Subscribe to RSS
DOI: 10.1055/a-2572-0881
Photoredox-Catalyzed Reductive Activation of Ammonium Salts
Our work was supported by the F.R.S-FNRS, the Université libre de Bruxelles (ULB, ARC grant ENLIGHTEN ME), and the Federal Excellence of Science (EoS) programme (BIOFACT, Grant No. O019618F). C.T. thanks the F.R.S-FNRS for a Chargé de recherches fellowship.

Abstract
The reductive activation of C–N bonds by single-electron transfer enables the generation of radicals from readily available and abundant amines. Despite their potential, such transformations remain challenging because of the stability of the C–N bond, which often requires preactivation to facilitate its cleavage. In this context, quaternary ammonium salts constitute ideal amine-derived radical precursors as they are stable and easy to handle, in addition to enabling the design of atom-economical processes. In this article, we highlight our recent work on the photoredox-catalyzed reductive activation of ammonium salts. Several ammonium salts could indeed be successfully activated using iridium photoredox catalysis, the corresponding radicals being subsequently engaged in hydrodeamination reactions and radical couplings. Moreover, the reactivity observed experimentally could be correlated to the redox potentials of the ammonium salts, which were determined by cyclic voltammetry.
1 Introduction
2 Hydrodeamination of Benzylic and Aryl Ammonium Salts
3 Selective Activation and Extension to Radical Couplings
4 Determination of the Redox Potentials of Ammonium Salts
5 Conclusion
Key words
photoredox catalysis - iridium catalysis - C–N bond activation - hydrodeamination reactions - radical couplings - ammonium saltsPublication History
Received: 23 January 2025
Accepted after revision: 01 April 2025
Accepted Manuscript online:
01 April 2025
Article published online:
15 May 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1 Current address: Minakem Recherche, 145 Chemin des Lilas, 59310, Beuvry-La-Forêt, France.
- 2 Current address: Aix Marseille Université, CNRS, Centrale Marseille, iSm2, 52 avenue Escadrille Normandie Niemen, 13013, Marseille, France.
- 3a Ouyang K, Hao W, Zhang W.-X, Xi Z. Chem. Rev. 2015; 115: 12045
- 3b Wang Q, Su Y, Li L, Huang H. Chem. Soc. Rev. 2016; 45: 1257
- 3c García-Cárceles J, Bahou KA, Bower JF. ACS Catal. 2020; 10: 12738
- 3d Berger KJ, Levin MD. Org. Biomol. Chem. 2021; 19: 11
- 4 Blanksby SJ, Ellison GB. Acc. Chem. Res. 2003; 36: 255
- 6 Rössler SL, Jelier BJ, Magnier E, Dagousset G, Carreira EM, Togni A. Angew. Chem. Int. Ed. 2020; 59: 9264
- 7a Ashley MA, Rovis T. J. Am. Chem. Soc. 2020; 142: 18310
- 7b Dorsheimer JR, Ashley MA, Rovis T. J. Am. Chem. Soc. 2021; 143: 19294
- 8a Quirós I, Martín M, Gomez-Mendoza M, Cabrera-Afonso MJ, Liras M, Fernández I, Nóvoa L, Tortosa M. Angew. Chem. Int. Ed. 2024; 63: e202317683
- 8b Martín M, Romero RM, Portolani C, Tortosa M. ACS Catal. 2024; 14: 17286
- 9a Berger KJ, Driscoll JL, Yuan M, Dherange BD, Gutierrez O, Levin MD. J. Am. Chem. Soc. 2021; 143: 17366
- 9b Dherange BD, Yuan M, Kelly CB, Reiher CA, Grosanu C, Berger KJ, Gutierrez O, Levin MD. J. Am. Chem. Soc. 2023; 145: 17
- 10 Washington JB, Assante M, Yan C, McKinney D, Juba V, Leach AG, Baillie SE, Reid M. Chem. Sci. 2021; 12: 6949
- 11 Wang Z.-X, Yang B. Org. Biomol. Chem. 2020; 18: 1057
- 12 Emmert B. Ber. Dtsch. Chem. Ges. 1909; 42: 1507
- 13 Brunet J.-J, Sidot C, Caubere P. J. Org. Chem. 1983; 48: 1919
- 14 Chen X, Wang N.-Z, Cheng Y.-M, Kong X, Cao Z.-Y. Synthesis 2023; 55: 2833
- 15 Yan B, Zhou Y, Wu J, Ran M, Li H, Yao Q. Org. Chem. Front. 2021; 8: 5244
- 16 Hendy CM, Smith GC, Xu Z, Lian T, Jui NT. J. Am. Chem. Soc. 2021; 143: 8987
- 17 Chernowsky CP, Chmiel AF, Wickens ZK. Angew. Chem. Int. Ed. 2021; 60: 21418
- 18 Annibaletto J, Jacob C, Theunissen C. Org. Lett. 2022; 24: 4170
- 19 Mfuh AM, Doyle JD, Chhetri B, Arman HD, Larionov OV. J. Am. Chem. Soc. 2016; 138: 2985
- 20 Wang S, Wang H, König B. Chem 2021; 7: 1653
- 21 Jin S, Dang HT, Haug GC, He R, Nguyen VD, Nguyen VT, Arman HD, Schanze KS, Larionov OV. J. Am. Chem. Soc. 2020; 142: 1603
- 22 Shen N, Liu C, Zhang X, Shang R. ACS Catal. 2023; 13: 11753
- 23 Kong X, Lin L, Chen Q, Xu B. Org. Chem. Front. 2021; 8: 702
- 24 Pan L, Kelley AS, Cooke MV, Deckert MM, Laulhé S. ACS Sustainable Chem. Eng. 2022; 10: 691
- 25 Yang D.-T, Zhu M, Schiffer ZJ, Williams K, Song X, Liu X, Manthiram K. ACS Catal. 2019; 9: 4699
- 26 Liao L.-L, Cao G.-M, Ye J.-H, Sun G.-Q, Zhou W.-J, Gui Y.-Y, Yan S.-S, Shen G, Yu D.-G. J. Am. Chem. Soc. 2018; 140: 17338
- 27 Miao M, Liao L.-L, Cao G.-M, Zhou W.-J, Yu D.-G. Sci. China Chem. 2019; 62: 1519
- 28 Li H, Li S, Hu H, Sun R, Liu M, Ding A, Liu X, Luo W, Fu Z, Guo S, Cai H. Chem. Commun. 2023; 59: 1205
- 29 Kong X, Wang Y, Chen Y, Chen X, Lin L, Cao Z.-Y. Org. Chem. Front. 2022; 9: 1288
- 30 For a nickel-catalyzed version, see: Yi Y.-Q.-Q, Yang W.-Q, Zhai D.-D, Zhang X.-Y, Li S.-Q, Guan B.-T. Chem. Commun. 2016; 52: 10894
- 31 For the electrochemical preparation and photoredox-catalyzed C–N functionalization of DABCOnium salts, see: Alvarez EM, Stewart G, Ullah M, Lalisse R, Gutierrez O, Malapit CA. J. Am. Chem. Soc. 2024; 146: 3591
- 32 For a recent review on modern approaches to aryl radicals, see: Grudzień K, Zlobin A, Zadworny J, Rybicka-Jasińska K, Sadowski B. Org. Chem. Front. 2024; 11: 5232
- 33 Paras NA, Simmons B, MacMillan DW. C. Tetrahedron 2009; 65: 3232
- 34 Rand AW, Montgomery J. Chem. Sci. 2019; 10: 5338
- 35 For a similar chemoselectivity under electrochemical conditions, see: Mayell JS, Bard AJ. J. Am. Chem. Soc. 1963; 85: 421
- 36 Andrieux CP, Pinson J. J. Am. Chem. Soc. 2003; 125: 14801
- 37 Narayanam JM. R, Tucker JW, Stephenson CR. J. J. Am. Chem. Soc. 2009; 131: 8756