Subscribe to RSS
DOI: 10.1055/a-2536-8292
Pseudopeptides of Marine Vibrio spp. from Taiwan and Their Combined Treatment Effects with Commercial Antibiotics
This work was supported by grants from the Ministry of Science and Technology of Taiwan (MOST 110 – 2320-B-110-002-MY3) and the National Sun Yat-sen University–Kaohsiung Medical University Joint Research Project (NSYSU–KMU 111-I006) awarded to C. C. Liaw and a grant from Academia Sinica (AS-IDR-113 – 03) awarded to W. C. Cheng. The authors also express gratitude for the financial support received from the Innovation Center for Drug Development and Optimization, National Sun Yat-sen University, Kaohsiung, Taiwan.

Abstract
Vibrio strains, identified by 16S rDNA, were isolated from the marine environment surrounding Taiwan, revealing diverse bioactive effects, such as iron-chelating and antimicrobial activities. Notably, the hierarchical clustering dendrogram of mass spectrum profiles of the Vibrio strains using matrix-assisted laser desorption ionization time-of-flight, in contrast to the phylogenetic tree based on 16S rDNA sequencing analysis, exhibited a strong correlation with their observed bioactivities. Within this set, global natural products social molecular network analysis by LC-HRMS/MS highlighted that three strains, Vibrio tubiashii DJW05 – 1, Vibrio japonicus DJW05 – 8, and Vibrio fortis DJW21 – 4, shared similar bioactive pseudopeptides in the same cluster. Subsequent chromatographical isolation and purification yielded an unprecedented unsaturated diketopiperazine, (Z)-3-(2-methylpropylidene)-2,3-dihydropyrrolo[1,2-a]pyrazine-1,4-dione (1), along with a series of diketopiperazines, and a potential new annotated pseudopeptide (2), as well as three pseudopeptides, including andrimid (10), moiramide B (11), and moiramide C (12), and several alkaloids from V. tubiashii DJW05 – 1. Further investigation into the combined applications of the major antimicrobial compound and commercial antibiotics revealed that andrimid (10) displayed significant inhibitory effects against gram-positive Staphylococcus aureus, and gram-negative Escherichia coli, Salmonella typhimurium, and Acinetobacter baumannii, but not Pseudomonas aeruginosa. Nevertheless, the potential for synergistic and additive effects of andrimid (10) with certain antibiotics remains, presenting valuable prospects for medicinal applications.
Keywords
Vibrio spp. - Biotyper - molecular network analysis - pseudopeptides - andrimid - combination treatments - antibiotics - synergism - antagonismSupporting Information
- Supporting Information
MS and 1H and 13C NMR spectra of compounds 1 – 17 and the fully assigned NMR data of the known compounds are available as Supporting Information.
Publication History
Received: 27 June 2024
Accepted after revision: 10 February 2025
Accepted Manuscript online:
11 February 2025
Article published online:
14 March 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Lee MJ, Jeong DY, Kim WS, Kim HD, Kim CH, Park WW, Park YH, Kim KS, Kim HM, Kim SD. A tetrodotoxin-producing Vibrio strain, LM-1, from the puffer fish Fugu vermicularis radiatus. Appl Environ Microbiol 2000; 66: 1698-1701
- 2 Strand M, Hedström M, Seth H, McEvoy EG, Jacobsson E, Göransson U, Andersson HS, Sundberg P. The bacterial (Vibrio alginolyticus) production of tetrodotoxin in the ribbon worm Lineus longissimus–Just a false positive?. Mar Drugs 2016; 14: 63
- 3 Vraspir JM, Holt PD, Butler A. Identification of new members within suites of amphiphilic marine siderophores. Biometals 2011; 24: 85-92
- 4 Fdhila F, Vázquez V, Sánchez JL, Riguera R. dd-diketopiperazines: Antibiotics active against Vibrio anguillarum isolated from marine bacteria associated with cultures of Pecten maximus . J Nat Prod 2003; 66: 1299-1301
- 5 Li H, Lee BC, Kim TS, Bae KS, Hong JK, Choi SH, Bao B, Jung JH. Bioactive cyclic dipeptides from a marine sponge-associated bacterium, Psychrobacter sp. Biomol Ther 2008; 16: 356-363
- 6 Fotso Fondja Yao CB, Al Zereini W, Fotso S, Heidrun A, Hartmut L. Aqabamycins A–G: Novel nitro maleimides from a marine Vibrio species: II. Structure elucidation. J Antibiot 2010; 63: 303
- 7 Chang HY, Lo LH, Lan YH, Hong MX, Chan YT, Ko TP, Huang YR, Cheng TH, Liaw CC. Structural insights into the substrate selectivity of α-oxoamine synthases from marine Vibrio sp. QWI-06. Colloids Surf B Biointerfaces 2022; 210: 112224
- 8 Liaw CC, Lo LH, Cheng TH, Chan YT, Huang YR, Wang AHJ, Chang HY. Biosynthesis of vitroprocines by α-oxoamine synthase and oxidoreductase identified from Vibrio sp. QWI-06. Org Lett 2022; 24: 3281-3285
- 9 Needham J, Kelly MT, Ishige M, Andersen RJ. Andrimid and moiramides A–C, metabolites produced in culture by a marine isolate of the bacterium Pseudomonas fluorescens: Structure elucidation and biosynthesis. J Org Chem 1994; 59: 2058-2063
- 10 Muñoz J, Köck M. Hybrid pyrrole–imidazole alkaloids from the sponge Agelas sceptrum . J Nat Prod 2016; 79: 434-437
- 11 Croxatto A, Prodʼhom G, Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev 2012; 36: 380-407
- 12 Sogawa K, Watanabe M, Sato K, Segawa S, Ishii C, Miyabe A, Murata S, Saito T, Nomura F. Use of the MALDI BioTyper system with MALDI–TOF mass spectrometry for rapid identification of microorganisms. Anal Bioanal Chem 2011; 400: 1905-1911
- 13 Kurokawa S, Kabayama J, Fukuyasu T, Hwang SD, Park CI, Park SB, del Castillo CS, Hikima JI, Jung TS, Kondo H, Hirono I, Takeyama H, Aoki T. Bacterial classification of fish-pathogenic Mycobacterium species by multigene phylogenetic analyses and MALDI Biotyper identification system. Mar Biotechnol 2013; 15: 340-348
- 14 Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, Kapono CA, Luzzatto-Knaan T, Porto C, Bouslimani A, Melnik AV, Meehan MJ, Liu WT, Crüsemann M, Boudreau PD, Esquenazi E, Sandoval-Calderón M, Kersten RD, Pace LA, Quinn RA, Duncan KR, Hsu CC, Floros DJ, Gavilan RG, Kleigrewe K, Northen T, Dutton RJ, Parrot D, Carlson EE, Aigle B, Michelsen CF, Jelsbak L, Sohlenkamp C, Pevzner P, Edlund A, McLean J, Piel J, Murphy BT, Gerwick L, Liaw CC, Yang YL, Humpf HU, Maansson M, Keyzers RA, Sims AC, Johnson AR, Sidebottom AM, Sedio BE, Klitgaard A, Larson CB, Boya PCA, Torres-Mendoza D, Gonzalez DJ, Silva DB, Marques LM, Demarque DP, Pociute E, OʼNeill EC, Briand E, Helfrich EJN, Granatosky EA, Glukhov E, Ryffel F, Houson H, Mohimani H, Kharbush JJ, Zeng Y, Vorholt JA, Kurita KL, Charusanti P, McPhail KL, Nielsen KF, Vuong L, Elfeki M, Traxler MF, Engene N, Koyama N, Vining OB, Baric R, Silva RR, Mascuch SJ, Tomasi S, Jenkins S, Macherla V, Hoffman T, Agarwal V, Williams PG, Dai J, Neupane R, Gurr J, Rodríguez AMC, Lamsa A, Zhang C, Dorrestein K, Duggan BM, Almaliti J, Allard PM, Phapale P, Nothias LF, Alexandrov T, Litaudon M, Wolfender JL, Kyle JE, Metz TO, Peryea T, Nguyen DT, VanLeer D, Shinn P, Jadhav A, Müller R, Waters KM, Shi W, Liu X, Zhang L, Knight R, Jensen PR, Palsson B, Pogliano K, Linington RG, Gutiérrez M, Lopes NP, Gerwick WH, Moore BS, Dorrestein PC, Bandeira N. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol 2016; 34: 828-837
- 15 Nothias LF, Nothias-Esposito M, da Silva R, Wang R, Protsyuk I, Zhang Z, Sarvepalli A, Leyssen P, Touboul D, Costa J, Paolini J, Alexandrov T, Litaudon M, Dorrestein PC. Bioactivity-based molecular networking for the discovery of drug leads in natural product bioassay-guided fractionation. J Nat Prod 2018; 81: 758-767
- 16 Freiberg C, Brunner NA, Schiffer G, Lampe T, Pohlmann J, Brands M, Raabe M, Häbich D, Ziegelbauer K. Identification and characterization of the first class of potent bacterial acetyl-CoA carboxylase inhibitors with antibacterial activity. J Biol Chem 2004; 279: 26066-26073
- 17 Liaw CC, Chen PC, Shih CJ, Tseng SP, Lai YM, Hsu CH, Dorrestein PC, Yang YL. Vitroprocines, new antibiotics against Acinetobacter baumannii, discovered from marine Vibrio sp. QWI-06 using mass-spectrometry-based metabolomics approach. Sci Rep 2015; 5: 1-11
- 18 Kaaniche F, Hamed A, Elleuch L, Chakchouk-Mtibaa A, Smaoui S, Karray-Rebai I, Koubaa I, Arcile G, Allouche N, Mellouli L. Purification and characterization of seven bioactive compounds from the newly isolated Streptomyces cavourensis TN638 strain via solid-state fermentation. Microb Pathog 2020; 142: 104106
- 19 Jamal Q, Cho JY, Moon JH, Munir S, Anees M, Kim KY. Identification for the first time of Cyclo (d-Pro-l-Leu) produced by Bacillus amyloliquefaciens Y1 as a nematocide for control of Meloidogyne incognita . Molecules 2017; 22: 1839
- 20 Fang Q, Maglangit F, Wu L, Ebel R, Kyeremeh K, Andersen JH, Annang F, Pérez-Moreno G, Reyes F, Deng H. Signalling and bioactive metabolites from Streptomyces sp. RK44. Molecules 2020; 25: 460
- 21 Mitova M, Popov S, De Rosa S. Cyclic peptides from a Ruegeria strain of bacteria associated with the sponge Suberites domuncula . J Nat Prod 2004; 67: 1178-1181
- 22 Chen JH, Lan XP, Liu Y, Jia AQ. The effects of diketopiperazines from Callyspongia sp. on release of cytokines and chemokines in cultured J774A.1 macrophages. Bioorg Med Chem Lett 2012; 22: 3177-3180
- 23 Xiang WX, Liu Q, Li XM, Lu CH, Shen YM. Four pairs of proline-containing cyclic dipeptides from Nocardiopsis sp. HT88, an endophytic bacterium of Mallotus nudiflorus L. Nat Prod Res 2020; 34: 2219-2224
- 24 Wei HX, Fang XW, Xie XS, Zhang SP, Jiang Y, Wu SH. Secondary metabolites of a soil-derived Streptomyces kunmingensis . Chem Nat Compd 2017; 53: 794-796
- 25 Ding GZ, Liu J, Wang JM, Fang L, Yu SS. Secondary metabolites from the endophytic fungi Penicillium polonicum and Aspergillus fumigatus . J Asian Nat Prod Res 2013; 15: 446-452
- 26 Kubica D, Molchanov S, Gryff-Keller A. Solvation of uracil and its derivatives by DMSO: A DFT-supported 1H NMR and 13C NMR study. J Phys Chem A 2017; 121: 1841-1848
- 27 Wulff DL, Fraenkel G. On the nature of thymine photoproduct. Biochim Biophys Acta 1961; 51: 332-339
- 28 Taylor JS, Garrett DS, Brockie IR, Svoboda DL, Telser J. Proton NMR assignment and melting temperature study of cis-syn and trans-syn thymine dimer containing duplexes of d(CGTATTATGC).d (GCATAATACG). J Biochem 1990; 29: 8858-8866
- 29 Jiang S, Zhang Y, Zhao X, Shao Y, Wei W, Tao Y, Yue H. A new flavonol acylglycoside from the fruits of Nitraria tangutorum Bobr. Nat Prod Res 2021; 35: 3652-3657
- 30 Kothandapani J, Ganesan A, Mani GK, Kulandaisamy AJ, Rayappan JBB, Selva Ganesan SS. Zinc oxide surface: A versatile nanoplatform for solvent-free synthesis of diverse isatin derivatives. Tetrahedron Lett 2016; 57: 3472-3475
- 31 El-Sayed MT, Mahmoud K, Hilgeroth A, Fakhr IMI. Synthesis of novel indolo‐spirocyclic compounds. J Heterocycl Chem 2016; 53: 188-196
- 32 Kumar Y, Shaw M, Thakur R, Kumar A. Copper (II)-mediated aerobic oxidation of benzylimidates: Synthesis of primary α-ketoamides. J Org Chem 2016; 81: 6617-6625
- 33 Zhao DY, Liu Y, Yin X, Li XM, Pan J, Guan W, Yang BY, Kuang HX. Two new alkaloids from the sepals of Solanum melongena L. Nat Prod Res 2021; 35: 3569-3577
- 34 Wolf S, Schmidt S, Müller-Hannemann M, Steffen N. In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics 2010; 11: 1-12
- 35 Silvers MA, Pakhomova S, Neau DB, Silvers WC, Anzalone N, Taylor CM, Waldrop GL. Crystal structure of carboxyltransferase from Staphylococcus aureus bound to the antibacterial agent moiramide B. Biochem 2016; 55: 4666-4674
- 36 Meletiadis J, Pournaras S, Roilides E, Walsh TJ. Defining fractional inhibitory concentration index cutoffs for additive interactions based on self-drug additive combinations, Monte Carlo simulation analysis, and in vitro-in vivo correlation data for antifungal drug combinations against Aspergillus fumigatus . Antimicrob Agents Chemother 2010; 54: 602-609
- 37 Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, Gatto L, Fischer B, Pratt B, Egertson J, Hoff K, Kessner D, Tasman N, Shulman N, Frewen B, Baker TA, Brusniak MY, Paulse C, Creasy D, Flashner L, Kani K, Moulding C, Seymour SL, Nuwaysir LM, Lefebvre B, Kuhlmann F, Roark J, Rainer P, Detlev S, Hemenway T, Huhmer A, Langridge J, Connolly B, Chadick T, Holly K, Eckels J, Deutsch EW, Moritz RL, Katz JE, Agus DB, MacCoss M, Tabb DL, Mallick P. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 2012; 30: 918-920
- 38 Ruttkies C, Schymanski EL, Wolf S, Hollender J, Neumann S. MetFrag relaunched: Incorporating strategies beyond in silico fragmentation. J Cheminform 2016; 8: 1-16
- 39 Jenkins SG, Schuetz AN. Current concepts in laboratory testing to guide antimicrobial therapy. Mayo Clin Proc 2012; 87: 290-308
- 40 Gayathiri E, Bharathi B, Priya K. Study of the enumeration of twelve clinical important bacterial populations at 0.5 Mcfarland standard. Int J Creat Res Thoughts 2018; 6: 880-893
- 41 Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 2008; 3: 163-175
- 42 Meletiadis J, Verweij PE, TeDorsthorst DT, Meis JFGM, Mouton JW. Assessing in vitro combinations of antifungal drugs against yeasts and filamentous fungi: comparison of different drug interaction models. Med Mycol J 2005; 43: 133-152