Subscribe to RSS
DOI: 10.1055/a-2577-0577
Zinc Triflate Catalyzed Tandem One-Pot Regioselective Synthesis of Highly Functionalized Pyrrole Derivatives

Abstract
An efficient, zinc triflate catalyzed, tandem cyclization for the synthesis of highly functionalized pyrrole derivatives of potential medicinal significance has been developed. The four components—an arylamine, an aldehyde, acetylacetone, and nitromethane—were effectively cyclized in a single step with four different bonds (C–C and C–N). The readily available materials, broad substrate scope, excellent functional-group tolerance, mild conditions, scalability, and excellent yields of high-purity products are attractive features of this newly developed protocol.
Key words
zinc triflate - one-pot reaction - tandem reaction - cyclization - pyrroles - medicinal chemistrySupporting Information
- Supporting information for this article is available online at https://doi-org.accesdistant.sorbonne-universite.fr/10.1055/a-
2577-0577.
- Supporting Information
Publication History
Received: 26 February 2025
Accepted after revision: 07 April 2025
Accepted Manuscript online:
07 April 2025
Article published online:
02 June 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a Stout EP, Morinaka BI, Wang Y.-G, Romo D, Molinski TF. J. Nat. Prod. 2012; 75: 527
- 1b Jansen R, Sood S, Huch V, Kunze B, Stadler M, Müller R. J. Nat. Prod. 2014; 77: 320
- 1c Munoz J, Köck M. J. Nat. Prod. 2016; 79: 434
- 1d Lacerna NM. II, Miller BW, Lim AL, Tun JO, Robes JM. D, Cleofas MJ. B, Lin Z, Salvador-Reyes LA, Haygood MG, Schmidt EW, Concepcion GP. J. Nat. Prod. 2019; 82: 1024
- 2a Carson JR, Carmosin RJ, Pitis PM, Vaught JL, Almond HR, Stables JP, Wolf HH, Swinyard EA, White HS. J. Med. Chem. 1997; 40: 1578
- 2b Youssef S, Stüve O, Patarroyo JC, Ruiz PJ, Radosevich JL, Hur EM, Bravo M, Mitchell DJ, Sobel RA, Steinman L, Zamvil SS. Nature 2002; 420: 78
- 2c Paludetto M.-N, Bijani C, Puisset F, Bernardes-Génisson V, Arellano C, Robert A. J. Med. Chem. 2018; 61: 7849
- 2d Schäfer A, Wellner A, Strauss M, Schäfer A, Wolber G, Gust R. J. Med. Chem. 2012; 55: 9607
- 3a Ibanez JG, Rincón ME, Gutierrez-Granados S, Chahma M, Jaramillo-Quintero OA, Frontana-Uribe BA. Chem. Rev. 2018; 118: 4731
- 3b Gao M, Qu K, Zhang W, Wang X. Neuroimmunomodulation. 2021; 28: 90
- 3c Fathi P, Pan D. Nanomedicine 2020; 15: 2493
- 4 Hu DX, Withall DM, Challis GL, Thomson RJ. Chem. Rev. 2016; 116: 7818
- 5 Domagala A, Jarosz T, Lapkowski M. Eur. J. Med. Chem. 2015; 100: 176
- 6a Chelucci G. Coord. Chem. Rev. 2017; 331: 37
- 6b Zhou N.-N, Zhu H.-T, Yang D.-S, Guan Z.-H. Org. Biomol. Chem. 2016; 14: 7136
- 6c Estévez V, Villacampa M, Menéndez J. Chem. Soc. Rev. 2014; 43: 4633
- 6d Gulevich AV, Dudnik AS, Chernyak N, Gevorgyan V. Chem. Rev. 2013; 113: 3084
- 6e Dömling A, Wang W, Wang K. Chem. Rev. 2012; 112: 3083
- 7a Reddy CR, Panda SA, Ramaraju A. J. Org. Chem. 2017; 82: 944
- 7b Galenko EE, Bodunov VA, Galenko AV, Novikov MS, Khlebnikov AF. J. Org. Chem. 2017; 82: 8568
- 7c Pan D, Wei Y, Shi M. Org. Lett. 2016; 18: 3930
- 7d Jiang Y, Chan WC, Park C.-M. J. Am. Chem. Soc. 2012; 134: 4104
- 7e Mishra PK, Verma S, Kumar M, Verma AK. Org. Lett. 2018; 20: 7182
- 7f Chen G.-Q, Zhang X.-N, Wei Y, Tang X.-Y, Shi M. Angew. Chem. Int. Ed. 2014; 53: 8492
- 7g Lian X.-L, Ren Z.-H, Wang Y.-Y, Guan Z.-H. Org. Lett. 2014; 16: 3360
- 8a Liu J, Fang Z, Zhang Q, Liu Q, Bi X. Angew. Chem. Int. Ed. 2013; 52: 6953
- 8b Gao M, He C, Chen H, Bai R, Cheng B, Lei A. Angew. Chem. Int. Ed. 2013; 52: 6958
- 8c Zhu L, Yu Y, Mao Z, Huang X. Org. Lett. 2015; 17: 30
- 8d Liao J.-Y, Shao P.-L, Zhao Y. J. Am. Chem. Soc. 2015; 137: 628
- 8e Wang Y, Jiang C.-M, Li H.-L, He F.-S, Luo X, Deng W.-P. J. Org. Chem. 2016; 81: 8653
- 8f Stuart DR, Alsabeh P, Kuhn M, Fagnou K. J. Am. Chem. Soc. 2010; 132: 18326
- 8g Cheng B.-Y, Wang Y.-N, Li T.-R, Lu L.-Q, Xiao W.-J. J. Org. Chem. 2017; 82: 12134
- 8h Michlik S, Kempe R. Nat. Chem. 2013; 5: 140
- 8i Rakshit S, Patureau FW, Glorius F. J. Am. Chem. Soc. 2010; 132: 9585
- 9a Balme G. Angew. Chem. Int. Ed. 2004; 43: 6238
- 9b Estévez V, Villacampa M, Menéndez JC. Chem. Soc. Rev. 2010; 39: 4402
- 9c Jiang B, Rajale T, Wever W, Tu S.-J, Li G. Chem. Asian J. 2010; 5: 2318
- 10a Zhang M, Fang X, Neumann H, Beller M. J. Am. Chem. Soc. 2013; 135: 11384
- 10b Wang X, Wang S.-Y, Ji S.-J. J. Org. Chem. 2014; 79: 8577
- 10c Zhang X, Xu X, Chen G, Yi W. Org. Lett. 2016; 18: 4864
- 10d Torres GM, Quesnel JS, Bijou D, Arndtsen BA. J. Am. Chem. Soc. 2016; 138: 7315
- 10e Liu Y, Yi X, Luo X, Xi C. J. Org. Chem. 2017; 82: 11391
- 10f Andreou D, Kallitsakis MG, Loukopoulos E, Gabriel C, Kostakis GE, Lykakis IN. J. Org. Chem. 2018; 83: 2104
- 10g Chiu H.-C, Tonks IA. Angew. Chem. Int. Ed. 2018; 57: 6090
- 10h Kawakita K, Beaumier EP, Kakiuchi Y, Tsurugi H, Tonks IA, Mashima K. J. Am. Chem. Soc. 2019; 141: 4194
- 11 Ono N. The Nitro Group in Organic Synthesis . Wiley-VCH; New York: 2001
- 12a Grob CA, Camenish K. Helv. Chim. Acta 1953; 36: 49
- 12b Meyer H. Liebigs Ann. Chem. 1981; 1534
- 12c Gómez-Sánchez A, Stiefel BM, Fernández-Fernández R, Pascual C, Bellanoto J. J. Chem. Soc., Perkin. Trans. 1 1982; 441
- 13a Kumar SV, Muthusaravanan S, Muthusubramanian S, Perumal S. ChemistrySelect 2016; 1: 675
- 13b Goyal S, Patel JK, Gangar M, Kumar K, Nair VA. RSC Adv. 2015; 5: 3187
- 13c Guan Z.-H, Li L, Ren Z.-H, Li J, Zhao M.-N. Green Chem. 2011; 13: 1664
- 13d Ghabraie E, Balalaie S, Bararjanian M, Bijanzadeh HR, Rominger F. Tetrahedron 2011; 67: 5415
- 14a Barton DH. R, Kervagoret J, Zard SZ. A. Tetrahedron 1990; 46: 7587
- 14b Barton DH. R, Zard SZ. J. J. Chem. Soc., Chem. Commun. 1985; 1098
- 15 Martin-Santos C, Jarava-Barrera C, Parra A, Esteban F, Navarro-Ranninger C, Alemán J. ChemCatChem 2012; 4: 976
- 16a Wang S, Zhu X, Chai Z, Wang S. Org. Biomol. Chem. 2014; 12: 1351
- 16b Hong D, Zhu Y, Li Y, Lin X, Lu P, Wang Y. Org. Lett. 2011; 13: 4668
- 17a Maiti S, Biswas S, Jana U. J. Org. Chem. 2010; 75: 1674
- 17b Andreou D, Kallitsakis MG, Loukopoulus E, Gabriel C, Kostakis GE, Lykakis IN. J. Org. Chem. 2018; 83: 2104
- 18 Li B, Zhang M, Hu H, Du X, Zhang Z. New J. Chem. 2014; 38: 2435
- 19 1-[1-(3-Chlorophenyl)-2-methyl-5-phenyl-1H-pyrrol-3-yl]ethanone (5): Typical Procedure Zn(OTf)2 (10 mol%) was added to a stirred solution of 3-chloroaniline (1a; 1 mmol), acetylacetone (3; 1 mmol), benzaldehyde (2a; 1 mmol), and nitromethane (4; 2 mmol) in EtOH (3 mL) and the mixture was heated at 70 °C for 2 h. When the reaction was complete (TLC), the mixture was cooled to r.t. and the excess solvent was evaporated under a vacuum. The crude residue was purified by column chromatography (silica gel, Ethyl acetate: Petroleum ether (05:95)) to give light-yellow crystals; yield: 87%; mp 112–114 °C. IR (KBr): 3111, 3080, 2922, 1647, 1496, 1410, 1228, 840, 767, 704 cm–1; 1H NMR (500 MHz, CDCl3): δ = 2.06 (s, 3 H, pyrrole CH3), 2.39 (s, 3 H, aliphatic CH3), 6.63 (s, 1 H), 7.25 (d, J = 8.5 Hz, 2 H), 7.27–7.47 (m, 5 H), 7.28 (d, J = 8.5 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 197.7. 139.9, 135.8, 135.2, 135.1, 130.4, 129.4, 128.4, 127.1, 126.8, 126.6, 124.5, 123.0, 120.4, 31.2, 13.0. HRMS (ESI): m/z [M + H]+ calcd for C19H17ClNO: 309.0912; found: 309.0918. Anal. Calcd for C19H16ClNO: C, 73.66; H, 5.21; N, 4.52. Found: C, 73.36; H, 5.56; N, 4.28. H.