Lee W, Joo JM, Yang H. ACS Sens. 2024; 9: 6450
- 48a Ahn S, Yun A, Ko D, Singh V, Joo JM, Byon HR. Chem. Soc. Rev. 2025; 54: 742
- 48b Luo J, Hu B, Hu M, Zhao Y, Liu TL. ACS Energy Lett. 2019; 4: 2220
- 49 Hu B, DeBruler C, Rhodes Z, Liu TL. J. Am. Chem. Soc. 2017; 139: 1207
- 50a Luo J, Hu B, Hu M, Wu W, Liu TL. Angew. Chem. Int. Ed. 2022; 61: e202204030
- 50b Liu T, Hu B, DeBruler C, Luo J. US Patent 10,934,258, 2021
- 50c Yu J, Salla M, Zhang H, Ji Y, Zhang F, Zhou M, Wang Q. Energy Storage Mater. 2020; 29: 216
- 51 Ito N, Saji T, Aoyagui S. J. Organomet. Chem. 1983; 247: 301
- 52 Song H, Kwon G, Citek C, Jeon S, Kang K, Lee E. ACS Appl. Mater. Interfaces 2021; 13: 46558