Subscribe to RSS
DOI: 10.1055/a-2603-8442
Photocatalytic Hydroalkylation of Trifluoromethyl Alkenes with Gaseous Alkanes in Flow
Financial support from the European Research Council (ERC-CoG 863914-BECAME), the Agencia Estatal de Investigación (PID2023-151875NB-I00), the Xunta de Galicia (ED431C 2022/27; Centro de investigación do Sistema Universitario de Galicia accreditation 2023-2027, ED431G 2023/03) and the European Regional Development Fund (ERDF) is gratefully acknowledged.

Abstract
The conversion of light alkanes into value-added products is becoming a field of high interest within the scientific community, as it avoids the use of prefunctionalized alkylating agents. However, the gaseous nature of these reagents, along with their intrinsic inertness due to their high bond-dissociation energies (99–105 kcal·mol–1), have rendered traditional strategies ineffective or lacking in selectivity. The use of flow-chemistry technology has made a tremendous impact in this field, improving the efficiency of multiphasic processes through improved mass transfer and larger interfacial areas. In this work, we report a new flow-chemistry platform for the photocatalytic hydroalkylation of trifluoromethyl alkenes with both isobutane and n-butane. The methodology provides an efficient alternative for the rapid construction of trifluoromethyl alkanes, which are well-known and important bioisosteres of several functional groups.
Key words
photocatalysis - flow chemistry - HAT photocatalysis - gaseous alkanes - trifluoromethyl alkanesSupporting Information
- Supporting information for this article is available online at https://doi-org.accesdistant.sorbonne-universite.fr/10.1055/a-2603-8442.
- Supporting Information
Publication History
Received: 28 March 2025
Accepted after revision: 08 May 2025
Accepted Manuscript online:
08 May 2025
Article published online:
30 June 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a Kerr RA. Science 2010; 328: 1624
- 1b Cooper J, Stamford L, Azapagic A. Energy Technol. 2016; 4: 772
- 2a Caballero A, Pérez PJ. Chem. Soc. Rev. 2013; 42: 8809
- 2b Pulcinella A, Mazzarella D, Noël T. Chem. Commun. 2021; 57: 9956
- 3a Chu JC. K, Rovis T. Angew. Chem. Int. Ed. 2018; 57: 62
- 3b Das J, Guin S, Maiti D. Chem. Sci. 2020; 11: 10887
- 3c Ali W, Prakash G, Maiti D. Chem. Sci. 2021; 12: 2735
- 3d Sinha SK, Guin S, Maiti S, Biswas JP, Porey S, Maiti D. Chem. Rev. 2022; 122: 5682
- 5a Capaldo L, Ravelli D, Fagnoni M. Chem. Rev. 2022; 122: 1875
- 5b Chang L, Wang S, An Q, Liu L, Wang H, Li Y, Feng K, Zuo Z. Chem. Sci. 2023; 14: 6841
- 5c Velasco-Rubio Á, Martínez-Balart P, Álvarez-Constantino AM, Fañanás-Mastral M. Chem. Commun. 2023; 59: 9424
- 6 For a review, see: Cai B, Cheo HW, Liu T, Wu J. Angew. Chem. Int. Ed. 2021; 60: 18950
- 7a Hu A, Guo J.-J, Pan H, Zuo Z. Science 2018; 361: 668
- 7b Laudadio G, Deng Y, van der Wal K, Ravelli D, Nuño M, Fagnoni M, Guthrie D, Sun Y, Noël T. Science 2020; 369: 92
- 7c Jin Y, Zhang Q, Wang L, Wang X, Meng C, Duan C. Green Chem. 2021; 23: 6984
- 7d Yang Q, Wang Y.-H, Qiao Y, Gau M, Carroll PJ, Walsh PJ, Schelter EJ. Science 2021; 372: 847
- 7e Zhang Q, Liu S, Lei J, Zhang Y, Meng C, Duan C, Jin Y. Org. Lett. 2022; 24: 1901
- 7f Panetti GB, Yang Q, Gau MR, Carroll PJ, Walsh PJ, Schelter EJ. Chem Catal. 2022; 2: 853
- 7g Dai Z.-Y, Zhang S.-Q, Hong X, Wang P.-S, Gong L.-Z. Chem Catal. 2022; 2: 1211
- 7h Raymenants F, Masson TM, Sanjosé-Orduna J, Noël T. Angew. Chem. Int. Ed. 2023; 62: e202308563
- 8 Nagornîi D, Raymenants F, Kaplaneris N, Noël T. Nat. Commun. 2024; 15: 5246
- 9a Pulcinella A, Tiwari PC, Luridiana A, Yamazaki K, Mazzarella D, Sadhoe AK, Alfano AI, Tiekink EH, Hamlin TA, Noël T. Angew. Chem. Int. Ed. 2025; 64: e202413846
- 9b Nair AM, Martínez-Balart P, Barbeira-Arán S, Fañanás-Mastral M. Angew. Chem. Int. Ed. 2025; 64: e202416957
- 10 Martínez-Balart P, Velasco-Rubio Á, Barbeira-Arán S, Jiménez-Cristóbal H, Fañanás-Mastral M. Green Chem. 2024; 26: 11196
- 11a Meanwell NA. J. Med. Chem. 2011; 54: 2529
- 11b Tseng C.-C, Baillie G, Donvito G, Mustafa MA, Juola SE, Zanato C, Massarenti C, Dall’Angelo S, Harrison WT. A, Lichtman AH, Ross RA, Zanda M, Greig IR. J. Med. Chem. 2019; 62: 5049
- 12a Santoro S, Ferlin F, Ackermann L, Vaccaro L. Chem. Soc. Rev. 2019; 48: 2767
- 12b Sambiagio C, Noël T. Trends Chem. 2020; 2: 92
- 12c Govaerts S, Nyuchev A, Noël T. J. Flow Chem. 2020; 10: 13
- 13a Noël T, Hessel V. ChemSusChem 2013; 6: 405
- 13b Plutschack MB, Pieber B, Gilmore K, Seeberger PH. Chem. Rev. 2017; 117: 11796
- 14a Lehman-McKeeman LD, Caudill D, Rodríguez PA, Eddy C. Toxicol. Appl. Pharmacol. 1998; 149: 32
- 14b Bisel P, Al-Momani L, Müller M. Org. Biomol. Chem. 2008; 6: 2655
- 14c Noro JC, Kalaitzis JA, Neilan BA. Chem. Biodivers. 2012; 9: 2077
- 14d Skiba MA, Sikkema AP, Moss NA, Lowell AN, Su M, Sturgis RM, Gerwick L, Gerwick WH, Sherman DH, Smith JL. ACS Chem. Biol. 2018; 13: 1640
- 15a De Waele V, Poizat O, Fagnoni M, Bagno A, Ravelli D. ACS Catal. 2016; 10: 7174
- 15b Ravelli D, Fagnoni M, Fukuyama T, Nishikawa T, Ryu I. ACS Catal. 2018; 8: 701
- 15c Hong B.-C, Indurmuddam RR. Org. Biomol. Chem. 2024; 22: 3799
- 16 Schultz DM, Lévesque F, DiRocco DA, Reibarkh M, Ji Y, Joyce LA, Dropinski JF, Sheng H, Sherry BD, Davies IW. Angew. Chem. Int. Ed. 2017; 56: 15274
- 17 In our previous work (see ref. 10), the hydroalkylation of trifluoromethyl alkenes bearing electron-rich substituents was possible by using a thiol HAT co-catalyst. Unfortunately, this dual catalysis approach proved not to be efficient under flow-chemistry conditions.
- 18a Cambié D, Bottecchia C, Straathof NJ. W, Hessel V, Noël T. Chem. Rev. 2016; 116: 10276
- 18b Rehm TH. Chem. Eur. J. 2020; 26: 16952
- 18c Buglioni L, Raymenants F, Slattery A, Zondag SD. A, Noël T. Chem. Rev. 2022; 122: 2752
- 19 Photocatalytic Hydroalkylation of Electron-Deficient Alkenes; General Procedure: The corresponding trifluoromethyl alkene (0.2 mmol) and NaDT (24.4 mg, 0.01 mmol, 5 mol%) were added to an oven-dried vial equipped with a septum. Anhydrous MeCN (2 mL, 0.1 M) was added, and the solution was finally homogenized by sonication in an ultrasound bath. Anhydrous MeCN was pumped through using both pumps at 0.5 mL·min–1 in order to purge the whole flow system (approximately 10 minutes). After that, the photoreactor was switched on along with the cooled gas generator, equilibrating the temperature of the system at 20–25 °C. The liquid phase was then combined with the gas stream through a T-mixer, with a liquid flow rate of 0.5 mL·min–1 and a gas flow rate of 15 mL·min–1 (30:1 gas-to-liquid ratio) for isobutane or 25 mL·min–1 (50:1 gas-to-liquid ratio) for n-butane. No back pressure regulator was used for this step. After that, the whole reaction mixture was pressurized at 4.5 bar (gauge pressure). Finally, the reaction mixture was pumped over the UV-150 photoreactor (365 nm high-powered LEDs, 61 W output power, 10 mL, fluoropolymer capillary tube, 1/16′′ OD, 1.0 mm ID) at the corresponding flow rate. The obtained crude material was collected into a vial. The solution was filtered through a silica plug and the residue was washed with Et2O (20 mL). Solvent was removed under reduced pressure, and the residue was finally purified by flash column chromatography, furnishing compounds 2–15.
For selected reviews on C(sp3)–H functionalization of alkanes, see:
For reviews on TBADT and HAT catalysis, see: